[go: up one dir, main page]

JPH0883609A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH0883609A
JPH0883609A JP6218781A JP21878194A JPH0883609A JP H0883609 A JPH0883609 A JP H0883609A JP 6218781 A JP6218781 A JP 6218781A JP 21878194 A JP21878194 A JP 21878194A JP H0883609 A JPH0883609 A JP H0883609A
Authority
JP
Japan
Prior art keywords
carbonaceous material
carbonaceous
powder
negative electrode
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6218781A
Other languages
Japanese (ja)
Inventor
Yoshiaki Asami
義明 阿左美
Masayoshi Nakajima
匡良 中島
Takahisa Osaki
隆久 大崎
Norio Takami
則雄 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP6218781A priority Critical patent/JPH0883609A/en
Publication of JPH0883609A publication Critical patent/JPH0883609A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE: To improve the utilization factor of a negative electrode by forming the carbonaceous material constituting a negative material with the mixture of two kinds of specific carbonaceous materials. CONSTITUTION: This lithium secondary battery is provided with a negative electrode made of a carbonaceous material storing or releasing lithium ions, and the carbonaceous material is constituted of the mixture of two kinds of carbonaceous materials. One carbonaceous material is the graphitized mesophase pitch carbon fiber powder having the average fiber length of 10-100μm, the average fiber diameter of 4-15μm, and the spacing less than 0.338nm of the (002) plane of the graphite structure by the X-ray diffraction method. The other carbonaceous material is the carbon powder of a resin baked body or the thermal decomposition vapor phase carbon having the particle size distribution less than 5μm at 70vol.% or above and the spacing of 0.338-0.380nm of the (002) plane by the X-ray diffraction method. The weight ratio between two carbonaceous materials is set to 80-95:20-5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池に関
し、特に負極の利用率を改良したリチウム二次電池に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to a lithium secondary battery having an improved utilization rate of a negative electrode.

【0002】[0002]

【従来の技術】近年、リチウム二次電池に組み込まれる
負極として、リチウムを吸蔵・放出する炭素質物、例え
ばコークス、樹脂焼成体、炭素繊維、熱分解気相炭素な
どを用いることによって、リチウムと非水電解液との反
応、さらにはデンドライト析出による負極特性の劣化を
改善することが提案されている。
2. Description of the Related Art In recent years, by using a carbonaceous material that absorbs and releases lithium, such as coke, a resin fired body, carbon fiber, and pyrolytic vapor-phase carbon, as a negative electrode incorporated in a lithium secondary battery, It has been proposed to improve the reaction with the water electrolyte and further the deterioration of the negative electrode characteristics due to the dendrite deposition.

【0003】従来、炭素質物からなる負極においては、
主に炭素原子からなる六角網面層が積み重なった構造
(黒鉛構造)部分において、層間にリチウムイオンが出
入りすることにより充放電が行われていると考えられて
いる。このため、リチウム二次電池の負極にはある程度
黒鉛構造の発達した炭素質物を用いる必要がある。
Conventionally, in a negative electrode made of carbonaceous material,
It is considered that charging / discharging is performed by lithium ions entering and leaving between layers in a structure (graphite structure) in which hexagonal net-surface layers mainly composed of carbon atoms are stacked. Therefore, it is necessary to use a carbonaceous material having a graphite structure developed to some extent for the negative electrode of the lithium secondary battery.

【0004】しかしながら、黒鉛化の進んだ巨大結晶を
粉末化した炭素質物を非水電解液中で負極として用いる
と、非水電解液が分解し、その結果として電池の容量お
よび充放電効率が低下する。また、充放電サイクルが進
むにつれて炭素質物の結晶構造ないし微細構造が崩れ、
リチウムの吸蔵放出能が劣化し、サイクル寿命が低下す
るという問題点があった。
However, when a carbonaceous material obtained by pulverizing giant crystals having advanced graphitization is used as a negative electrode in a non-aqueous electrolytic solution, the non-aqueous electrolytic solution is decomposed, resulting in a decrease in battery capacity and charge / discharge efficiency. To do. Also, as the charge / discharge cycle progresses, the crystal structure or fine structure of the carbonaceous material collapses,
There is a problem that the occlusion / release capacity of lithium is deteriorated and the cycle life is shortened.

【0005】また、黒鉛化物の粉末は薄片状であるた
め、リチウムイオンが挿入される黒鉛結晶子のc軸方向
の面で電解液に露出する面積がより小さくなるため、ハ
イレートの充放電サイクルにおいては急激に容量が低下
するという問題がある。このため、カーボンブラックな
どの導電剤を添加して電池特性の改善が図られている
が、負極充填密度が低下する問題が生じる。その結果、
従来の黒鉛化物では高容量のリチウム二次電池を実現で
きなかった。さらに、黒鉛化度の高い炭素繊維において
も、粉末にすると非水電解液が分解し、巨大結晶の粉末
を用いたものと同様に、負極としての性能が大幅に低下
するなどの問題があった。
Further, since the graphitized powder is in the form of flakes, the area exposed to the electrolytic solution on the surface of the graphite crystallite in which lithium ions are inserted in the c-axis direction becomes smaller, so that in a high-rate charge / discharge cycle. Has a problem that the capacity is rapidly reduced. Therefore, although battery characteristics have been improved by adding a conductive agent such as carbon black, there is a problem that the negative electrode packing density decreases. as a result,
High-capacity lithium secondary batteries cannot be realized with conventional graphitized products. Further, even in the case of carbon fibers having a high degree of graphitization, the non-aqueous electrolytic solution decomposes when made into powder, and there is a problem that the performance as a negative electrode is significantly reduced, as in the case of using a huge crystal powder. .

