JPH087883A - Nonaqueous electrolytic secondary battery - Google Patents
Nonaqueous electrolytic secondary batteryInfo
- Publication number
- JPH087883A JPH087883A JP6142065A JP14206594A JPH087883A JP H087883 A JPH087883 A JP H087883A JP 6142065 A JP6142065 A JP 6142065A JP 14206594 A JP14206594 A JP 14206594A JP H087883 A JPH087883 A JP H087883A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- active material
- electrode active
- limn
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は非水電解液二次電池に関
し、特に正極活物質の改良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to improvement of a positive electrode active material.
【0002】[0002]
【従来の技術】近年、電子技術の進歩により、電子機器
の高性能化,小型化,ポータブル化が進み、これら電子
機器に使用される二次電池に対しても高エネルギー密度
であることが要求されている。2. Description of the Related Art In recent years, due to advances in electronic technology, high performance, miniaturization, and portability of electronic devices have progressed, and secondary batteries used in these electronic devices are required to have high energy density. Has been done.
【0003】そこで、最近、リチウムをドープ・脱ドー
プすることが可能な炭素材料を負極活物質とし、リチウ
ムを含有する金属酸化物を正極活物質とし、そしてリチ
ウム塩の非水溶液を電解液として用いる非水電解液二次
電池が提案されている。この非水電解液二次電池は、電
池電圧を高くすることができ、高いエネルギー密度を有
し、自己放電も少なく、かつサイクル特性に優れてい
る。Therefore, recently, a carbon material capable of being doped or dedoped with lithium is used as a negative electrode active material, a metal oxide containing lithium is used as a positive electrode active material, and a non-aqueous solution of a lithium salt is used as an electrolytic solution. Non-aqueous electrolyte secondary batteries have been proposed. This non-aqueous electrolyte secondary battery has a high battery voltage, a high energy density, little self-discharge, and excellent cycle characteristics.
【0004】ここで、この非水電解液二次電池の材料を
具体的に例示すると、正極活物質となるリチウム含有金
属酸化物として、リチウム電位(Li/Li+ )に対し
て約4Vと高い電位を示すことから、層構造を有するの
LiMO2 (但し、MはCo,Niである)やスピネル
結晶構造を有するLiMn2 O4 等が挙げられる。Here, when the material of the non-aqueous electrolyte secondary battery is specifically exemplified, the lithium-containing metal oxide serving as the positive electrode active material is as high as about 4 V with respect to the lithium potential (Li / Li + ). Examples thereof include LiMO 2 having a layered structure (where M is Co and Ni), LiMn 2 O 4 having a spinel crystal structure, and the like because they show a potential.
【0005】一方、負極活物質となる炭素材料には、リ
チウム電位に近い電位を示す,コークス等の易黒鉛化炭
素、フルフリル樹脂焼成体等の難黒鉛化炭素あるいはグ
ラファイト等が用いられる。On the other hand, as the carbon material used as the negative electrode active material, graphitizable carbon such as coke, which exhibits a potential close to lithium potential, non-graphitizable carbon such as a furfuryl resin fired body, or graphite is used.
【0006】そして、電解液には、プロピレンカーボネ
ートやエチレンカーボネート等の比較的誘電率の高い溶
媒と、ジエチルカーボネートやジメチルカーボネート等
の比較的粘度の低い溶媒とを混合した混合溶媒に、Li
PF6 やLiBF4 等のリチウム塩を溶解させた非水溶
液が使用されている。The electrolytic solution contains Li solvent in a mixed solvent prepared by mixing a solvent having a relatively high dielectric constant such as propylene carbonate or ethylene carbonate and a solvent having a relatively low viscosity such as diethyl carbonate or dimethyl carbonate.
A non-aqueous solution in which a lithium salt such as PF 6 or LiBF 4 is dissolved is used.
【0007】ところで、上記非水電解液二次電池におい
て、炭素材料よりなる負極は、通常、リチウムを含有さ
せていない状態で、正極,電解液とともに電池に組み込
まれる。By the way, in the above non-aqueous electrolyte secondary battery, the negative electrode made of a carbon material is usually incorporated in the battery together with the positive electrode and the electrolytic solution in a state where lithium is not contained.
【0008】したがって、負極には、組み立てられた電
池に対して1回目の充電を行った際に初めてリチウムが
取り込まれることになる。Therefore, lithium is taken into the negative electrode only when the assembled battery is charged for the first time.
【0009】すなわち、この電池の1回目の充電過程
は、下記化1において右向き矢印方向の反応を伴って進
行する。That is, the first charging process of this battery proceeds with a reaction in the direction of the arrow pointing to the right in the following chemical formula 1.
【0010】[0010]
【化1】 Embedded image
【0011】まず、充電前の電池では、正極活物質はL
ix MOy で表され、xなる量のLiが含有されてい
る。一方、負極活物質CにはLiは取り込まれていない
状態である。First, in the battery before charging, the positive electrode active material is L
It is represented by i x MO y and contains x in an amount of Li. On the other hand, Li is not incorporated in the negative electrode active material C.
