[go: up one dir, main page]

JPH10233205A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JPH10233205A
JPH10233205A JP9035103A JP3510397A JPH10233205A JP H10233205 A JPH10233205 A JP H10233205A JP 9035103 A JP9035103 A JP 9035103A JP 3510397 A JP3510397 A JP 3510397A JP H10233205 A JPH10233205 A JP H10233205A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
lithium ion
ion secondary
graphite powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9035103A
Other languages
Japanese (ja)
Inventor
Hidetoshi Tanaka
秀敏 田中
Hideaki Nagura
秀哲 名倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP9035103A priority Critical patent/JPH10233205A/en
Publication of JPH10233205A publication Critical patent/JPH10233205A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

(57)【要約】 【課題】 リチウムイオン二次電池において、電池容量
およびサイクル特性を大幅に改善する。 【解決手段】 正極合剤中の導電性物質として、平均粒
径1〜50μmおよび比表面積5〜50m2 /gの黒鉛
粉末を厚さ1μm以下の薄片状に形成した薄片状黒鉛粉
末を用いる。その添加量は、正極合剤に対して0.5〜
9.5重量%とする。これにより、正極合剤中の導電性
物質が優れた導電性を発揮し、電子を正極活物質へ均一
かつ有効に運ぶことが可能となる。そのため、導電性物
質の含有量を減らして正極活物質の含有量を増加させる
ことができる。
(57) [Problem] To significantly improve battery capacity and cycle characteristics of a lithium ion secondary battery. SOLUTION: A flaky graphite powder formed by forming a flaky graphite powder having an average particle diameter of 1 to 50 μm and a specific surface area of 5 to 50 m 2 / g in a thickness of 1 μm or less is used as a conductive substance in a positive electrode mixture. The addition amount is 0.5 to the positive electrode mixture.
9.5% by weight. Thereby, the conductive material in the positive electrode mixture exhibits excellent conductivity, and it is possible to carry electrons uniformly and effectively to the positive electrode active material. Therefore, the content of the positive electrode active material can be increased by reducing the content of the conductive material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、正極活物質と導電
性物質とを含有する正極合剤を備えた非水電解液二次電
池に関するものである。
The present invention relates to a nonaqueous electrolyte secondary battery provided with a positive electrode mixture containing a positive electrode active material and a conductive material.

【0002】[0002]

【従来の技術】リチウムイオン二次電池や非水リチウム
イオン二次電池に代表される非水電解液二次電池は、放
電容量が大きく、高電圧、高エネルギー密度であること
から、その発展に大きな期待が寄せられている。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries, such as lithium ion secondary batteries and non-aqueous lithium ion secondary batteries, have a large discharge capacity, a high voltage and a high energy density. Expectations are high.

【0003】この種の非水電解液二次電池では、正極活
物質に対して電子を有効に供給することを目的として正
極合剤中に導電性物質を添加することが広く行われてお
り、従来この導電性物質としてはアセチレンブラック等
のカーボンブラック(例えば、粒径0.1μm以下、比
表面積200〜800m2 /gの粉末状のもの)や黒鉛
粉末(例えば、粒径3〜100μmおよび比表面積8〜
30m2 /gのもの)が使用されている。
In this type of non-aqueous electrolyte secondary battery, a conductive material is widely added to a positive electrode mixture for the purpose of effectively supplying electrons to a positive electrode active material. Conventionally, as the conductive material, carbon black such as acetylene black (for example, a powder having a particle size of 0.1 μm or less and a specific surface area of 200 to 800 m 2 / g) and graphite powder (for example, having a particle size of 3 to 100 μm and a specific Surface area 8 ~
30 m 2 / g).