【0006】一方、黒鉛化度の低いコークスや炭素繊維
などの炭素質物では、溶媒の分解はある程度抑えられる
ものの、容量および充放電効率が低く、しかも充放電の
過電圧が大きいこと、電池の放電電圧の平坦性に欠ける
こと、さらにサイクル寿命が低いことなどの問題があっ
た。
On the other hand, in the case of carbonaceous materials such as coke and carbon fiber having a low degree of graphitization, although the decomposition of the solvent can be suppressed to some extent, the capacity and charge / discharge efficiency are low, and the overvoltage of charge / discharge is large, and the discharge voltage of the battery However, there were problems such as lack of flatness and low cycle life.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、高容
量で充放電効率、ハイレート放電特性、放電電圧の平坦
性、高い充放電寿命など電池特性が優れたリチウム二次
電池を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a lithium secondary battery having high capacity and excellent battery characteristics such as charge / discharge efficiency, high rate discharge characteristics, discharge voltage flatness, and high charge / discharge life. Is.

【0008】[0008]

【課題を解決するための手段】本発明のリチウム二次電
池は、リチウムイオンを吸蔵・放出する炭素質物からな
る負極と、正極と、非水電解液を具備したリチウム二次
電池において、前記炭素質物が2種類の炭素質物の混合
物からなり、 (A)その1つの炭素質物が、黒鉛化したメソフェーズ
ピッチ系炭素繊維の粉末であって、平均繊維長10〜1
00μm 、平均繊維径4〜15μm であり、X線回折法
による黒鉛構造の(002)面の面間隔d002 が0.3
38nm未満である炭素質物; (B)他の1つの炭素質物が、コークス、樹脂焼成体ま
たは熱分解気相炭素のブロック状、フレーク状または粒
状の形状の炭素粉末であり、その粒度分布が15μm 以
下の粒体が70体積%以上であり、X線回折法による
(002)面の面間隔d002 が0.338〜0.380
nmである炭素質物; 前記炭素質物(A)と(B)の重量比率が80〜95:
20〜5である;ことを特徴とするリチウム二次電池で
ある。
The lithium secondary battery of the present invention is a lithium secondary battery comprising a negative electrode composed of a carbonaceous material that absorbs and releases lithium ions, a positive electrode, and a non-aqueous electrolyte. The carbonaceous material is a mixture of two kinds of carbonaceous materials, and (A) one of the carbonaceous materials is a graphitized mesophase pitch carbon fiber powder having an average fiber length of 10 to 1
The average fiber diameter is 00 μm, the average fiber diameter is 4 to 15 μm, and the interplanar spacing d 002 of the (002) plane of the graphite structure by X-ray diffraction is 0.3
A carbonaceous material having a particle size of less than 38 nm; (B) another carbonaceous material is a coke, a resin fired body, or a block-like, flake-like or granular carbon powder of pyrolytic vapor phase carbon, the particle size distribution of which is 15 μm. The following particles are 70% by volume or more, and the interplanar spacing d 002 of the (002) plane by the X-ray diffraction method is 0.338 to 0.380.
Carbonaceous matter having a nm; The weight ratio of the carbonaceous matter (A) and (B) is 80 to 95:
20 to 5; A lithium secondary battery characterized by the above.

【0009】以下、本発明のリチウム二次電池(例えば
円筒形リチウム二次電池)を図1を参照して詳細に説明
する。
Hereinafter, the lithium secondary battery of the present invention (for example, a cylindrical lithium secondary battery) will be described in detail with reference to FIG.

【0010】有底円筒状の容器1は、底部に絶縁体2が
配置されている。電極群3は、前記容器1内に収納され
ている。前記電極群3は、正極4、セパレータ5および
負極6をこの順序で積層した帯状物を前記負極6が外側
に位置するように渦巻き状に捲回した構造になってい
る。
The bottomed cylindrical container 1 has an insulator 2 arranged at the bottom. The electrode group 3 is housed in the container 1. The electrode group 3 has a structure in which a band-shaped material in which a positive electrode 4, a separator 5, and a negative electrode 6 are laminated in this order is spirally wound so that the negative electrode 6 is located outside.

