[go: up one dir, main page]

JPH0888324A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH0888324A
JPH0888324A JP22336594A JP22336594A JPH0888324A JP H0888324 A JPH0888324 A JP H0888324A JP 22336594 A JP22336594 A JP 22336594A JP 22336594 A JP22336594 A JP 22336594A JP H0888324 A JPH0888324 A JP H0888324A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
coil
magnetic field
manufacturing
channel layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22336594A
Other languages
Japanese (ja)
Inventor
Katsuhiko Kawashima
克彦 川島
Akiyoshi Tamura
彰良 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22336594A priority Critical patent/JPH0888324A/en
Publication of JPH0888324A publication Critical patent/JPH0888324A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE: To provide a field-effect transistor which restrains a short-channel effect without using a buried layer and whose gate length is short. CONSTITUTION: A field-effect transistor 2 is formed on a semiconductor substrate 1, and a coil is then manufactured by a process in which a metal is vapor- deposited two times while an insulator is sandwiched in between. A current is made to flow to the coil, and a magnetic field 7 is generated. The direction of the generated magnetic field is perpendicular to the running direction of carriers 13 inside a channel layer 11. Thereby, Lorentz's force due to the magnetic field acts on the carriers 13 inside the channel layer 11, and a force 12 acts on the side of a gate electrode opposite to the side of the semiconductor substrate at the lower part of the channel layer 11. The carriers can be run as they remain confined in the channel layer 11 by the force, and a short-channel effect is restrained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高周波帯で応用される
ゲ−ト長の短い電界効果トランジスタに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field effect transistor having a short gate length applied in a high frequency band.

【0002】[0002]

【従来の技術】電界効果トランジスタでは、ゲ−ト長が
短くなると、キャリアがチャネル層の下部の半導体基板
側を流れてしまうショ−トチャネル効果が生じる。その
ため、チャネル層の下部に、チャネル層と極性の反対の
層を、イオン注入技術によって埋め込んでいた(例えば
nチャネル層に対してはp層を埋め込む)。この構成では
チャネル層とその下部の境界にエネルギ−障壁が作ら
れ、キャリアがチャネル層に閉じ込められてショ−トチ
ャネル効果が抑制されていた(T.Shimuraら IEEEGaAs
IC Symposium 165,1992)。
2. Description of the Related Art In a field effect transistor, when the gate length becomes short, a short channel effect occurs in which carriers flow under the channel layer on the semiconductor substrate side. Therefore, a layer having a polarity opposite to that of the channel layer is buried under the channel layer by an ion implantation technique (for example,
Embed the p layer for the n channel layer). In this structure, an energy barrier is created at the boundary between the channel layer and the lower part, and carriers are confined in the channel layer to suppress the short channel effect (T. Shimura et al. IEEE GaAs).
IC Symposium 165, 1992).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来のイオン注入技術においては、埋め込み注入イオンの
拡散が生じ、埋め込み層と電界効果トランジスタのチャ
ネル層が反応するという問題があった。よって、所望の
トランジスタの特性を得るための構造パラメ−タが多く
なってしまい、制御技術が困難でこのことが課題であっ
た。
However, in the above-mentioned conventional ion implantation technique, there is a problem that the buried implantation ions are diffused and the buried layer reacts with the channel layer of the field effect transistor. Therefore, there are many structural parameters for obtaining the desired transistor characteristics, and the control technique is difficult, which is a problem.

【0004】本発明は、上記従来の課題を解決するもの
で、埋め込みイオン注入技術を用いることなくショ−ト
チャネル効果を回避する半導体装置を提供することを目
的とする。
The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide a semiconductor device which avoids the short channel effect without using a buried ion implantation technique.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に本発明の半導体装置は、埋め込み構造ではない通常の
電界効果トランジスタを通常の方法で製造し、そのトラ
ンジスタの外界から磁場をかけることによって、キャリ
アをチャネル層内に閉じ込めてショ−トチャネル効果を
抑制する構成を有している。
In order to achieve this object, the semiconductor device of the present invention is manufactured by manufacturing an ordinary field effect transistor having no buried structure by an ordinary method and applying a magnetic field from the outside of the transistor. , Has a configuration in which carriers are confined in the channel layer to suppress the short channel effect.