【0004】[0004]

【発明が解決しようとする課題】しかし、これでは導電
性および成形性が必ずしも十分でないため、導電性物質
の含有量を減らして正極活物質の含有量を増加させるに
も限度があり、非水電解液二次電池の電池容量やサイク
ル特性を大きく向上させることが困難であるという不都
合があった。
However, since the conductivity and the moldability are not always sufficient, there is a limit in reducing the content of the conductive material and increasing the content of the positive electrode active material. There has been an inconvenience that it is difficult to significantly improve the battery capacity and cycle characteristics of the electrolyte secondary battery.

【0005】本発明は、上記事情に鑑み、特定の薄片状
黒鉛粉末を正極合剤中の導電性物質として使用すること
により、電池容量およびサイクル特性を大幅に改善しう
る非水電解液二次電池を提供することを目的とする。
In view of the above circumstances, the present invention provides a non-aqueous electrolyte secondary battery which can significantly improve battery capacity and cycle characteristics by using a specific flaky graphite powder as a conductive substance in a positive electrode mixture. It is intended to provide a battery.

【0006】[0006]

【課題を解決するための手段】本発明者らは、導電性お
よび成形性に優れる黒鉛系の導電性物質を非水電解液二
次電池に使用できないかと調査検討した結果、特定の薄
片状黒鉛粉末が優れた性能を発揮することと、その混合
比率を調整することによって一層その性能が向上するこ
とを見出し、本発明を完成するに至った。
The present inventors have investigated whether a graphite-based conductive material having excellent conductivity and formability can be used for a non-aqueous electrolyte secondary battery, and as a result, have found that a specific flaky graphite has been obtained. It has been found that the powder exhibits excellent performance, and that the performance is further improved by adjusting the mixing ratio, thereby completing the present invention.

【0007】すなわち本発明は、正極活物質と導電性物
質とを含有する正極合剤を備えた非水電解液二次電池に
おいて、平均粒径1〜50μmおよび比表面積5〜50
2/gの黒鉛粉末を厚さ1μm以下の薄片状に形成し
た薄片状黒鉛粉末を前記導電性物質として前記正極合剤
に対して0.5〜9.5重量%の範囲内で添加して構成
される。
That is, the present invention provides a nonaqueous electrolyte secondary battery provided with a positive electrode mixture containing a positive electrode active material and a conductive material, having an average particle size of 1 to 50 μm and a specific surface area of 5 to 50 μm.
An exfoliated graphite powder in which m 2 / g of graphite powder is formed into a flake having a thickness of 1 μm or less is added as the conductive substance in a range of 0.5 to 9.5% by weight based on the positive electrode mixture. It is composed.

【0008】ここで、薄片状黒鉛粉末の厚さを1μm以
下と限定したのは、この厚さが1μmを越えると導電性
および吸液性が悪化し、正極活物質へ電子を均一かつ有
効に伝達できなくなるからである。また、薄片状黒鉛粉
末の平均粒径を1〜50μmに限定したのは、この平均
粒径が50μmを越えると、正極活物質の粒径よりも導
電性物質の平均粒径が大きくなり、正極合剤全体に分散
している正極活物質へ電子を均一かつ有効に運ぶことが
できなくなる恐れが生じるためである。
The reason why the thickness of the flaky graphite powder is limited to 1 μm or less is that if the thickness exceeds 1 μm, the conductivity and liquid absorption deteriorate, and electrons are uniformly and effectively applied to the positive electrode active material. This is because it cannot be transmitted. Further, the reason why the average particle size of the flaky graphite powder is limited to 1 to 50 μm is that when the average particle size exceeds 50 μm, the average particle size of the conductive material becomes larger than the particle size of the positive electrode active material. This is because electrons may not be able to be uniformly and effectively transported to the positive electrode active material dispersed throughout the mixture.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施形態について
説明する。
Embodiments of the present invention will be described below.

