JPH07254317A - Manufacture of nb3sn superconducting wire - Google Patents
Manufacture of nb3sn superconducting wireInfo
- Publication number
- JPH07254317A JPH07254317A JP6060249A JP6024994A JPH07254317A JP H07254317 A JPH07254317 A JP H07254317A JP 6060249 A JP6060249 A JP 6060249A JP 6024994 A JP6024994 A JP 6024994A JP H07254317 A JPH07254317 A JP H07254317A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- composite
- intermediate annealing
- composite wire
- subjected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Metal Extraction Processes (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、超電導特性に優れたN
b3 Sn系超電導線を、高い生産性で製造する方法に関
する。BACKGROUND OF THE INVENTION The present invention relates to N having excellent superconducting properties.
The present invention relates to a method for producing a b 3 Sn superconducting wire with high productivity.
【0002】[0002]
【従来の技術】Nb3 Sn系超電導線は、例えば次の工
程に従って製造される。Nb棒を埋め込んだCu−10
〜15wt%Sn系合金材(以下ブロンズ材と称す。)を、
その外周にSn拡散防止用のNb条又はTa条を巻い
て、銅管内に挿入して一次ビレットを組立てる工程、
一次ビレットを延伸加工して所定寸法の複合線材に加工
する工程、複合線材を伸線加工して複合素材(通常、
直径2〜5mmφの丸線、対辺長さが3〜9mmの六角線
等)に加工する工程、複合素材を安定化材となす銅管
内に充填して二次ビレットを組立てる工程、二次ビレ
ットを延伸加工して所定寸法の複合線材に加工する工
程、複合線材を所定寸法の複合素線に伸線加工する工
程、複合素線に所定の加熱処理を施してブロンズ材中
のSnとNbフィラメントを反応させて、Nb3 Sn系
超電導フィラメントを生成する工程。2. Description of the Related Art Nb 3 Sn-based superconducting wires are manufactured, for example, according to the following steps. Cu-10 with embedded Nb rod
~ 15wt% Sn alloy material (hereinafter referred to as bronze material)
A step of assembling a primary billet by winding an Nb strip or a Ta strip for preventing Sn diffusion around the outer periphery and inserting it into a copper pipe.
The process of drawing the primary billet into a composite wire with a predetermined size, drawing the composite wire into a composite material (usually
Round wire with a diameter of 2 to 5 mmφ, hexagonal wire with opposite side length of 3 to 9 mm, etc., the process of filling a composite material into a copper tube that serves as a stabilizer to assemble a secondary billet, a secondary billet Of drawing the composite wire into a composite wire having a predetermined size, drawing the composite wire into a composite wire having a predetermined size, subjecting the composite wire to a predetermined heat treatment, and Sn and Nb filaments in the bronze material To produce Nb 3 Sn-based superconducting filaments.
【0003】[0003]
【発明が解決しようとする課題】前述の複合線材は、冷
間で延伸加工していくと、ブロンズ材が硬化して加工が
困難になる為、延伸加工途中に中間焼鈍を入れてブロン
ズ材を軟化させる必要がある。中間焼鈍は、減面率40%
程度毎に施し回数が多く、又電気炉を用いてバッチ式に
行う為、多くの人手と時間を要し生産性に劣った。In the above-mentioned composite wire rod, when cold drawing is carried out, the bronze material hardens and becomes difficult to work. Therefore, intermediate annealing is inserted during the drawing work to form the bronze material. Need to be softened. Intermediate annealing reduces surface area by 40%
Since the number of times of application is large and the batch method is performed by using an electric furnace, it takes a lot of manpower and time and is inferior in productivity.
【0004】又前述の電気炉を用いたバッチ式の中間焼
鈍は、高温長時間の条件でなされる為、Nb3 Sn相が
生成してしまうという問題があった。このとき生成する
Nb3 Sn相は、無効Nb3 Sn相と称されて超電導特
性が低く、又その後の伸線加工で微細に破壊されて最終
加熱でのNb3 Sn超電導フィラメントの形成には寄与
せず、得られる超電導線の特性を低下させる原因になっ
ていた。Further, since the batch type intermediate annealing using the electric furnace described above is performed under a condition of high temperature and long time, there is a problem that Nb 3 Sn phase is generated. The Nb 3 Sn phase generated at this time is called an ineffective Nb 3 Sn phase and has a low superconducting property, and it is finely broken in the subsequent wire drawing to contribute to the formation of the Nb 3 Sn superconducting filament in the final heating. Without doing so, it was a cause of deteriorating the characteristics of the obtained superconducting wire.