【0006】[0006]

【作用】上記磁場はチャネル層内のキャリアの走行方向
と半導体基板面の法線方向に共に垂直にかける。そのと
きキャリアには磁場によるロ−レンツ力が働き、チャネ
ル層の下部の半導体基板側とは反対のゲ−ト電極側方向
への力が働く。その力によって、キャリアはチャネル層
内に閉じ込められて走行し、ショ−トチャネル効果が抑
制される。
The magnetic field is applied perpendicular to both the traveling direction of carriers in the channel layer and the normal line direction of the semiconductor substrate surface. At that time, Lorentz force due to the magnetic field acts on the carrier, and a force in the direction of the gate electrode opposite to the semiconductor substrate side under the channel layer acts. Due to the force, carriers are confined in the channel layer and run, and the short channel effect is suppressed.

【0007】[0007]

【実施例】以下、本発明である半導体装置及びその製造
方法の一実施例について、図面を参照しながら説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A semiconductor device and a method of manufacturing the same according to the present invention will be described below with reference to the drawings.

【0008】最初に、半導体装置について、図1に基づ
いて説明する。 (a)図に示すように、まず半導体基板1上に、一般に
行われているように、イオン注入法でチャネル層とコン
タクト層を製造後、電極を蒸着するという方法でプレ−
ナ構造の電界効果トランジスタ2を製造する。このとき
ソース電極・ゲ−ト電極・ドレイン電極の位置関係は、
図において下からソ−ス電極3・ゲ−ト電極4・ドレイ
ン電極5の順である。
First, a semiconductor device will be described with reference to FIG. As shown in FIG. 1 (a), first, as is generally performed, a channel layer and a contact layer are manufactured by an ion implantation method, and then an electrode is vapor-deposited.
The field effect transistor 2 having a double structure is manufactured. At this time, the positional relationship between the source electrode, the gate electrode, and the drain electrode is
In the drawing, the source electrode 3, the gate electrode 4, and the drain electrode 5 are arranged in this order from the bottom.

【0009】磁場発生源6は前記電界効果トランジスタ
2の左側にある。磁場発生源6から発生した磁場7は、
図に示すように前記トランジスタのチャネル層内キャリ
アの走行方向(ソ−ス電極5からドレイン電極3へ向か
う方向)に垂直に入射する。
The magnetic field generating source 6 is on the left side of the field effect transistor 2. The magnetic field 7 generated from the magnetic field generation source 6 is
As shown in the figure, carriers in the channel layer of the transistor are perpendicularly incident in the traveling direction (direction from the source electrode 5 toward the drain electrode 3).

【0010】(b)、(c)図は前記電界効果トランジス
タ2を(a)図の破線で切った場合の断面図である。
(b)図にあるように、紙面において右から左方向をx
軸正方向、下から上方向をy軸正方向とする。(b)図
は金属半導体電界効果トランジスタ、(c)図は金属酸
化物半導体電界効果トランジスタの場合である。磁場発
生源から出た磁場7は紙面下向きである。チャネル層内
を走行するキャリア電子13は、x軸正方向に速度ベク
トルの成分14をもつため、磁場によるロ−レンツ力に
よってy軸正方向に力12が働く。この力12によって
キャリア電子13が、チャネル層内に閉じ込められてシ
ョ−トチャネル効果が抑制される。以上の場合は、チャ
ネル層がn型でキャリアが電子である場合であるが、チ
ャネル層がp型でキャリアがホ−ルの場合でも同様であ
る。
FIGS. 2B and 2C are sectional views of the field effect transistor 2 taken along the broken line in FIG.
(B) As shown in the figure, x from right to left on the paper
The positive direction of the axis is defined as the positive direction of the y-axis, and the downward direction is defined as the positive direction of the y-axis. (B) is a case of a metal semiconductor field effect transistor, and (c) is a case of a metal oxide semiconductor field effect transistor. The magnetic field 7 emitted from the magnetic field generation source faces downward in the drawing. Since the carrier electrons 13 traveling in the channel layer have the velocity vector component 14 in the positive direction of the x-axis, the force 12 acts in the positive direction of the y-axis by the Lorentz force by the magnetic field. By this force 12, the carrier electrons 13 are confined in the channel layer, and the short channel effect is suppressed. The above cases are for the case where the channel layer is n-type and the carriers are electrons, but the same applies when the channel layer is p-type and the carriers are holes.