【0010】本発明による非水電解液二次電池の一種で
あるリチウムイオン二次電池は電極体を有しており、こ
の電極体は、リチウムを含む金属酸化物からなる正極合
剤と、リチウムを吸蔵放出できる炭素質物質からなる負
極とをポリエチレン製のセパレータを介して渦巻状に巻
回したものである。また、この電極体には電解液が注入
されており、この電解液は適当な非水溶媒(例えば、エ
チレンカーボネート、ジエチルカーボネートを1:1の
割合で混合した溶媒)に電解質としてLiPF6 を1m
ol/l加えたものである。
[0010] A lithium ion secondary battery, which is a kind of non-aqueous electrolyte secondary battery according to the present invention, has an electrode body, and this electrode body comprises a positive electrode mixture composed of a metal oxide containing lithium, and a lithium mixture. And a negative electrode made of a carbonaceous substance capable of inserting and extracting a carbon dioxide through a separator made of polyethylene. An electrolytic solution is injected into the electrode body. The electrolytic solution is prepared by mixing LiPF 6 as an electrolyte with a suitable non-aqueous solvent (for example, a solvent in which ethylene carbonate and diethyl carbonate are mixed at a ratio of 1: 1).
ol / l.

【0011】ところで、前記正極合剤は正極活物質を含
有しており、この正極活物質には導電性物質が添加され
ている。この導電性物質は、平均粒径1〜50μmおよ
び比表面積5〜50m2 /gの黒鉛粉末を厚さ1μm以
下の薄片状に形成した薄片状黒鉛粉末であり、その添加
量は正極合剤に対して0.5〜9.5重量%となってい
る。
The positive electrode mixture contains a positive electrode active material, and a conductive material is added to the positive electrode active material. This conductive material is a flaky graphite powder formed by forming a flaky graphite powder having an average particle diameter of 1 to 50 μm and a specific surface area of 5 to 50 m 2 / g in a thickness of 1 μm or less. On the other hand, it is 0.5 to 9.5% by weight.

【0012】なお、この薄片状黒鉛粉末の原料として
は、Lcが755Å以上、Coが3.35Å以下の結晶
化度を持つ黒鉛粉末(例えば、天然鱗状黒鉛、熱分解黒
鉛、キッシュ黒鉛などの粉末)等がある。この黒鉛粉末
を濃硫酸、硝酸などの酸でH2SO4 −GICを形成さ
せ、水洗、脱水、乾燥、熱処理などの工程を経て得られ
た膨張化黒鉛粉末を使用することができる。そして、こ
れらの黒鉛粉末に対してベンゼン、アルコール、水など
の液体を用いて蒸気吸着処理と冷却固化処理を施して薄
片化することにより、薄片状黒鉛粉末を得ることができ
る。黒鉛粉末を薄片化する方法は上記方法に限定されな
い。
As a raw material of the flaky graphite powder, graphite powder having a crystallinity of Lc of 755 ° or more and Co of 3.35 ° or less (for example, powders of natural scale graphite, pyrolytic graphite, quiche graphite, etc.) ). Expanded graphite powder obtained by subjecting this graphite powder to H 2 SO 4 -GIC with an acid such as concentrated sulfuric acid or nitric acid and subjecting it to steps such as water washing, dehydration, drying and heat treatment can be used. Then, these graphite powders are subjected to a vapor adsorption treatment and a cooling and solidification treatment using a liquid such as benzene, alcohol, water or the like to be exfoliated, whereby flake graphite powders can be obtained. The method of exfoliating the graphite powder is not limited to the above method.

【0013】本発明によるリチウムイオン二次電池は以
上のような構成を有するので、正極合剤中の導電性物質
が優れた導電性を発揮し、電子を正極活物質へ均一かつ
有効に運ぶことが可能となる。そのため、導電性物質の
含有量を減らして正極活物質の含有量を増加させること
ができ、そうすることによってリチウムイオン二次電池
の電池容量およびサイクル特性を大幅に改善することが
可能となる。
Since the lithium ion secondary battery according to the present invention has the above-described structure, the conductive material in the positive electrode mixture exhibits excellent conductivity and uniformly and effectively transfers electrons to the positive electrode active material. Becomes possible. Therefore, the content of the conductive material can be reduced and the content of the positive electrode active material can be increased, thereby significantly improving the battery capacity and cycle characteristics of the lithium ion secondary battery.