【0005】[0005]
【課題を解決するための手段】本発明はこのような状況
の中で、中間焼鈍の効率化並びに超電導特性の向上につ
いて鋭意研究を行い、通電加熱により目的を達成し得る
ことを知見し、更に研究を進めて本発明を完成するに至
った。即ち、請求項1の発明は、Cu−Sn系合金材中
にNbフィラメントが埋め込まれた複合線材を中間焼鈍
を施しつつ延伸加工して所定寸法の複合素線となし、こ
の複合素線に所定の加熱処理を施して、Cu−Sn系合
金材中のSnとNbフィラメントを反応させてNb3 S
n相を生成させるNb3 Sn系超電導線の製造方法にお
いて、複合線材に施す中間焼鈍を通電加熱により連続的
に行うことを特徴とするものである。Under the circumstances, the present invention has conducted earnest research on efficiency improvement of intermediate annealing and improvement of superconducting properties, and has found that the object can be achieved by electric heating. Through the progress of research, the present invention was completed. That is, according to the invention of claim 1, a composite wire in which a Nb filament is embedded in a Cu-Sn alloy material is subjected to an intermediate annealing and is stretched to form a composite wire having a predetermined size. Heat treatment is performed to react Sn in the Cu—Sn alloy material with the Nb filament to produce Nb 3 S.
In a method for producing an Nb 3 Sn-based superconducting wire that produces an n-phase, the intermediate annealing to be applied to the composite wire is continuously performed by electric heating.
【0006】又請求項2の発明は、Cu−Sn系合金材
中にNbフィラメントが埋め込まれた複合線材を中間焼
鈍を施しつつ室温にて延伸加工して所定寸法の複合素材
となし、この複合素材を安定化材となす銅管内に充填し
て複合ビレットとなし、この複合ビレットに延伸加工を
施して複合線材となし、この複合線材を中間焼鈍を施し
つつ室温にて延伸加工して所定寸法の複合素線となし、
この複合素線に所定の加熱処理を施して、Cu−Sn系
合金材中のSnとNbフィラメントを反応させてNb3
Sn相を生成させるNb3 Sn系超電導線の製造方法に
おいて、複合線材に施す中間焼鈍を通電加熱により連続
的に行うことを特徴とするものである。According to a second aspect of the present invention, a composite wire in which Nb filaments are embedded in a Cu-Sn alloy material is subjected to intermediate annealing and stretched at room temperature to form a composite material having a predetermined size. The material is filled into a copper tube that serves as a stabilizing material to form a composite billet, and this composite billet is stretched to form a composite wire rod, and this composite wire rod is stretched at room temperature while undergoing intermediate annealing. With or without a composite wire of dimensions,
This composite wire is subjected to a predetermined heat treatment to react Sn in the Cu—Sn alloy material with the Nb filament to form Nb 3
In the method for producing an Nb 3 Sn-based superconducting wire that produces an Sn phase, the intermediate annealing applied to the composite wire is continuously performed by electric heating.
【0007】前記請求項1及び請求項2の発明におい
て、複合線材とは、Cu−Sn系合金材(ブロンズ材)
にNb金属棒材を埋込み、これを所定寸法に延伸加工し
た線材、前記線材を安定化材となす銅管内に多数本充填
した複合ビレットを所定寸法に延伸加工した線材等、C
u−Sn系合金材中にNbフィラメントが埋込まれた任
意の線材で、芯部に安定化銅材を複合したものも含まれ
る。前記複合線材の線径は、一般に伸線加工が可能な線
径である。In the inventions of claims 1 and 2, the composite wire is a Cu-Sn alloy material (bronze material).