【0011】前記容器1内には、電解液が収納されてい
る。中央部が開口された絶縁紙7は前記容器1内の前記
電極群3の上方に載置されている。絶縁封口板8は、前
記容器1の上部開口部に配置され、かつ前記上部開口部
付近を内側にかしめ加工することにより、前記封口板8
は前記容器1に液密に固定されている。正極端子9は、
前記絶縁封口板8の中央に嵌合されている。正極リード
10の一端は、前記正極4に、他端は前記正極端子9に
それぞれ接続されている。前記負極6は、図示しない負
極リードを介して負極端子である前記容器1に接続され
ている。
An electrolytic solution is stored in the container 1. The insulating paper 7 having an opening in the center is placed above the electrode group 3 in the container 1. The insulating sealing plate 8 is disposed in the upper opening of the container 1, and the vicinity of the upper opening is caulked inward to form the sealing plate 8.
Is liquid-tightly fixed to the container 1. The positive electrode terminal 9 is
It is fitted in the center of the insulating sealing plate 8. One end of the positive electrode lead 10 is connected to the positive electrode 4, and the other end is connected to the positive electrode terminal 9. The negative electrode 6 is connected to the container 1, which is a negative electrode terminal, via a negative electrode lead (not shown).

【0012】前記容器1は、例えばステンレスから作ら
れている。前記正極4は、正極活物質に導電材および結
着材を適当な溶媒に懸濁し、この懸濁物を集電体に塗
布、乾燥して薄板状にすることにより作製される。
The container 1 is made of, for example, stainless steel. The positive electrode 4 is produced by suspending a conductive material and a binder in a positive electrode active material in an appropriate solvent, applying the suspension to a current collector, and drying the suspension to form a thin plate.

【0013】前記正極活物質としては、種々の酸化物、
例えば二酸化マンガン、リチウムマンガン複合酸化物、
リチウムニッケル酸化物、リチウムコバルト化合物、リ
チウムニッケルコバルト酸化物、リチウムを含むバナジ
ウム酸化物や、二硫化チタン、二硫化モリブデンなどの
カルコゲン化合物などを挙げることができる。中でも、
リチウムコバルト酸化物(LiCoO2 )、リチウムニ
ッケル酸化物(LiNiO2 )、リチウムマンガン複合
酸化物(LiMn24 、LiMnO2 )を用いると、
高電圧が得られるため好ましい。
As the positive electrode active material, various oxides,
For example, manganese dioxide, lithium manganese composite oxide,
Examples thereof include lithium nickel oxide, lithium cobalt compound, lithium nickel cobalt oxide, vanadium oxide containing lithium, and chalcogen compounds such as titanium disulfide and molybdenum disulfide. Above all,
Using lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganese composite oxide (LiMn 2 O 4 , LiMnO 2 ),
It is preferable because a high voltage can be obtained.

【0014】前記導電材としては、例えばアセチレンブ
ラック、カーボンブラック、黒鉛等を挙げることができ
る。前記結着材としては、例えばポリテトラフルオロエ
チレン(PTFE)、ポリフッ化ビニリデン(PVD
F)、エチレン−プロピレン−ジエン共重合体(EPD
M)、スチレン−ブタジエンゴム(SBR)等を用いる
ことができる。
Examples of the conductive material include acetylene black, carbon black and graphite. Examples of the binder include polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVD).
F), ethylene-propylene-diene copolymer (EPD
M), styrene-butadiene rubber (SBR) and the like can be used.

【0015】前記正極活物質、導電材および結着材の配
合割合は、正極活物質80〜95重量%、導電材3〜2
0重量%、結着材2〜7重量%の範囲にすることが好ま
しい。
The mixing ratio of the positive electrode active material, the conductive material and the binder is 80 to 95% by weight of the positive electrode active material and 3 to 2 of the conductive material.
The range of 0% by weight and 2 to 7% by weight of the binder is preferable.

【0016】前記集電体としては、例えばアルミニウム
箔、ステンレス箔、ニッケル箔、チタン箔等を用いるこ
とができる。
As the current collector, for example, aluminum foil, stainless foil, nickel foil, titanium foil or the like can be used.

【0017】前記セパレータとしては、例えば合成樹脂
製不織布、ポリエチレン多孔質フィルム、ポリプロピレ
ン多孔質フィルムを用いることができる。
As the separator, for example, a synthetic resin non-woven fabric, a polyethylene porous film, or a polypropylene porous film can be used.