【0014】[0014]

【実施例】以下、本発明の実施例について説明する。図
1はリチウムイオン二次電池の充放電サイクル試験の結
果を示すグラフ、図2はリチウムイオン二次電池の電池
容量の測定結果を示すグラフである。
Embodiments of the present invention will be described below. FIG. 1 is a graph showing a result of a charge / discharge cycle test of a lithium ion secondary battery, and FIG. 2 is a graph showing a measurement result of a battery capacity of the lithium ion secondary battery.

【0015】<実施例1>まず、正極活物質としてLi
Mn2 4 を用い、導電性物質として上記の薄片状黒鉛
粉末を用い、さらにバインダーとしてポリフッ化ビニリ
デン(以下、PVDFと称す。)を用い、これらを8.
70:86.95:4.35の割合の重量部で混合し、
n−メチル−2−ピロリドン(以下、NMPと称す。)
を加えてスラリーとした。このスラリーをアルミニウム
箔の両面に塗布して乾燥し、これを所定の厚さに圧延
し、200℃で5時間真空乾燥した後、所定の大きさに
切断して、シート状の正極を作製した。
<Example 1> First, Li was used as a positive electrode active material.
Mn 2 O 4 , the above-mentioned flaky graphite powder as a conductive substance, and polyvinylidene fluoride (hereinafter referred to as PVDF) as a binder.
70: 86.95: 4.35 parts by weight in a mixture,
n-methyl-2-pyrrolidone (hereinafter referred to as NMP)
Was added to form a slurry. This slurry was applied to both sides of an aluminum foil and dried, rolled to a predetermined thickness, vacuum-dried at 200 ° C. for 5 hours, and then cut to a predetermined size to produce a sheet-shaped positive electrode. .

【0016】一方、負極活物質としての石炭系ピッチコ
ークスに、バインダーとしてのPVDFを混合し、これ
にNMPを加えてスラリーとし、このスラリーを銅箔の
両面に塗布して乾燥した。これを所定の厚さに圧延し、
200℃で5時間真空乾燥した後、所定の大きさに切断
して、シート状の負極を作製した。
On the other hand, PVDF as a binder was mixed with coal-based pitch coke as a negative electrode active material, and NMP was added thereto to form a slurry. The slurry was applied to both surfaces of a copper foil and dried. This is rolled to a predetermined thickness,
After vacuum drying at 200 ° C. for 5 hours, the sheet was cut into a predetermined size to produce a sheet-shaped negative electrode.

【0017】その後、これらの電極(正極および負極)
をドライエアー雰囲気のグローブボックス内でフィルム
状のセパレータを介して重ね合わせ、これを渦巻状に巻
回して電極体を得た。
Thereafter, these electrodes (positive electrode and negative electrode)
Were laminated via a film-like separator in a glove box in a dry air atmosphere, and this was spirally wound to obtain an electrode body.

【0018】次に、この電極体を適当なケースに挿入し
た後、プロピレンカーボネート、エチレンカーボネート
およびジメチルカーボネートを1:1:3の割合で混合
した溶媒に、電解質としてLiPF6 を1mol/l加
えた電解液を注入して、リチウムイオン二次電池(実施
例1)を組み立てた。
Next, after inserting this electrode body into an appropriate case, 1 mol / l of LiPF 6 as an electrolyte was added to a solvent in which propylene carbonate, ethylene carbonate and dimethyl carbonate were mixed at a ratio of 1: 1: 3. An electrolyte was injected to assemble a lithium ion secondary battery (Example 1).