A wire rod in which a Nb metal rod is embedded in a wire and drawn into a predetermined size, a wire rod in which a large number of composite billets filled in a copper tube having the wire as a stabilizer are drawn into a predetermined size, C
An arbitrary wire rod in which a Nb filament is embedded in a u-Sn alloy material, including a composite of a stabilized copper material in the core portion is also included. The wire diameter of the composite wire is generally a wire diameter that enables wire drawing.
【0008】前記請求項1及び請求項2の発明におい
て、通電加熱とは、焼鈍しようとする線材に電流を流
し、その線材の電気抵抗により発生するジュール熱で線
材自身を加熱する方法で、電圧等の条件を適正に選択す
ることにより短時間焼鈍が可能である。前記発明におけ
る通電加熱では、複合線材に印加する電力量Q〔但し、
Q=(I×V×t)/C、式中Iは通電電流(ampere)、
Vは電圧(volt)、tは通電時間(sec)、Cは電極間の複
合線材の体積(mm3)である。〕が5joule/mm3 を超える
とNb3 Sn相が生成して後の伸線加工性に悪影響を及
ぼし、又中間焼鈍で生成するNb3 Sn相は超電導特性
に劣り、得られる超電導線の特性が低下する。又印加電
力量Qが 0.5joule/mm3 未満では焼鈍が十分に行われ
ず、後工程での伸線加工性が低下する。従って5joule/
mm3 ≧Q≧ 0.5joule/mm3 の条件、特には2joule/mm3
≧Q≧ 0.8joule/mm3 の条件を満足することが好まし
い。通電加熱は、冷間での延伸加工後に連続させて、或
いは連続する延伸加工の途中に入れて施すのが好まし
く、こうすることにより製造時間を従来の10〜30%に大
幅に短縮できる。通電加熱を入れる延伸加工工程は、通
常伸線加工工程である。In the inventions of claims 1 and 2, the energization heating is a method of applying a current to the wire to be annealed, and heating the wire itself by Joule heat generated by the electric resistance of the wire. It is possible to anneal for a short time by properly selecting the conditions such as. In the electric heating according to the invention, the amount of electric power Q applied to the composite wire rod (however,
Q = (I × V × t) / C, where I is the conduction current (ampere),
V is voltage (volt), t is energization time (sec), and C is the volume (mm 3 ) of the composite wire material between the electrodes. ] Adversely affects wire drawability after generates the Nb 3 Sn phase exceeds 5joule / mm 3, also Nb 3 Sn phase formed in the intermediate annealing is inferior in superconducting properties, of the resulting superconducting wire characteristics Is reduced. On the other hand, if the applied power amount Q is less than 0.5 joule / mm 3 , the annealing is not sufficiently performed and the wire drawing workability in the subsequent step is deteriorated. Therefore 5joule /
mm 3 ≧ Q ≧ 0.5joule / mm 3 condition, especially 2joule / mm 3
It is preferable to satisfy the condition of ≧ Q ≧ 0.8 joule / mm 3 . It is preferable that the electric heating is performed continuously after the cold drawing process or in the middle of the continuous drawing process. By doing so, the manufacturing time can be greatly reduced to 10 to 30% of the conventional time. The drawing process including the electric heating is usually a wire drawing process.
【0009】[0009]
【作用】本発明では、ブロンズ材中にNbフィラメント
が埋め込まれた複合線材の中間焼鈍を通電加熱により行
うので、焼鈍時間の短縮と人員の削減が計れ生産性に優
れる。通電加熱を、冷間での延伸加工後に連続して、又
は連続する延伸加工の途中に入れることにより、生産性
が一層向上する。In the present invention, since the intermediate annealing of the composite wire in which the Nb filament is embedded in the bronze material is performed by electric heating, the annealing time and the number of personnel can be reduced and the productivity is excellent. The productivity is further improved by introducing the electric heating continuously after the cold stretching process or in the middle of the continuous stretching process.
【0010】又本発明では、中間焼鈍を通電加熱で行う
為、焼鈍が極めて短時間でなされ、従って中間焼鈍工程
でNb3 Sn相が生成せず、得られるNb3 Sn系超電
導線の超電導特性を向上させることができる。Further, according to the present invention, since the intermediate annealing is performed by the electric current heating, the annealing is performed in a very short time, therefore, the Nb 3 Sn phase is not generated in the intermediate annealing step, and the superconducting property of the obtained Nb 3 Sn based superconducting wire is obtained. Can be improved.