【0012】この電池に充電を行うと、正極活物質から
dxなる量のLiが電解液に溶出し、正極活物質はLi
x-dxMOy で表される組成になる。それと同時に、負極
活物質Cには、電解液に溶解しているLiのうち正極活
物質から溶出したLiに相当する量a・dxのLiが取
り込まれ、Cb/(adx) Liで表されるかたちになる。こ
のような正極活物質からのLiの溶出,負極活物質への
Liの取り込みによって1回目の充電は完了する。When this battery is charged, an amount dx of Li is eluted from the positive electrode active material into the electrolytic solution, and the positive electrode active material is Li.
The composition is represented by x-dx MO y . At the same time, in the negative electrode active material C, Li of the amount a · dx corresponding to Li eluted from the positive electrode active material out of Li dissolved in the electrolytic solution is taken in and represented by C b / (adx) Li. Become a shape. The first charge is completed by the elution of Li from the positive electrode active material and the incorporation of Li into the negative electrode active material.
【0013】一方、このようにして1回目の充電が完了
した電池の放電過程では、今度はC b/(adx) Liで表さ
れるかたちの負極活物質からLiが脱離して電解液に溶
出する。それと同時に、正極活物質Lix-dxMOy に
は、電解液に溶解しているLiのうち、負極活物質から
溶出したLiに相当する量のLiが取り込まれる。On the other hand, the first charging is completed in this way.
In the discharging process of the battery, b / (adx)Expressed in Li
Li desorbs from the negative electrode active material and dissolves in the electrolyte
Put out. At the same time, the positive electrode active material Lix-dxMOyTo
Out of the Li dissolved in the electrolyte, from the negative electrode active material
An amount of Li corresponding to the eluted Li is taken in.
【0014】このとき、負極活物質から1回目の充電過
程で取り込まれたLiと同じ量のLiが脱離し、正極活
物質に取り込まれれば、100%の充放電効率が得られ
るはずである。At this time, if the same amount of Li as the Li taken in during the first charging process is desorbed from the negative electrode active material and taken into the positive electrode active material, 100% charge / discharge efficiency should be obtained.
【0015】しかし、負極活物質となる炭素材料では、
Liが取り込まれてもそのまま留まって脱離されなかっ
たり、電解液等の分解によってその表面に膜が形成され
る場合があり、その影響で、取り込まれたLiの一部が
損失する。その原因により、1回目の放電過程では1回
目の充電容量の100%に満たない放電容量しか得られ
ない。However, in the carbon material as the negative electrode active material,
Even if Li is taken in, it may remain as it is and not be desorbed, or a film may be formed on the surface due to decomposition of the electrolytic solution or the like, and as a result, a part of the taken Li is lost. Due to the reason, in the first discharging process, a discharging capacity less than 100% of the first charging capacity can be obtained.
【0016】そして、これ以降の充放電過程において
も、一部を損失した残りのLiのみしか関与せず、理論
値よりも小さい充放電容量しか得られない。(但し、こ
の後の充放電では、さらにLiが損失するといったこと
はほとんどなく、それぞれの充電容量に対する放電容量
は約100%になる)。Also in the subsequent charge / discharge process, only the remaining Li partially lost is involved and only a charge / discharge capacity smaller than the theoretical value can be obtained. (However, in the subsequent charge / discharge, there is almost no further loss of Li, and the discharge capacity for each charge capacity is about 100%).
【0017】そこで、この炭素材料に不可逆的に取り込
まれてしまうLiに相当する量のLiを電池系に予め過
剰に含有させておき、充放電容量の損失を補償する手法
が検討されている。Therefore, a method of compensating for the loss of charge / discharge capacity by preliminarily containing an excessive amount of Li corresponding to Li that is irreversibly taken into the carbon material in the battery system has been studied.
【0018】すなわち、リチウム含有金属酸化物はリチ
ウムが脱離すると電極電位が上昇する。一方、炭素材料
もまた、リチウムが脱離すると電極電位が上昇する。こ
のことも合わせて考えると、充放電容量の大きい電池を
構成するためには、正極活物質となるリチウム含有酸化
物の方に、炭素材料の不可逆的取り込み相当量のLiを
過剰に含有させておくことが望ましい。That is, in the lithium-containing metal oxide, the electrode potential rises when lithium is desorbed. On the other hand, the electrode potential of the carbon material also rises when lithium is desorbed. Considering this also, in order to construct a battery having a large charge / discharge capacity, the lithium-containing oxide serving as the positive electrode active material is made to contain an excessive amount of Li corresponding to the irreversible incorporation of the carbon material. It is desirable to set it.