【0019】なお、このリチウムイオン二次電池の正極
の配合割合を表1中の「実施例1」の欄に示す。
The mixing ratio of the positive electrode of this lithium ion secondary battery is shown in the column of "Example 1" in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】<実施例2>正極の配合割合を0.47:
94.79:4.74とし(表1中の「実施例2」の欄
参照)、それ以外は実施例1と同様にしてリチウムイオ
ン二次電池(実施例2)を作製した。
Example 2 The mixing ratio of the positive electrode was 0.47:
The ratio was 94.79: 4.74 (see the column of “Example 2” in Table 1), and the other conditions were the same as in Example 1 to produce a lithium ion secondary battery (Example 2).

【0022】<実施例3>正極の配合割合を0.38:
94.88:4.74とし(表1中の「実施例3」の欄
参照)、それ以外は実施例1と同様にしてリチウムイオ
ン二次電池(実施例3)を作製した。
Example 3 The mixing ratio of the positive electrode was 0.38:
The ratio was 94.88: 4.74 (see the column of “Example 3” in Table 1), and the other conditions were the same as in Example 1 to produce a lithium ion secondary battery (Example 3).

【0023】<実施例4>正極の配合割合を9.50:
86.20:4.30とし(表1中の「実施例4」の欄
参照)、それ以外は実施例1と同様にしてリチウムイオ
ン二次電池(実施例4)を作製した。
Example 4 The mixing ratio of the positive electrode was 9.50:
86.20: 4.30 (see the column of “Example 4” in Table 1), and otherwise the procedure of Example 1 was repeated to prepare a lithium ion secondary battery (Example 4).

【0024】<実施例5>正極の配合割合を0.28:
94.97:4.75とし(表1中の「実施例5」の欄
参照)、それ以外は実施例1と同様にしてリチウムイオ
ン二次電池(実施例5)を作製した。
Example 5 The mixing ratio of the positive electrode was 0.28:
The ratio was 94.97: 4.75 (see the column of “Example 5” in Table 1), and the other conditions were the same as in Example 1 to produce a lithium ion secondary battery (Example 5).

【0025】<実施例6>正極の配合割合を10.2
6:85.47:4.27とし(表1中の「実施例6」
の欄参照)、それ以外は実施例1と同様にしてリチウム
イオン二次電池(実施例6)を作製した。
Example 6 The mixing ratio of the positive electrode was 10.2
6: 85.47: 4.27 ("Example 6" in Table 1)
, A lithium ion secondary battery (Example 6) was produced in the same manner as in Example 1.

【0026】<実施例7>正極の配合割合を4.55:
90.90:4.55とし(表1中の「実施例7」の欄
参照)、それ以外は実施例1と同様にしてリチウムイオ
ン二次電池(実施例7)を作製した。
Example 7 The mixing ratio of the positive electrode was 4.55:
The lithium ion secondary battery (Example 7) was manufactured in the same manner as in Example 1 except that the ratio was 90.90: 4.55 (see the column of “Example 7” in Table 1).

【0027】<実施例8>正極の配合割合を2.06:
93.48:4.46とし(表1中の「実施例8」の欄
参照)、それ以外は実施例1と同様にしてリチウムイオ
ン二次電池(実施例8)を作製した。
Example 8 The mixing ratio of the positive electrode was 2.06:
93.48: 4.46 (see the column of “Example 8” in Table 1), and otherwise, a lithium ion secondary battery (Example 8) was produced in the same manner as in Example 1.

【0028】<実施例9>正極の配合割合を7.14:
88.52:4.34とし(表1中の「実施例9」の欄
参照)、それ以外は実施例1と同様にしてリチウムイオ
ン二次電池(実施例9)を作製した。
Example 9 The mixing ratio of the positive electrode was 7.14:
88.52: 4.34 (see the column of “Example 9” in Table 1), and otherwise the procedure of Example 1 was repeated to prepare a lithium ion secondary battery (Example 9).