【0011】[0011]
【実施例】以下に本発明を実施例により詳細に説明す
る。 実施例1 外径45.5mmφのブロンズ製棒材に7.2 mmφの貫通孔を等
間隔に複数本空け、この貫通孔の各々に7mmφのNb線
材を挿入し、前後端にブロンズ製蓋を電子ビーム溶接に
より真空封止して被せたのちHIP処理を施して一次ビ
レットとなし、この一次ビレットに熱間押出と冷間伸線
を順次施して対辺長さ4mmの六角線を作製した。次にこ
の六角線の多数本を無酸素銅管(内径 125mmφ、外径 2
05mmφ)内にTa条を介在させて充填し、両端にTa条
を被覆した無酸素銅製の蓋を、真空容器内にて電子ビー
ム溶接して被せた。次にこれを静水圧圧縮後、所定寸法
に外削して二次ビレットを作製した。この二次ビレット
を10.3mmφに熱間押出しして複合線材となし、この複合
線材を伸線加工して0.42mmφの複合素線となした。前記
複合線材を伸線加工するに当たって、減面率約40%毎に
通電加熱を入れた。又適宜、皮剥伸線を入れて表面欠陥
を除去した。EXAMPLES The present invention will be described in detail below with reference to examples. Example 1 A bronze rod having an outer diameter of 45.5 mmφ is provided with a plurality of through holes of 7.2 mmφ at equal intervals, Nb wire rods of 7 mmφ are inserted into each of the through holes, and a bronze lid is electron beam welded to the front and rear ends. After vacuum sealing and covering, a HIP process was performed to form a primary billet, and the primary billet was sequentially subjected to hot extrusion and cold drawing to produce a hexagonal wire having an opposite side length of 4 mm. Next, attach a large number of these hexagonal wires to an oxygen-free copper tube (inner diameter 125 mmφ, outer diameter 2
(05 mmφ) was filled with a Ta strip interposed, and a lid made of oxygen-free copper having Ta strips coated on both ends was electron beam welded in a vacuum container to cover the lid. Next, this was hydrostatically compressed and then externally cut to a predetermined size to prepare a secondary billet. This secondary billet was hot extruded to 10.3 mmφ to form a composite wire rod, and this composite wire rod was drawn to form a 0.42 mmφ composite wire. When wire-drawing the composite wire, an electric heating was applied at an area reduction rate of about 40%. Further, a peeling wire was appropriately inserted to remove surface defects.
【0012】前記通電加熱は、図1に示す工程に従って
施した。即ち、アンコイラ1から供給される複合線材2
を連続伸線機3内のダイス4を通して伸線し、前記伸線
機3から製出される複合線材2をそのまま通電加熱機5
に連続的に通して焼鈍し、これをコイラ6に巻取った。
前記通電加熱機5は、3個の電極輪7,17,27とガイドプ
ーリ8が上下にジグザグに配置されたもので、複合線材
2は、前記3個の電極輪7の周面に順次接触し受電して
各々の電極輪7,17,27間で通電加熱された。電極輪27以
降で冷却された。通電加熱後の複合線材2について、引
張試験を行って焼鈍状態を調べた。結果を表1及び表2
に示した。The electric heating was performed according to the steps shown in FIG. That is, the composite wire 2 supplied from the uncoiler 1
Is drawn through a die 4 in a continuous wire drawing machine 3, and the composite wire rod 2 produced from the wire drawing machine 3 is directly heated by an electric heating machine 5
It was annealed by continuously passing it through and was wound on a coiler 6.
The energizing heater 5 has three electrode wheels 7, 17, 27 and a guide pulley 8 arranged in a zigzag pattern in the vertical direction. The composite wire 2 sequentially contacts the peripheral surfaces of the three electrode wheels 7. Then, the power was received and the electrodes 7 and 17 were electrically heated. It was cooled after electrode wheel 27. A tensile test was performed on the composite wire 2 after the electric heating to examine the annealed state. The results are shown in Table 1 and Table 2.