【0018】前記負極6の炭素質物(A)は以下のよう
にして作製する。まず、メソフェーズピッチ系炭素質物
を主原料として溶融ブロー法により繊維長が200〜3
00μm の短繊維を紡糸した後、不融化して粉砕化でき
る程度に炭素化する。この炭素化の熱処理は600〜
2,000℃、好ましくは800〜1,500℃で行う
ことが望ましい。前記炭素化したメソフェーズピッチ系
炭素繊維のX線回折法による(002)面の面間隔d
002 は、0.338未満である。このようにして得られ
た炭素化繊維を、粉砕処理し、この炭素繊維を2,00
0℃以上、より好ましくは2,500〜3,200℃で
黒鉛化することにより、前述したメソフェーズピッチ系
炭素繊維粉末(A)を製造する。この際、前記粉砕、焼
成工程が極めて重要であり、粉砕時にボールミルやジェ
ットミルなどを用いて炭素繊維が縦割れしにくく、かつ
均一に粉砕することにより、平均繊維長は10〜100
μm 、より好ましくは平均繊維長30〜60μm 、また
平均繊維径は4〜15μm 、より好ましくは6〜8μm
であることが望ましい。なお、平均繊維長が10μm 未
満の場合は粉砕によって炭素繊維が縦割れしやすくな
り、一方、平均繊維長が100μm を越えると集電体へ
の塗工ができないため好ましくない。また、平均繊維径
が4μm 未満の場合は繊維の強度が脆くなり、一方、平
均炭素繊維径が15μm を越えると集電体への塗工がで
きないため好ましくない。
The carbonaceous material (A) for the negative electrode 6 is produced as follows. First, a mesophase pitch carbonaceous material is used as a main raw material and a fiber length of 200 to 3 is obtained by a melt blow method.
After spinning a short fiber of 00 μm, it is carbonized to such an extent that it can be made infusible and crushed. This carbonization heat treatment is 600 ~
It is desirable to carry out at 2,000 ° C., preferably 800 to 1,500 ° C. The interplanar spacing d of the (002) plane of the carbonized mesophase pitch carbon fiber measured by X-ray diffractometry.
002 is less than 0.338. The carbonized fiber thus obtained was pulverized to obtain 2,000 carbon fibers.
The mesophase pitch carbon fiber powder (A) described above is produced by graphitizing at 0 ° C or higher, and more preferably at 2,500 to 3,200 ° C. At this time, the crushing and firing steps are extremely important, and the carbon fiber is less likely to be longitudinally cracked by using a ball mill, a jet mill or the like at the time of crushing, and the average fiber length is 10 to 100 by uniformly crushing.
μm, more preferably 30 to 60 μm in average fiber length, and 4 to 15 μm in average fiber diameter, more preferably 6 to 8 μm.
Is desirable. If the average fiber length is less than 10 μm, the carbon fibers are likely to be longitudinally cracked by crushing. On the other hand, if the average fiber length exceeds 100 μm, the current collector cannot be coated, which is not preferable. Further, if the average fiber diameter is less than 4 μm, the strength of the fiber becomes brittle, while if the average carbon fiber diameter exceeds 15 μm, it is not preferable because coating on the current collector cannot be performed.

【0019】前記炭素繊維粉末(A)は、ガラスセルに
よる単体での充放電評価を行った結果、リチウムドープ
量、ハイレート特性など良好な結果が得られたが、円筒
形電池にするために負極集電体上に結着材と混合した塗
液を塗工したところ、円筒状の炭素繊維粉末のみである
ため、集電体との接触が少なく、また、繊維どうしの接
点も少ないため、電極圧延時に集電体から剥離しやす
く、強度の高い負極電極には至らなかった。そのため、
ガラスセルによる単体での充放電評価結果では前記炭素
繊維の特性よりやや劣るが、炭素繊維間の空隙を補う目
的で、各種の炭素質物との混合を検討した。
As for the carbon fiber powder (A), good results such as lithium doping amount and high rate characteristics were obtained as a result of charge and discharge evaluation by a glass cell alone. When a coating liquid mixed with a binder was applied on the current collector, the carbonaceous carbon powder alone was used, so there was little contact with the current collector, and there were few contacts between the fibers, so the electrode It was easily peeled off from the current collector during rolling and did not reach a high-strength negative electrode. for that reason,
The results of charge / discharge evaluation of a single substance using a glass cell were slightly inferior to the properties of the carbon fibers, but for the purpose of compensating for voids between the carbon fibers, mixing with various carbonaceous materials was examined.

【0020】その結果、前記炭素繊維と混合する炭素質
物としては、コークス、樹脂焼成体または熱分解気相炭
素のブロック状、フレーク状または粒状の形状を有する
炭素粉末(B)が望ましい。このものは、X線回折法に
よる(002)面の面間隔d002 が0.338〜0.3
80nmであり、かつ、粒径15μm 以下の粒子が70体
積%以上であることが望ましい。より好ましくは90体
積%以上であることが望ましい。
As a result, as the carbonaceous material to be mixed with the carbon fiber, carbon powder (B) having a block shape, a flake shape or a granular shape of coke, a resin fired body or pyrolysis vapor phase carbon is desirable. This has a (002) plane spacing d 002 of 0.338 to 0.3 according to the X-ray diffraction method.
It is desirable that the particle size of 80 nm and the particle size of 15 μm or less is 70% by volume or more. More preferably, the content is 90% by volume or more.