【0029】<比較例1>正極中の導電性物質としてア
セチレンブラックを使用し(表1中の「比較例1」の欄
参照)、それ以外は実施例1と同様にしてリチウムイオ
ン二次電池(比較例1)を作製した。
<Comparative Example 1> A lithium ion secondary battery was prepared in the same manner as in Example 1 except that acetylene black was used as the conductive substance in the positive electrode (see the column of "Comparative Example 1" in Table 1). (Comparative Example 1) was produced.

【0030】<充放電サイクル試験>上述した実施例1
〜9および比較例1のリチウムイオン二次電池につい
て、充放電サイクル試験を実施した。その結果を図1に
グラフ(縦軸:電池容量、横軸:サイクル数)で示す。
<Charge / Discharge Cycle Test> First Embodiment
A charge / discharge cycle test was performed on the lithium ion secondary batteries of Comparative Examples 1 to 9 and Comparative Example 1. The results are shown in FIG. 1 as a graph (vertical axis: battery capacity, horizontal axis: number of cycles).

【0031】図1から明らかなように、実施例5、6の
リチウムイオン二次電池では比較例1のリチウムイオン
二次電池よりサイクル特性が悪くなり、実施例3、4の
リチウムイオン二次電池では比較例1のリチウムイオン
二次電池と同程度のサイクル特性を示し、実施例1、
2、7〜9のリチウムイオン二次電池では比較例1のリ
チウムイオン二次電池よりサイクル特性が良好となっ
た。
As is clear from FIG. 1, the lithium ion secondary batteries of Examples 5 and 6 have worse cycle characteristics than the lithium ion secondary batteries of Comparative Example 1, and the lithium ion secondary batteries of Examples 3 and 4 Shows cycle characteristics similar to those of the lithium ion secondary battery of Comparative Example 1, and
The cycle characteristics of the lithium ion secondary batteries of 2, 7 to 9 were better than those of the lithium ion secondary battery of Comparative Example 1.

【0032】また、充放電を繰り返した実施例1〜9お
よび比較例1のリチウムイオン二次電池を分解して観察
したところ、実施例1〜9のリチウムイオン二次電池に
ついては、電解液の重合物と思われる物質の生成がなく
なっていた。これは副反応が阻止されているためである
と考えられる。
Further, when the lithium ion secondary batteries of Examples 1 to 9 and Comparative Example 1 which were repeatedly charged and discharged were disassembled and observed, the lithium ion secondary batteries of Examples 1 to 9 showed that The generation of a substance considered to be a polymer disappeared. This is thought to be because side reactions were prevented.

【0033】<電池容量の測定>薄片状黒鉛粉末の配合
比率が電池容量に及ぼす影響を調べるため、上述した実
施例1〜9および比較例1のリチウムイオン二次電池に
ついて、充放電を350サイクル繰り返した時点での電
池容量を測定した。その結果を図2にグラフ(縦軸:電
池容量、横軸:薄片状黒鉛粉末の配合比率)で示す。
<Measurement of Battery Capacity> In order to examine the effect of the mixing ratio of the flaky graphite powder on the battery capacity, the lithium ion secondary batteries of Examples 1 to 9 and Comparative Example 1 were charged and discharged for 350 cycles. The battery capacity at the time of repetition was measured. The results are shown in the graph of FIG. 2 (vertical axis: battery capacity, horizontal axis: compounding ratio of flaky graphite powder).