It was shown to.
【0013】[0013]
【表1】 [Table 1]
【0014】[0014]
【表2】 [Table 2]
【0015】表1及び表2より明らかなように、印加電
力量Qが、5joule/mm3 ≧Q≧ 0.5joule/mm3 の範囲内
のもの(No.1〜12)は焼鈍状態が良好であった。中でも
印加電力量Qが2joule/mm3 ≧Q≧ 0.8joule/mm3 の範
囲内のもの(No.7〜9)は特に優れていた。印加電力量Q
が5joule/mm3 を超えたもの( No.13,14,16,17,20,22,2
4,26,28,30) は、Nb3 Sn相が若干生成し、又ブロン
ズ材の結晶粒がやや粗大化して伸びが幾分低下した。印
加電力量Qが0.5joule/mm3未満のもの( No.15,18,19,2
1,23,25,27,29) は、引張強度と伸びが低めで焼鈍がや
や不十分だった。As is clear from Tables 1 and 2, the applied power Q in the range of 5 joule / mm 3 ≧ Q ≧ 0.5 joule / mm 3 (No. 1 to 12) is in a good annealed state. there were. Among them, the applied power amount Q within the range of 2 joule / mm 3 ≧ Q ≧ 0.8 joule / mm 3 (Nos. 7 to 9) was particularly excellent. Applied power Q
Exceeding 5 joule / mm 3 (No.13,14,16,17,20,22,2
4,26,28,30), some Nb 3 Sn phase was generated, and the crystal grains of the bronze material were slightly coarsened, so that the elongation was somewhat reduced. Applied power Q less than 0.5 joule / mm 3 (No.15,18,19,2
1,23,25,27,29) had a rather low tensile strength and elongation, and the annealing was somewhat insufficient.
【0016】1.3トンの複合線材を8mmφから0.42mmφ
まで10回の通電加熱を入れて伸線加工したが、要した時
間は7時間であった。電気炉を用いてバッチ式に中間焼
鈍する従来法では64時間を要していたので、本発明方法
により伸線加工時間が大幅に短縮された。1.3 ton composite wire from 8mmφ to 0.42mmφ
Up to 10 times of electric heating was applied and wire drawing was performed, but the time required was 7 hours. Since the conventional method of batch-type intermediate annealing using an electric furnace required 64 hours, the method of the present invention significantly reduced the wire drawing time.
【0017】実施例2 実施例1で用いた10.3mmφの複合線材を、途中に通電加
熱による焼鈍を入れながら0.42mmφに伸線加工した。通
電加熱する線径と線速は実施例1と同じ条件にした。印
加電力量Qは全線径において同一になるようにした。得
られた0.42mmφの複合素線を 650℃×150 時間加熱処理
してブロンズ中のSnとNbフィラメントを反応させN
b3 Sn相を生成させてNb3 Sn系超電導線を製造し
た。得られたNb3 Sn系超電導線について6T(テス
ラー)の磁場下で臨界電流密度Jcを測定した。結果を
表3に示した。尚、Nb3 Sn系超電導線は、安定化
銅:ブロンズ:Nbの断面積比が5.25:2.5 :1、フィ
ラメント径が 5.8μmφ、フィラメント数が12103 本で
あった。Example 2 The 10.3 mmφ composite wire used in Example 1 was wire-drawn to 0.42 mmφ while being annealed by electric heating in the middle. The wire diameter and wire speed for electric heating were the same as in Example 1. The applied power amount Q was set to be the same for all wire diameters. The obtained 0.42 mmφ composite wire was heat treated at 650 ° C for 150 hours to react Sn and Nb filaments in the bronze with N
b 3 Sn phase to generate and to produce Nb 3 Sn based superconducting wire. The critical current density Jc of the obtained Nb 3 Sn based superconducting wire was measured under a magnetic field of 6 T (Tessler). The results are shown in Table 3. The Nb 3 Sn superconducting wire had a stabilized copper: bronze: Nb cross-sectional area ratio of 5.25: 2.5: 1, a filament diameter of 5.8 μmφ, and a filament number of 12103.