【0011】次に、半導体基板上のコイルの製造方法及
び同一半導体基板上に電界効果トランジスタと磁場発生
源とを具備する半導体装置の製造方法について、図2に
基づいてまとめて説明する。
Next, a method of manufacturing a coil on a semiconductor substrate and a method of manufacturing a semiconductor device having a field effect transistor and a magnetic field generation source on the same semiconductor substrate will be collectively described with reference to FIG.

【0012】まず、(a)図に示すように、半導体基板
40上にp層埋め込み構造をとらないチャネル層がn型の
プレ−ナ構造の電界効果トランジスタ35を、従来用い
られている方法で製造する。ソ−ス電極32・ゲ−ト電
極31・ドレイン電極30の位置関係は、図に示すよう
に下側からソ−ス・ゲ−ト・ドレインの順である。次に
トランジスタ部を覆うようにフォトレジストを塗布し、
半導体基板40をウエッットエッチングする。つまり、
図においてトランジスタの左側をメサエッチングする。
メサエッチング後、凹部に磁場を発生するコイルを製造
する。まず、導電性の良い金属である金41を(a)図
のようなパタ−ンで蒸着する。この金属の蒸着は、通常
のフォトリソグラフィ−金属蒸着−リフトオフ法で行
う。
First, as shown in FIG. 1A, a field effect transistor 35 having a planar structure in which a channel layer is an n type without a p layer buried structure is formed on a semiconductor substrate 40 by a conventionally used method. To manufacture. The positional relationship between the source electrode 32, the gate electrode 31, and the drain electrode 30 is, as shown in the figure, from the bottom to the source gate and the drain. Next, apply photoresist to cover the transistor part,
The semiconductor substrate 40 is wet-etched. That is,
In the figure, the left side of the transistor is mesa-etched.
After the mesa etching, a coil that produces a magnetic field in the recess is manufactured. First, gold 41, which is a metal having good conductivity, is vapor-deposited by a pattern as shown in FIG. The vapor deposition of this metal is performed by a general photolithography-metal vapor deposition-lift-off method.

【0013】次に(b)図に示すように全面に絶縁膜Si3
N450をプラズマCVD法で堆積する。膜厚はメサエッチ
ング部の高さの約2倍にする。なお、(b)図において
は、Si3N4膜に覆われて本来見えない部分も破線で示し
てある。
Next, as shown in FIG. 2 (b), an insulating film Si 3 is formed on the entire surface.
N 4 50 is deposited by the plasma CVD method. The film thickness is approximately twice the height of the mesa etching portion. In addition, in the figure (b), the part covered with the Si 3 N 4 film and not originally visible is also shown by a broken line.

【0014】次に(c)図のように、Si3N4膜の下の櫛状
のパタ−ンの櫛の端に窓が開くようなパタ−ンでフォト
レジストを塗布した後、Si3N4をCF4でドライエッチング
して窓開けをする。その際、前記フォトレジストは図の
右側のFET部は覆わない。そうすると図のようにエッチ
ング後、FET部は露出される。
Next, as shown in FIG. 3C, a photoresist is applied by a pattern in which a window opens at the end of the comb-shaped pattern under the Si 3 N 4 film, and then Si 3 Dry etching N 4 with CF 4 to open a window. At this time, the photoresist does not cover the FET portion on the right side of the drawing. Then, as shown in the figure, the FET portion is exposed after etching.