【0034】図2から明らかなように、実施例1〜9の
リチウムイオン二次電池に着目すると、薄片状黒鉛粉末
の配合比率が約4重量%のときに電池容量が最大とな
り、薄片状黒鉛粉末の配合比率がこれからずれるほど電
池容量が低下する傾向を示した。また、比較例1のリチ
ウムイオン二次電池との比較では、実施例1〜4および
実施例7〜9のリチウムイオン二次電池、すなわち薄片
状黒鉛粉末の配合比率が0.5〜9.5重量%の範囲内
にあるリチウムイオン二次電池は、比較例1のリチウム
イオン二次電池よりも電池容量が増大した。
As is apparent from FIG. 2, focusing on the lithium ion secondary batteries of Examples 1 to 9, the battery capacity becomes maximum when the compounding ratio of the flaky graphite powder is about 4% by weight, and the flaky graphite The battery capacity tended to decrease as the mixing ratio of the powder shifted from this. Further, in comparison with the lithium ion secondary battery of Comparative Example 1, the lithium ion secondary batteries of Examples 1 to 4 and Examples 7 to 9, that is, the compounding ratio of the flaky graphite powder was 0.5 to 9.5. The lithium ion secondary battery in the range of weight% has a higher battery capacity than the lithium ion secondary battery of Comparative Example 1.

【0035】[0035]

【発明の効果】以上説明したように本発明によれば、正
極活物質と導電性物質とを含有する正極合剤を備えたリ
チウムイオン二次電池などの非水電解液二次電池におい
て、平均粒径1〜50μmおよび比表面積5〜50m2
/gの黒鉛粉末を厚さ1μm以下の薄片状に形成した薄
片状黒鉛粉末を前記導電性物質として前記正極合剤に対
して0.5〜9.5重量%の範囲内で添加して構成した
ので、特定の薄片状黒鉛粉末を正極合剤中の導電性物質
として使用することにより、正極に対する電子供与性が
向上し、正極合剤中の正極活物質に対して電子を均一か
つ有効に運ぶことができるとともに、充放電時における
副反応を抑制することができる。その結果、非水電解液
二次電池の電池容量が大幅に増大すると同時に、そのサ
イクル特性が大きく向上する。
As described above, according to the present invention, in a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery provided with a positive electrode mixture containing a positive electrode active material and a conductive material, Particle size 1-50 μm and specific surface area 5-50 m 2
/ G of graphite powder in the form of a flake having a thickness of 1 μm or less is added as the conductive material in the range of 0.5 to 9.5% by weight based on the positive electrode mixture. Therefore, by using the specific flaky graphite powder as a conductive material in the positive electrode mixture, the electron donating property to the positive electrode is improved, and electrons can be uniformly and effectively supplied to the positive electrode active material in the positive electrode mixture. In addition to carrying, side reactions during charging and discharging can be suppressed. As a result, the battery capacity of the nonaqueous electrolyte secondary battery is greatly increased, and at the same time, the cycle characteristics are greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】リチウムイオン二次電池の充放電サイクル試験
の結果を示すグラフである。
FIG. 1 is a graph showing a result of a charge / discharge cycle test of a lithium ion secondary battery.

【図2】リチウムイオン二次電池の電池容量の測定結果
を示すグラフである。
FIG. 2 is a graph showing a measurement result of a battery capacity of a lithium ion secondary battery.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質と導電性物質とを含有する正
極合剤を備えた非水電解液二次電池において、 平均粒径1〜50μmおよび比表面積5〜50m2 /g
の黒鉛粉末を厚さ1μm以下の薄片状に形成した薄片状
黒鉛粉末を前記導電性物質として前記正極合剤に対して
0.5〜9.5重量%の範囲内で添加したことを特徴と
する非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery comprising a positive electrode mixture containing a positive electrode active material and a conductive material, wherein the average particle size is 1 to 50 μm and the specific surface area is 5 to 50 m 2 / g.
Characterized in that flaky graphite powder formed in the form of flakes having a thickness of 1 μm or less was added as the conductive substance in the range of 0.5 to 9.5% by weight with respect to the positive electrode mixture. Non-aqueous electrolyte secondary battery.
JP9035103A 1997-02-19 1997-02-19 Non-aqueous electrolyte secondary battery Pending JPH10233205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9035103A JPH10233205A (en) 1997-02-19 1997-02-19 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9035103A JPH10233205A (en) 1997-02-19 1997-02-19 Non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH10233205A true JPH10233205A (en) 1998-09-02