【0018】[0018]
【表3】 [Table 3]
【0019】表3より明らかなように、中間焼鈍を通電
加熱により施した本発明方法品(No.31〜38) はいずれも
Jcが優れた値を示した。中でも印加電力量Qが 2.0〜
0.8joule/mm3 のものはJcが特に高い値を示した。No.
31 は印加電力量Qが高く通電加熱時にNb3 Sn相が
若干析出した為、又No.38 は印加電力量Qが低く十分に
は焼鈍されず伸線加工中Nbフィラメントが少量ながら
断線した為、いずれもJcが幾分低下した。As is clear from Table 3, all of the method products of the present invention (Nos. 31 to 38) subjected to intermediate annealing by electric heating exhibited excellent values of Jc. Above all, the applied power Q is 2.0-
The value of 0.8 joule / mm 3 showed a particularly high value of Jc. No.
No. 31 had a high applied power Q and a slight precipitation of Nb 3 Sn phase during energization heating, and No. 38 had a low applied power Q and was not sufficiently annealed and had a small amount of Nb filaments broken during wire drawing. In each case, Jc was somewhat lowered.
【0020】実施例3 実施例1で作製した二次ビレットの熱間押出材(10.3mm
φ)を冷間で8mmφに引抜加工したのち、0.42mmφに連
続伸線加工した。伸線加工中通電加熱をオンラインで10
回入れた。比較の為、中間焼鈍を電気炉でバッチ式に行
って0.42mmφ材を製造した。バッチ式での中間焼鈍は通
電加熱のときと同じ線径で行った。得られた0.42mmφ材
を 630℃で100 時間加熱処理してNb3 Sn超電導体相
を反応・生成させた。得られた超電導線について12Tの
磁場下で臨界電流密度(Jc)を測定した。結果を表4
に示した。Example 3 Hot extruded material of the secondary billet produced in Example 1 (10.3 mm
(φ) was cold drawn to 8 mmφ, and then continuously drawn to 0.42 mmφ. 10 online heating processes during wire drawing
I put it in. For comparison, intermediate annealing was performed batchwise in an electric furnace to produce a 0.42 mmφ material. The batch-type intermediate annealing was performed with the same wire diameter as in the case of electric heating. The obtained 0.42 mmφ material was heat-treated at 630 ° C. for 100 hours to react and generate a Nb 3 Sn superconductor phase. The critical current density (Jc) of the obtained superconducting wire was measured under a magnetic field of 12T. The results are shown in Table 4.
It was shown to.
【0021】[0021]
【表4】 [Table 4]
【0022】表4より明らかなように、本発明方法品(N
o.39〜50) は、いずれもJcが高い値を示した。このう
ち、No.49 は通電加熱電力量Qが大きく無効Nb3 Sn
相が少量ながら析出した為、又No.50 は前記Qが小さく
焼鈍がやや不十分となり、伸線性がやや悪化し微細なが
ら欠陥が生じた為、ともにJcが若干低下した。他方電
気炉でバッチ式に焼鈍したものは、この焼鈍で無効Nb
3 Sn相が多量に生成した為、得られたNb3 Sn系超
電導線のJcが大幅に低下した。As is clear from Table 4, the product of the present invention (N
o.39 to 50) all showed high values of Jc. Of these, No. 49 has a large amount of heating power Q and is ineffective Nb 3 Sn
Since the phase was precipitated in a small amount, and in No. 50, the Q was small and the annealing was slightly insufficient, the wire drawability was slightly deteriorated, and defects were generated although they were fine. On the other hand, the one annealed batchwise in an electric furnace has an ineffective Nb
Since a large amount of 3 Sn phase was generated, the Jc of the obtained Nb 3 Sn based superconducting wire was significantly reduced.
【0023】以上、二次ビレットの複合線材を通電加熱
する場合について説明したが、本発明は一次ビレットの
複合線材の中間焼鈍に適用しても、又Nb3 Al等他の
系の超電導線を製造する際に適用しても同様の効果が得
られる。The case where the composite wire of the secondary billet is heated by electric current has been described above. However, even if the present invention is applied to the intermediate annealing of the composite wire of the primary billet, the superconducting wire of another system such as Nb 3 Al can be used. Similar effects can be obtained even when applied during manufacturing.