【0015】次に(d)図のように(c)図で開けた窓が
つながるようなパタ−ンでフォトレジスト51を塗布す
る。
Next, as shown in FIG. 3D, a photoresist 51 is applied by a pattern that connects the windows opened in FIG.

【0016】次に、(e)図のように(a)図で蒸着した
金属と同じ金41を蒸着し、リフトオフする。こうし
て、Si3N4膜を挟んで下の金属と上の金属がつながり、
一本のコイルが製造される。以上の工程で、同一半導体
基板上に磁場発生源(コイル)と電界効果トランジスタ
を具備する半導体装置が製造される。
Next, as shown in (e), gold 41, which is the same as the metal deposited in (a), is deposited and lifted off. In this way, the lower metal and the upper metal are connected across the Si 3 N 4 film,
A single coil is manufactured. Through the above steps, a semiconductor device having a magnetic field generation source (coil) and a field effect transistor on the same semiconductor substrate is manufactured.

【0017】以上の工程のうち、電界効果トランジスタ
が関与する工程を除いた工程が、半導体基板上のコイル
の製造方法である。
Of the above steps, the steps excluding the step involving the field effect transistor are the method for manufacturing the coil on the semiconductor substrate.

【0018】製造されたコイル部のみの図を(f)図に
示す。この図において電界効果トランジスタはコイルの
向こう側にある。磁場を発生させるときは電流60を紙
面手前から向こう側に流す。発生磁場61はコイルの紙
面向こう側方向であり、電界効果トランジスタのチャネ
ル層内のキャリアの走行方向に垂直に入射する。なお、
上記図はコイルの巻数が5である場合だが、巻数は必ず
しも5である必要はない。巻数が5でない場合も製造方
法は上記と同様である。
A view of only the manufactured coil portion is shown in FIG. In this figure, the field effect transistor is on the other side of the coil. When generating a magnetic field, a current 60 is passed from the front side of the paper to the other side. The generated magnetic field 61 is in the direction opposite to the plane of the coil, and is perpendicular to the traveling direction of carriers in the channel layer of the field effect transistor. In addition,
Although the above figure shows the case where the number of turns of the coil is 5, the number of turns need not necessarily be 5. Even when the number of turns is not 5, the manufacturing method is the same as above.

【0019】[0019]

【発明の効果】磁場発生源から発生した磁場によって、
電界効果トランジスタのキャリアにはロ−レンツ力が働
き、キャリアはチャネル層に閉じ込められたまま走行す
ることができ、ショ−トチャネル効果が抑制される。
By the magnetic field generated from the magnetic field generation source,
Lorentz force acts on the carrier of the field effect transistor, and the carrier can travel while being confined in the channel layer, and the short channel effect is suppressed.

【0020】また、この半導体装置は、埋め込み層によ
るショ−トチャネル効果の抑制と異なり、コイルに流す
電流を変化させることによってキャリアにかかる力を変
化させることができ、ショ−トチャネル効果の抑制の程
度を、トランジスタ製造後も変化させることができると
いう利点もある。
Also, in this semiconductor device, unlike the suppression of the short channel effect by the buried layer, the force applied to the carriers can be changed by changing the current flowing in the coil, and the short channel effect is suppressed. There is also an advantage that the degree can be changed after the transistor is manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】同一半導体基板上に磁場発生源を具備した電界
効果トランジスタの構成図
FIG. 1 is a configuration diagram of a field effect transistor provided with a magnetic field generation source on the same semiconductor substrate.