【0021】前記の炭素繊維粉末(A)と前記炭素粉末
(B)を混合することにより、電極圧延時の剥離もな
く、強度の高い負極電極を得ることができた。この理由
として、この粒度の小さい炭素質材を混合することによ
り、炭素繊維の空隙を埋め接点が多くなるため、集電体
からの剥離がなくなると考えられる。前記炭素質物にお
ける炭素繊維粉末(A)と炭素粉末(B)との配合比は
重量比で80〜95:20〜5、より好ましくは87〜
93:13〜7が望ましい。炭素粉末(B)の混合比が
5重量%未満では、満足する電極強度が得られず、一
方、20重量%を越えると電極性能が低下し、電池容量
や放電レート特性に問題がある。
By mixing the carbon fiber powder (A) with the carbon powder (B), it was possible to obtain a high-strength negative electrode without peeling during electrode rolling. It is considered that the reason for this is that by mixing the carbonaceous material having a small particle size, the voids of the carbon fibers are filled and the number of contacts is increased, so that separation from the current collector is eliminated. The compounding ratio of the carbon fiber powder (A) and the carbon powder (B) in the carbonaceous material is 80 to 95:20 to 5, and more preferably 87 to 95 by weight.
93: 13-7 is desirable. When the mixing ratio of the carbon powder (B) is less than 5% by weight, a satisfactory electrode strength cannot be obtained, while when it exceeds 20% by weight, the electrode performance deteriorates and there is a problem in battery capacity and discharge rate characteristics.

【0022】前記の方法で得られた炭素質物を含む負極
6は、具体的には次のような方法により作製される。前
記炭素繊維粉末(A)および炭素粉末(B)の混合物に
結着材を適当な溶媒に懸濁し、この懸濁物を集電体に塗
布、乾燥して薄板状にすることにより前記負極を作製す
る。
The negative electrode 6 containing the carbonaceous material obtained by the above method is specifically manufactured by the following method. A binder is suspended in a mixture of the carbon fiber powder (A) and the carbon powder (B) in a suitable solvent, and the suspension is applied to a current collector and dried to form a thin plate, thereby forming the negative electrode. Create.

【0023】前記結着材としては、例えばポリテトラフ
ルオロエチレン(PTFE)、ポリフッ化ビニリデン
(PVDF)、エチレン−プロピレン−ジエン共重合体
(EPDM)、スチレン−ブタジエンゴム(SBR)、
カルボキシメチルセルロース(CMC)等を用いること
ができる。
Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR),
Carboxymethyl cellulose (CMC) or the like can be used.

【0024】前記炭素質物および結着材の配合割合は、
結着材90〜98重量%、結着材2〜10重量%の範囲
にすることが好ましい。前記集電体としては、例えば銅
箔、ステンレス箔、ニッケル箔等を用いることができ
る。
The mixing ratio of the carbonaceous material and the binder is
The binder is preferably 90 to 98% by weight and the binder is preferably 2 to 10% by weight. As the current collector, for example, copper foil, stainless steel foil, nickel foil, or the like can be used.

【0025】前記容器1内に収容される前記非水電解液
は、非水溶媒に電解質を溶解することにより調製され
る。
The non-aqueous electrolytic solution contained in the container 1 is prepared by dissolving an electrolyte in a non-aqueous solvent.

【0026】前記非水溶媒としては、エチレンカーボネ
ート(EC)、ジメチルカーボネート(DMC)、メチ
ルエチルカーボネート(MEC)、ジエチルカーボネー
ト(DEC)、プロピレンカーボネート(PC)、γ−
ブチロラクロン(γ−BL)、アセトニトリル(A
N)、酢酸エチル(EA)、トルエン、キシレンなどが
挙げられる。
As the non-aqueous solvent, ethylene carbonate (EC), dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), propylene carbonate (PC), γ-
Butyrolacurone (γ-BL), acetonitrile (A
N), ethyl acetate (EA), toluene, xylene and the like.

【0027】前記非水電解液に含まれる電解質として
は、例えば過塩素酸リチウム(LiClO4 )、六フッ
化リン酸リチウム(LiPF6 )、ホウフッ化リチウム
(LiBF4 )、トリフルオロメタスルホン酸リチウム
(LiCF3 SO3 )などのリチウム塩(電解質)が挙
げられる。
The electrolyte contained in the non-aqueous electrolyte is, for example, lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), lithium trifluorometasulfonate. Examples thereof include lithium salts (electrolytes) such as (LiCF 3 SO 3 ).

【0028】[0028]

【実施例】以下、本発明の実施例を前述した図1を参照
して詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to FIG.