【0024】[0024]
【効果】以上述べたように、本発明のNb3 Sn系超電
導線の製造方法では、ブロンズ材中にNbフィラメント
が埋め込まれた複合線材の中間焼鈍を通電加熱により行
うので生産性並びに超電導特性に優れ、工業上顕著な効
果を奏する。[Effect] As described above, according to the method for producing a Nb 3 Sn superconducting wire of the present invention, since the intermediate annealing of the composite wire material in which the Nb filament is embedded in the bronze material is performed by the electric current heating, the productivity and the superconducting characteristics are improved. Excellent and has a remarkable industrial effect.
【図1】本発明方法における、伸線加工と通電加熱工程
の実施例を示す説明図である。FIG. 1 is an explanatory view showing an example of a wire drawing process and an electric heating process in a method of the present invention.
1 アンコイラ 2 複合線材 3 連続伸線機 4 ダイス 5 通電加熱機 6 コイラ 717,27 電極輪 8 ガイドプーリ 1 Uncoiler 2 Composite wire 3 Continuous wire drawing machine 4 Die 5 Electric heating machine 6 Coiler 717,27 Electrode wheel 8 Guide pulley
Claims (4)
トが埋め込まれた複合線材を中間焼鈍を施しつつ室温に
て延伸加工して所定寸法の複合素線となし、この複合素
線に所定の加熱処理を施して、Cu−Sn系合金材中の
SnとNbフィラメントを反応させてNb3 Sn相を生
成させるNb3 Sn系超電導線の製造方法において、複
合線材に施す中間焼鈍を通電加熱により連続的に行うこ
とを特徴とするNb3 Sn系超電導線の製造方法。1. A composite wire in which Nb filaments are embedded in a Cu—Sn alloy material is subjected to intermediate annealing and stretched at room temperature to form a composite wire having a predetermined size. subjected to heat treatment, in the manufacturing method of the Nb 3 Sn based superconducting wire by reacting Sn and Nb filaments of the Cu-Sn-based alloy material in to produce Nb 3 Sn phase, by electrically heating the intermediate annealing applied to the composite wire A method for producing an Nb 3 Sn-based superconducting wire, which is characterized in that it is continuously performed.
トが埋め込まれた複合線材を中間焼鈍を施しつつ室温に
て延伸加工して所定寸法の複合素材となし、この複合素
材を安定化材となす銅管内に充填して複合ビレットとな
し、この複合ビレットに延伸加工を施して複合線材とな
し、この複合線材を中間焼鈍を施しつつ室温にて延伸加
工して所定寸法の複合素線となし、この複合素線に所定
の加熱処理を施して、Cu−Sn系合金材中のSnとN
bフィラメントを反応させてNb3 Sn相を生成させる
Nb3 Sn系超電導線の製造方法において、複合線材に
施す中間焼鈍を通電加熱により連続的に行うことを特徴
とするNb3 Sn系超電導線の製造方法。2. A composite wire in which a Nb filament is embedded in a Cu—Sn alloy material is subjected to intermediate annealing and stretched at room temperature to form a composite material having a predetermined size, and the composite material is used as a stabilizer. It is filled into an eggplant copper tube to form a composite billet, and this composite billet is drawn to form a composite wire rod.This composite wire rod is subjected to intermediate annealing and drawn at room temperature to form a composite wire with a predetermined size. None, by subjecting this composite wire to a predetermined heat treatment, Sn and N in the Cu-Sn alloy material
b and filaments was reacted in the method for manufacturing a Nb 3 Sn based superconducting wire to produce Nb 3 Sn phase, the Nb 3 Sn based superconducting wire which is characterized in that the intermediate annealing is subjected to a composite wire continuously energized heating Production method.