【図2】同一半導体基板上に磁場発生源を具備した電界
効果トランジスタの製造方法を示す工程図
FIG. 2 is a process diagram showing a method for manufacturing a field effect transistor having a magnetic field generation source on the same semiconductor substrate.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 電界効果トランジスタ 3 ドレイン電極 4 ゲ−ト電極 5 ソ−ス電極 6 磁場発生源 7 発生磁場 10 コンタクト層 11 チャネル層 12 磁場によるロ−レンツ力のy方向成分 13 キャリア電子 14 キャリアの速度ベクトルのx方向成分 30 ドレイン電極 31 ゲ−ト電極 32 ソ−ス電極 35 電界効果トランジスタ(FET) 40 半導体基板 41 金 42 フォトレジスト 50 Si3N4 60 電流 61 発生磁場1 semiconductor substrate 2 field effect transistor 3 drain electrode 4 gate electrode 5 source electrode 6 magnetic field source 7 generated magnetic field 10 contact layer 11 channel layer 12 y-direction component of Lorentz force by magnetic field 13 carrier electron 14 of carrier X direction component of velocity vector 30 drain electrode 31 gate electrode 32 source electrode 35 field effect transistor (FET) 40 semiconductor substrate 41 gold 42 photoresist 50 Si 3 N 4 60 current 61 generated magnetic field

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/812 21/338 9171−4M H01L 29/80 R ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location H01L 29/812 21/338 9171-4M H01L 29/80 R

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】半導体基板と前記半導体基板上に設けられ
た電界効果トランジスタと、 前記半導体基板上に設けられた磁場発生源とを具備し、 前記磁場発生源から発生した磁場が、前記電界効果トラ
ンジスタのチャネル層内のキャリアの走行方向(ソ−ス
領域からドレイン領域に向かう方向)と前記半導体基板
面の法線方向に共に垂直な方向で入射し、チャネル層内
キャリアに前記磁場によるロ−レンツ力が働きチャネル
層とゲ−ト電極との界面に向かう方向に力が働くことに
よって、キャリアがチャネル層内に閉じ込められショ−
トチャネル効果が抑制されることを特徴とする半導体装
置。
1. A semiconductor substrate, a field effect transistor provided on the semiconductor substrate, and a magnetic field generation source provided on the semiconductor substrate, wherein the magnetic field generated from the magnetic field generation source is the field effect. The carriers in the channel layer of the transistor are incident in a direction perpendicular to both the traveling direction (direction from the source region to the drain region) and the direction normal to the semiconductor substrate surface, and the carriers in the channel layer are exposed to the magnetic field. The carrier force is confined in the channel layer by the force acting in the direction toward the interface between the channel layer and the gate electrode due to the Lenz force.
A semiconductor device in which the to-channel effect is suppressed.
【請求項2】半導体基板上にコイルを具備し、 前記コイルに電流が流れることにより磁場が発生する磁
場発生源を具備することを特徴とする請求項1記載の半
導体装置。
2. The semiconductor device according to claim 1, further comprising a coil on the semiconductor substrate, and a magnetic field generation source that generates a magnetic field when a current flows through the coil.
【請求項3】半導体基板上にコイルを製造する方法にお
いて、 半導体基板上に導電性の良い金属を櫛状に蒸着する工程
と、 前記半導体基板と前記金属上全面に絶縁物を堆積する工
程と、 前記絶縁物をエッチングすることにより窓開けする工程
と、 さらに前記金属を櫛状に蒸着する工程によって、 巻き方向(コイルの中心軸)が半導体基板面の法線方向
に対し垂直であるコイルを製造することを特徴とするコ
イルの製造方法。
3. A method of manufacturing a coil on a semiconductor substrate, comprising: comb-depositing a metal having good conductivity on a semiconductor substrate; depositing an insulator on the entire surface of the semiconductor substrate and the metal. A coil whose winding direction (the central axis of the coil) is perpendicular to the normal to the semiconductor substrate surface is formed by etching the insulator to open a window and further depositing the metal in a comb shape. A method for manufacturing a coil, which comprises manufacturing the coil.
【請求項4】導電性の良い金属が金であることを特徴と
する請求項3記載のコイルの製造方法。
4. The method for manufacturing a coil according to claim 3, wherein the metal having good conductivity is gold.
【請求項5】絶縁物は、Si3N4をプラズマCVD法で堆積す
ることによって製造することを特徴とする請求項3記載
の半導体基板上のコイルの製造方法。
5. The method for manufacturing a coil on a semiconductor substrate according to claim 3, wherein the insulator is manufactured by depositing Si 3 N 4 by a plasma CVD method.
【請求項6】半導体装置の製造方法において、 半導体基板上に電界効果トランジスタを製造する工程
と、 前記半導体基板において前記電界効果トランジスタが凸
部にあるようにメサエッチングする工程と、 前記メサエッチングによる凹部に請求項3記載の半導体
基板上にコイルを製造する方法によってコイルを製造す
る工程とを有する半導体装置の製造方法。
6. A method of manufacturing a semiconductor device, the method comprising: manufacturing a field effect transistor on a semiconductor substrate; performing mesa etching so that the field effect transistor has a convex portion on the semiconductor substrate; A method of manufacturing a semiconductor device, comprising the step of manufacturing a coil on the semiconductor substrate according to claim 3 in the recess.
JP22336594A 1994-09-19 1994-09-19 Semiconductor device and its manufacture Pending JPH0888324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22336594A JPH0888324A (en) 1994-09-19 1994-09-19 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22336594A JPH0888324A (en) 1994-09-19 1994-09-19 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH0888324A true JPH0888324A (en) 1996-04-02