Family

ID=12432609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9035103A Pending JPH10233205A (en) 1997-02-19 1997-02-19 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH10233205A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998054774A1 (en) * 1997-05-27 1998-12-03 Tdk Corporation Method of producing electrode for non-aqueous electrolytic cells
US6824924B1 (en) 1998-07-06 2004-11-30 Tdk Corporation Electrode for nonaqueous electrolyte battery
US7871728B2 (en) 2007-11-30 2011-01-18 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
KR20150013079A (en) * 2013-07-26 2015-02-04 주식회사 엘지화학 Electrode for Secondary Battery Improved Energy Density and Lithium Secondary Battery Comprising the Same
US20190020057A1 (en) * 2016-03-03 2019-01-17 Nec Energy Devices, Ltd. Positive electrode for lithium-ion secondary battery and lithium-ion secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998054774A1 (en) * 1997-05-27 1998-12-03 Tdk Corporation Method of producing electrode for non-aqueous electrolytic cells
US6824924B1 (en) 1998-07-06 2004-11-30 Tdk Corporation Electrode for nonaqueous electrolyte battery
US7871728B2 (en) 2007-11-30 2011-01-18 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
KR20150013079A (en) * 2013-07-26 2015-02-04 주식회사 엘지화학 Electrode for Secondary Battery Improved Energy Density and Lithium Secondary Battery Comprising the Same
US9991507B2 (en) 2013-07-26 2018-06-05 Lg Chem, Ltd. Electrode for secondary battery having improved energy density and lithium secondary battery including the same
US20190020057A1 (en) * 2016-03-03 2019-01-17 Nec Energy Devices, Ltd. Positive electrode for lithium-ion secondary battery and lithium-ion secondary battery
EP3425702B1 (en) * 2016-03-03 2022-06-29 Envision AESC Japan Ltd. Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
KR100392034B1 (en) Nonaqueous Electrolyte Secondary Cell, Method for Manufacturing the Same, and Carbonaceous Material Composition
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP5611453B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
KR101833615B1 (en) Negative electrode active material and negative electrode comprising the same
CN116914076A (en) Negative electrode and lithium secondary battery comprising same
TWI549338B (en) Anode active material for lithium secondary battery, lithium secondary battery comprising the same, and method of preparing the same
US20090155694A1 (en) Cathode and lithium battery using the same
JP7196938B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
EP4333116A1 (en) Method for manufacturing carbon-silicon composite powder, carbon-silicon composite powder manufactured thereby, and lithium secondary battery comprising same
JP5505479B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP5505480B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP2000200604A (en) Carbon material for lithium ion secondary battery, method for producing lithium ion secondary battery, and carbon material for lithium ion secondary battery
CN114556620A (en) Negative electrode and secondary battery comprising same
EP4235857A1 (en) Anode active material comprising graphene-silicon composite, manufacturing method therefor, and lithium secondary battery comprising same
KR102320977B1 (en) Anode Active Material including Silicon Composite and Lithium Secondary Battery Comprising the Same
JP3480764B2 (en) Non-aqueous electrolyte secondary battery
JPH10233205A (en) Non-aqueous electrolyte secondary battery
JP7596526B2 (en) Negative electrodes for lithium-ion secondary batteries
CN106104873A (en) Electrode for nonaqueous electrolyte secondary battery
JP3863514B2 (en) Lithium secondary battery
JP4195179B2 (en) Method for producing negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
KR102450634B1 (en) A new composite anode active material, lithium battery including the same, and method for preparing the material
JP7296994B2 (en) Graphite-based negative electrode active material
JP7579647B2 (en) Carbon material for positive electrodes of non-aqueous secondary batteries and method for producing same
JP2024011261A (en) Anode active materials and lithium ion batteries