【0029】実施例1 まず、リチウムコバルト酸化物〔Lix CoO2 (0.
8≦x≦1)〕粉末91重量部をアセチレンブラック
3.5重量部、グラファイト3.5重量部およびエチレ
ンプロピレンジエンモノマー粉末2重量部とトルエンを
加えて共に混合し、アルミニウム箔(30μm )集電体
に塗布した後、プレスすることにより正極を作製した。
また、900℃で炭素化、粉砕後、3,000℃で焼成
して、平均繊維長40μm 、平均繊維径7μm 、N2
ス吸着BET法による比表面積4m2/g、X線回折法によ
る黒鉛構造の(002)面の面間隔d002 が0.336
4nmのメソフェーズピッチ系炭素繊維粉末(A)と、1
5μm 以下の粒子が92.2体積%でd002 が0.35
0nm、比表面積8.2m2/gのブロック状の形状を有する
コークス粉末(B)を、90:10の重量比で混合した
炭素質物96重量部、スチレンブタジエンゴム2.5重
量部、カルボキシメチルセルロース1.5重量部を共に
混合し、これを集電体である銅箔に塗布し、乾燥するこ
とにより負極を作製した。
Example 1 First, lithium cobalt oxide [Li x CoO 2 (0.
8 ≦ x ≦ 1)] 91 parts by weight of powder are mixed with 3.5 parts by weight of acetylene black, 3.5 parts by weight of graphite and 2 parts by weight of ethylene propylene diene monomer powder and toluene, and mixed together to collect an aluminum foil (30 μm). A positive electrode was produced by pressing after applying on an electric body.
Also, after carbonization at 900 ° C., pulverization, and calcination at 3,000 ° C., average fiber length 40 μm, average fiber diameter 7 μm, specific surface area 4 m 2 / g by N 2 gas adsorption BET method, graphite by X-ray diffraction method The (002) plane spacing d 002 of the structure is 0.336.
4nm mesophase pitch carbon fiber powder (A) and 1
92.2% by volume of particles of 5 μm or less and d 002 of 0.35
96 parts by weight of carbonaceous material, 2.5 parts by weight of styrene-butadiene rubber, and carboxymethyl cellulose were mixed with the coke powder (B) having a block shape having a surface area of 0,2 nm and a specific surface area of 8.2 m 2 / g in a weight ratio of 90:10. A 1.5-weight part was mixed together, this was apply | coated to the copper foil which is a collector, and the negative electrode was produced by drying.

【0030】前記正極、ポリエチレン製多孔質フィルム
からなるセパレータおよび前記負極をそれぞれこの順序
で積層した後、前記負極が外側に位置するように渦巻き
状に捲回して電極群を作製した。さらに六フッ化リン酸
リチウム(LiPF6 )を、エチレンカーボネート(E
C)とジエチルカーボネート(DEC)の混合溶媒(混
合体積率50:50)に1.0mol/L 溶解して非水電解
液を調製した。前記電極群および前記電解液をステンレ
ス製の有底円筒状容器内にそれぞれ収納して前述した図
1に示す円筒形リチウム二次電池を組み立てた。
The positive electrode, the separator made of a polyethylene porous film, and the negative electrode were laminated in this order, and then spirally wound so that the negative electrode was located on the outer side to prepare an electrode group. Further, lithium hexafluorophosphate (LiPF 6 ) was added to ethylene carbonate (E
A non-aqueous electrolytic solution was prepared by dissolving 1.0 mol / L in a mixed solvent of C) and diethyl carbonate (DEC) (mixing volume ratio 50:50). The electrode group and the electrolytic solution were respectively housed in a bottomed cylindrical container made of stainless steel to assemble the cylindrical lithium secondary battery shown in FIG. 1 described above.

【0031】実施例2 粒径15μm 以下の粒子が70.1体積%の前記コーク
ス粉末(B)を用いて実施例1と同様の方法により負極
を作製した。かかる負極を用いた以外は、実施例1と同
様にして前述した図1に示す円筒形リチウム二次電池を
組み立てた。
Example 2 A negative electrode was produced in the same manner as in Example 1 by using the coke powder (B) having a particle size of 15 μm or less in an amount of 70.1% by volume. The cylindrical lithium secondary battery shown in FIG. 1 was assembled in the same manner as in Example 1 except that this negative electrode was used.

【0032】比較例1 粒径15μm 以下の粒子が65.7体積%の前記コーク
ス粉末(B)を用いて実施例1と同様な方法により負極
を作製した。かかる負極を用いた以外、実施例1と同様
にして前述した図1に示す円筒形リチウム二次電池を組
み立てた。
Comparative Example 1 A negative electrode was produced in the same manner as in Example 1 using the coke powder (B) having a particle size of 15 μm or less and 65.7% by volume. The cylindrical lithium secondary battery shown in FIG. 1 was assembled in the same manner as in Example 1 except that this negative electrode was used.

【0033】比較例2 粒径15μm 以下の粒子が52.5体積%の前記コーク
ス粉末(B)を用いて、実施例1と同様の方法により負
極を作製した。かかる負極を用いた以外、実施例1と同
様にして前述した図1に示す円筒形リチウム二次電池を
組み立てた。
Comparative Example 2 A negative electrode was produced in the same manner as in Example 1 by using the coke powder (B) containing 52.5% by volume of particles having a particle size of 15 μm or less. The cylindrical lithium secondary battery shown in FIG. 1 was assembled in the same manner as in Example 1 except that this negative electrode was used.

【0034】実施例3 実施例1で作製した炭素繊維粉末(A)とコークス粉末
(B)とを80:20の重量比で混合した炭素質物を用
いた以外は、実施例1と同様にして前述した図1に示す
円筒形リチウム二次電池を組み立てた。
Example 3 Example 3 was repeated except that a carbonaceous material prepared by mixing the carbon fiber powder (A) prepared in Example 1 and the coke powder (B) in a weight ratio of 80:20 was used. The aforementioned cylindrical lithium secondary battery shown in FIG. 1 was assembled.