Family

ID=16797007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22336594A Pending JPH0888324A (en) 1994-09-19 1994-09-19 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH0888324A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0855741A1 (en) * 1997-01-17 1998-07-29 Lucent Technologies Inc. Component arrangement having magnetic field controlled transistor
EP0969512A1 (en) * 1998-06-30 2000-01-05 Asulab S.A. Microstructure comprising an integrated circuit in a substrate whose surface is provided with a planar coil
JP2015190980A (en) * 2014-03-27 2015-11-02 ハネウェル・インターナショナル・インコーポレーテッド Magnetic stimulus of isfet-based sensor to enable trimming and self-compensation of sensor measurement errors

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0855741A1 (en) * 1997-01-17 1998-07-29 Lucent Technologies Inc. Component arrangement having magnetic field controlled transistor
US5872384A (en) * 1997-01-17 1999-02-16 Lucent Technologies Inc. Component arrangement having magnetic field controlled transistor
EP0969512A1 (en) * 1998-06-30 2000-01-05 Asulab S.A. Microstructure comprising an integrated circuit in a substrate whose surface is provided with a planar coil
US6194961B1 (en) 1998-06-30 2001-02-27 Asulab S.A. Microstructure including a circuit integrated in a substrate on one surface of which is arranged a flat coil
JP2015190980A (en) * 2014-03-27 2015-11-02 ハネウェル・インターナショナル・インコーポレーテッド Magnetic stimulus of isfet-based sensor to enable trimming and self-compensation of sensor measurement errors

Similar Documents

Publication Publication Date Title
US5153683A (en) Field effect transistor
US5362677A (en) Method for producing a field effect transistor with a gate recess structure
JPH0216021B2 (en)
JPS6237965A (en) Longitudinal semiconductor device and manufacture thereof
US5776805A (en) Method for manufacturing MESFET
JP3602963B2 (en) MOS transistor
JPS6351550B2 (en)
JPH0888324A (en) Semiconductor device and its manufacture
US5483089A (en) Electrically isolated MESFET
JP4245689B2 (en) Manufacturing method of semiconductor device
JPH03196572A (en) Semiconductor device
JPH05235045A (en) Field-effect transistor
JP3106747B2 (en) Method for manufacturing compound semiconductor FET
JPH0845962A (en) Manufacture of semiconductor device
JPS62115782A (en) Manufacture of semiconductor device
JPH06120253A (en) Field effect transistor and its manufacture
KR100206864B1 (en) MOS field effect transistor manufacturing method
JPS61290777A (en) Method of manufacturing shot key gate electrode
KR100272577B1 (en) Method for fabricating bipolar transistor
JPH0653246A (en) Manufacture of field effect transistor
JPS61137371A (en) Manufacture of semiconductor device
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof
JPH02207536A (en) Semiconductor device
JPH05129600A (en) Semiconductor device
JPH05218099A (en) Heterojunction field-effect transistor