が、次式、5joule/mm3 ≧Q≧ 0.5joule/mm3 〔但し、
Q=(I×V×t)/C、式中Iは通電電流(ampere)、
Vは電圧(volt) 、tは通電時間(sec)、Cは電極間の
複合線材の体積(mm3)。〕を満足することを特徴とする
請求項1又は請求項2記載のNb3 Sn系超電導線の製
造方法。3. The amount of electric power Q applied to the composite wire material by electric heating
Is the following equation, 5joule / mm 3 ≧ Q ≧ 0.5joule / mm 3 [however,
Q = (I × V × t) / C, where I is the conduction current (ampere),
V is the voltage (volt), t is the energization time (sec), and C is the volume (mm 3 ) of the composite wire between the electrodes. The method according to claim 1 or claim 2 Nb 3 Sn based superconducting wire according to, characterized by satisfying the].
加工の途中で、通電加熱を施すことを特徴とする請求項
1乃至請求項3記載のNb3 Sn系超電導線の製造方
法。4. The method for producing an Nb 3 Sn-based superconducting wire according to claim 1, wherein energization heating is performed continuously after the drawing process or during the continuous drawing process.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6060249A JPH07254317A (en) | 1994-01-27 | 1994-03-03 | Manufacture of nb3sn superconducting wire |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6-26215 | 1994-01-27 | ||
JP2621594 | 1994-01-27 | ||
JP6060249A JPH07254317A (en) | 1994-01-27 | 1994-03-03 | Manufacture of nb3sn superconducting wire |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07254317A true JPH07254317A (en) | 1995-10-03 |
Family
ID=26363962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6060249A Pending JPH07254317A (en) | 1994-01-27 | 1994-03-03 | Manufacture of nb3sn superconducting wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07254317A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109609750A (en) * | 2019-01-17 | 2019-04-12 | 西南石油大学 | A zero tension synchronous transmission heat treatment system for preparing high performance superconducting wire |
-
1994
- 1994-03-03 JP JP6060249A patent/JPH07254317A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109609750A (en) * | 2019-01-17 | 2019-04-12 | 西南石油大学 | A zero tension synchronous transmission heat treatment system for preparing high performance superconducting wire |
CN109609750B (en) * | 2019-01-17 | 2024-04-12 | 西南石油大学 | Zero-tension synchronous transmission heat treatment system for preparing high-performance superconducting wire |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3838503A (en) | Method of fabricating a composite multifilament intermetallic type superconducting wire | |
JPH05192821A (en) | Electric discharge working electrode and its manufacture | |
JP2973350B2 (en) | Manufacturing method of hot-dip wire | |
JPH07254317A (en) | Manufacture of nb3sn superconducting wire | |
JP7032783B2 (en) | A method for heat-treating a precursor wire for Nb3Al superconducting wire, and a method for manufacturing an Nb3Al superconducting wire using this precursor wire. | |
JP3433937B2 (en) | Method of manufacturing superconducting alloy | |
JP2994287B2 (en) | Method of manufacturing surface brass wire for wire electric discharge machining | |
JPH0259109A (en) | Manufacture of very fine titanium wire | |
JPH06158251A (en) | Method and apparatus for continuous annealing in plastic working | |
JPS5910522B2 (en) | copper coated aluminum wire | |
JPH06103809A (en) | Manufacture of cu-ag alloy wire | |
US5628836A (en) | Method of preparing Nb3 Al superconducting wire | |
US6289576B1 (en) | Method for drawing elongated superconductive wires | |
JPH08167336A (en) | Manufacture of nb3sn superconducting wire | |
JP2923597B2 (en) | Manufacturing method of fine diameter composite metal plated wire | |
JP3489313B2 (en) | Method for producing Nb3Al-based superconducting wire | |
JP3673831B2 (en) | Manufacturing method of Nb3Sn wire | |
JP2000140975A (en) | Manufacturing method of irregular cross section | |
JP4019892B2 (en) | Manufacturing method of electrode wire for wire electric discharge machining and electrode wire for wire electric discharge machining manufactured using the manufacturing method | |
JP2846434B2 (en) | Method for producing Nb-Ti alloy for superconducting wire | |
JPH0156139B2 (en) | ||
JP3106278B2 (en) | Method for producing Nb3 Sn-based superconducting wire | |
JPS60125359A (en) | Manufacturing method for conductors for image display equipment and audio equipment | |
JPS60137520A (en) | Manufacture of high-strength and heat-resisting aluminium twisted wire | |
JP2004214018A (en) | Method for producing Nb3Sn wire rod |