【0035】比較例3 実施例1で作製した炭素繊維粉末(A)とコークス粉末
(B)とを70:30の重量比で混合した炭素質物を用
いた以外は、実施例1と同様にして前述した図1に示す
円筒形リチウム二次電池を組み立てた。
Comparative Example 3 The procedure of Example 1 was repeated except that a carbonaceous material prepared by mixing the carbon fiber powder (A) prepared in Example 1 and the coke powder (B) in a weight ratio of 70:30 was used. The aforementioned cylindrical lithium secondary battery shown in FIG. 1 was assembled.

【0036】比較例4 実施例1で作製した炭素繊維粉末(A)とコークス粉末
(B)とを60:40の重量比で混合した炭素質物を用
いた以外は、実施例1と同様にして前述した図1に示す
円筒形リチウム二次電池を組み立てた。
Comparative Example 4 The procedure of Example 1 was repeated except that a carbonaceous material prepared by mixing the carbon fiber powder (A) prepared in Example 1 and the coke powder (B) in a weight ratio of 60:40 was used. The aforementioned cylindrical lithium secondary battery shown in FIG. 1 was assembled.

【0037】得られた実施例1〜3および比較例1〜4
のリチウム二次電池について、充電電流500mAで4.
2Vまで3時間充電し、2.7Vまで1Aのハイレート
電流で放電を行い、各電池の放電容量を測定し、実施例
1の放電容量を100%とした時の容量比の結果を表1
に、また、同じ充放電条件での各電池の充放電サイクル
特性を図2に示す。
The obtained Examples 1 to 3 and Comparative Examples 1 to 4
3. Regarding the lithium secondary battery of, 4.
The battery was charged to 2 V for 3 hours and discharged to 2.7 V at a high rate current of 1 A, the discharge capacity of each battery was measured, and the result of the capacity ratio when the discharge capacity of Example 1 was 100% is shown in Table 1.
In addition, FIG. 2 shows the charge / discharge cycle characteristics of each battery under the same charge / discharge conditions.

【0038】[0038]

【表1】 [Table 1]

【0039】表1および図2から明らかなように、実施
例1および2のリチウム二次電池は、比較例1および2
に比べて、ハイレート特性が良好で、かつ、高い充放電
寿命が得られることがわかる。これは前記コークス粉末
(B)の粒度分布の違いにより前記炭素繊維粉末(A)
の密着性が向上したためと考えられる。また実施例1お
よび3のリチウム二次電池も比較例3および4に比べて
ハイレート特性、充放電サイクル特性が良好であること
がわかる。これは前記炭素繊維粉末(A)と前記炭素粉
末(B)との混合比の違いにより、両炭素質物間の空隙
が減少し、前記炭素繊維粉末の特性が最大限に生かされ
たためと考えられる。なお、炭素繊維粉末と混合する炭
素質物としては、コークス粉末以外に樹脂焼成体または
熱分解気相炭素の粉末でも同様の結果が得られた。
As is clear from Table 1 and FIG. 2, the lithium secondary batteries of Examples 1 and 2 are the same as Comparative Examples 1 and 2.
It can be seen that the high rate characteristic is good and a high charge / discharge life can be obtained as compared with the above. This is due to the difference in particle size distribution of the coke powder (B) and the carbon fiber powder (A).
It is thought that this is due to the improved adhesion. It is also understood that the lithium secondary batteries of Examples 1 and 3 also have better high rate characteristics and charge / discharge cycle characteristics than Comparative Examples 3 and 4. It is considered that this is because the difference in the mixing ratio between the carbon fiber powder (A) and the carbon powder (B) reduced the voids between the carbonaceous materials and maximized the characteristics of the carbon fiber powder. . As the carbonaceous material to be mixed with the carbon fiber powder, similar results were obtained with a resin fired body or a pyrolytic vapor phase carbon powder, in addition to the coke powder.

【0040】[0040]

【発明の効果】本発明によれば、高容量でハイレート特
性に優れ、さらに高い充放電寿命を維持することが可能
なリチウム二次電池を提供することができる。
According to the present invention, it is possible to provide a lithium secondary battery having a high capacity, excellent high rate characteristics and capable of maintaining a long charge / discharge life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る円筒形リチウム二次電池を示す部
分断面図。
FIG. 1 is a partial cross-sectional view showing a cylindrical lithium secondary battery according to the present invention.

【図2】実施例1〜3および比較例1〜4のリチウム二
次電池における充放電サイクル数と容量維持率との関係
を示すグラフである。
FIG. 2 is a graph showing the relationship between the number of charge / discharge cycles and the capacity retention rate in the lithium secondary batteries of Examples 1 to 3 and Comparative Examples 1 to 4.

【符号の説明】[Explanation of symbols]

1…容器 3…電極群 4…正極 6…負極 8…封口板 DESCRIPTION OF SYMBOLS 1 ... Container 3 ... Electrode group 4 ... Positive electrode 6 ... Negative electrode 8 ... Sealing plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大崎 隆久 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 高見 則雄 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Takahisa Osaki, No. 1 Komukai Toshiba Town, Saiwai-ku, Kawasaki-shi, Kanagawa, Ltd. Within the Corporate Research and Development Center, Toshiba Corporation (72) Norio Takami, Komukai Toshiba, Kawasaki-shi, Kanagawa Prefecture Town No. 1 Toshiba Corporation Research & Development Center

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを吸蔵・放出する炭素質
物からなる負極と、正極と、非水電解液を具備したリチ
ウム二次電池において、前記炭素質物が2種類の炭素質
物の混合物からなり、 (A)その1つの炭素質物が、黒鉛化したメソフェーズ
ピッチ系炭素繊維の粉末であって、平均繊維長10〜1
00μm 、平均繊維径4〜15μm であり、X線回折法
による黒鉛構造の(002)面の面間隔d002 が0.3
38nm未満である炭素質物; (B)他の1つの炭素質物が、コークス、樹脂焼成体ま
たは熱分解気相炭素のブロック状、フレーク状または粒
状の形状の炭素粉末であり、その粒度分布が15μm 以
下の粒体が70体積%以上であり、X線回折法による
(002)面の面間隔d002 が0.338〜0.380
nmである炭素質物; 前記炭素質物(A)と(B)の重量比率が80〜95:
20〜5である;ことを特徴とするリチウム二次電池。
1. A lithium secondary battery comprising a negative electrode made of a carbonaceous material that absorbs and releases lithium ions, a positive electrode, and a non-aqueous electrolyte, wherein the carbonaceous material is a mixture of two kinds of carbonaceous materials. A) The one carbonaceous material is a graphitized mesophase pitch carbon fiber powder having an average fiber length of 10 to 1
The average fiber diameter is 00 μm, the average fiber diameter is 4 to 15 μm, and the interplanar spacing d 002 of the (002) plane of the graphite structure by X-ray diffraction is 0.3
A carbonaceous material having a particle size of less than 38 nm; (B) another carbonaceous material is a coke, a resin fired body, or a block-like, flake-like or granular carbon powder of pyrolytic vapor phase carbon, the particle size distribution of which is 15 μm. The following particles are 70% by volume or more, and the interplanar spacing d 002 of the (002) plane by the X-ray diffraction method is 0.338 to 0.380.
Carbonaceous matter having a nm; The weight ratio of the carbonaceous matter (A) and (B) is 80 to 95:
20 to 5; A lithium secondary battery characterized by the above.
JP6218781A 1994-09-13 1994-09-13 Lithium secondary battery Pending JPH0883609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6218781A JPH0883609A (en) 1994-09-13 1994-09-13 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6218781A JPH0883609A (en) 1994-09-13 1994-09-13 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH0883609A true JPH0883609A (en) 1996-03-26

Family

ID=16725282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6218781A Pending JPH0883609A (en) 1994-09-13 1994-09-13 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH0883609A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015170A (en) * 1999-06-29 2001-01-19 Sony Corp Nonaqueous electrolyte battery
US6420070B1 (en) 1997-09-19 2002-07-16 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery and its anode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420070B1 (en) 1997-09-19 2002-07-16 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery and its anode
JP2001015170A (en) * 1999-06-29 2001-01-19 Sony Corp Nonaqueous electrolyte battery

Similar Documents

Publication Publication Date Title
KR100392034B1 (en) Nonaqueous Electrolyte Secondary Cell, Method for Manufacturing the Same, and Carbonaceous Material Composition
EP0688057B1 (en) Lithium ion secondary battery
CN102893430B (en) Non-aqueous secondary batteries negative pole and non-aqueous secondary batteries
JP3436033B2 (en) Non-aqueous electrolyte secondary battery
JPH04237971A (en) Nonaqueous electrolyte secondary battery
JPH103920A (en) Lithium secondary battery, and manufacture of the same
KR19980080096A (en) Lithium secondary battery and negative electrode manufacturing method
US5789111A (en) Non-aqueous electrolyte secondary cell and method of manufacturing same
CN111656580A (en) Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium ion secondary battery including the same
JP3641648B2 (en) Lithium secondary battery
JP3499739B2 (en) Lithium secondary battery and method of manufacturing lithium secondary battery
JPH09245830A (en) Nonaqueous electrolyte secondary battery
JP3480764B2 (en) Non-aqueous electrolyte secondary battery
JP4192574B2 (en) Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery
JPH05266880A (en) Manufacture of negative electrode for nonaqueous electrolyte secondary battery
JP2003272621A (en) Negative electrode material for lithium secondary battery and negative electrode sheet manufactured from it
JPH0773868A (en) Nonaqueous electrolyte secondary battery and manufacture of negative electrode thereof
JP4195179B2 (en) Method for producing negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JPH0883609A (en) Lithium secondary battery
JP3568247B2 (en) Non-aqueous electrolyte secondary battery
JP3350114B2 (en) Non-aqueous electrolyte secondary battery
JPH09320593A (en) Nonaqueous electrolyte secondary battery
EP0858676B1 (en) Method for the production of a negative electrode composition for lithium secondary batteries and use of said composition in lithium secondary batteries.
JPH10233205A (en) Non-aqueous electrolyte secondary battery
JP2004265754A (en) Nonaqueous electrolyte secondary battery