【0019】そのような手法としては、例えばスピネル
結晶構造のLiMn2 O4 に、LiIを用いて化学的に
リチウムを挿入し、スピネル結晶構造のLi1+x Mn2
O4(0≦x≦1)とする方法が、J.Electro
chem.Soc.,138,2864,1991で提
案されている。As such a technique, for example, LiI + xMn 2 having a spinel crystal structure is prepared by chemically inserting lithium into LiMn 2 O 4 having a spinel crystal structure by using LiI.
The method of setting O 4 (0 ≦ x ≦ 1) is described in J. Electro
chem. Soc. , 138 , 2864, 1991.
【0020】[0020]
【発明が解決しようとする課題】しかしながら、合成さ
れたLiMn2 O4 にさらにLiIを用いて化学的にリ
チウムを挿入することは、実験レベルでは可能である
が、工業的な大量生産に導入するには操作があまりに煩
雑で実用性に欠ける。However, it is possible at the experimental level to chemically insert lithium into the synthesized LiMn 2 O 4 by further using LiI, but it is introduced into industrial mass production. Is too complicated to use and lacks practicality.
【0021】そこで、本発明はこのような従来の実情に
鑑みて提案されたものであり、負極活物質に不可逆的に
取り込まれてしまうLiに相当する量のLiを補うこと
が可能であり、しかも大量生産可能な正極活物質を獲得
し、充放電容量が大きく生産性に優れた非水電解液二次
電池を提供することを目的とする。Therefore, the present invention has been proposed in view of such conventional circumstances, and it is possible to supplement the amount of Li corresponding to Li which is irreversibly incorporated into the negative electrode active material, Moreover, it is an object of the present invention to obtain a positive electrode active material that can be mass-produced and provide a non-aqueous electrolyte secondary battery having a large charge / discharge capacity and excellent productivity.
【0022】[0022]
【課題を解決するための手段】上述の目的を達成するた
めに、本発明は、リチウムをドープ・脱ドープすること
が可能な炭素材料を負極活物質とする負極と、正極及び
非水電解液を有してなる非水電解液二次電池において、
上記正極を構成する正極活物質が、LiMn2O4 なる
化学式で表されるスピネル結晶構造を有するリチウム含
有マンガン酸化物と、LiMnO2 なる化学式で表され
る層構造を有するリチウム含有マンガン酸化物との混合
酸化物であることを特徴とするものである。In order to achieve the above object, the present invention provides a negative electrode having a negative electrode active material of a carbon material capable of doping and dedoping lithium, a positive electrode and a non-aqueous electrolyte. In a non-aqueous electrolyte secondary battery comprising:
The positive electrode active material constituting the positive electrode is a lithium-containing manganese oxide having a spinel crystal structure represented by the chemical formula LiMn 2 O 4, and a lithium-containing manganese oxide having a layer structure represented by the chemical formula LiMnO 2. Is a mixed oxide of.
【0023】また、LiMn2 O4 とLiMnO2 の混
合酸化物中のLiMnO2 の混合量が、LiMn2 O4
量に対してモル比で0.2〜40%であることを特徴と
するものである。Further, the mixing amount of LiMnO 2 in the mixed oxide of LiMn 2 O 4 and LiMnO 2 is LiMn 2 O 4
It is characterized in that the molar ratio is 0.2 to 40% with respect to the amount.
【0024】非水電解液二次電池は、リチウムのドープ
・脱ドープが可能な炭素材料を負極活物質とする負極
と、正極及び非水電解液を有して構成される。The non-aqueous electrolyte secondary battery comprises a negative electrode having a negative electrode active material of a carbon material capable of doping and dedoping lithium, a positive electrode and a non-aqueous electrolyte.
【0025】本発明では、このような非水電解液二次電
池の正極活物質として、LiMn2O4 なる化学式で表
されるスピネル結晶構造を有するリチウム含有マンガン
酸化物と、LiMnO2 なる化学式で表される層構造を
有するリチウム含有マンガン酸化物との混合酸化物を用
いることとする。In the present invention, a lithium-containing manganese oxide having a spinel crystal structure represented by a chemical formula of LiMn 2 O 4 and a chemical formula of LiMnO 2 are used as a positive electrode active material of such a non-aqueous electrolyte secondary battery. A mixed oxide with a lithium-containing manganese oxide having a layer structure shown is used.
【0026】層構造を有するLiMnO2 については、
過剰のLiが脱離すると当該LiMnO2 がスピネル結
晶構造を有するLiMn2 O4 に相変化することがMa
t.Res.Bull.,28,1249,1993.
において報告されている。For LiMnO 2 having a layered structure,
When excess Li is desorbed, the LiMnO 2 may undergo a phase change to LiMn 2 O 4 having a spinel crystal structure.
t. Res. Bull. , 28 , 1249, 1993.
Have been reported in.
【0027】本発明では、このようなLiMnO2 の特
性を、負極活物質に不可逆的に取り込まれてしまうLi
を補うために利用する。In the present invention, such characteristics of LiMnO 2 are irreversibly incorporated into the negative electrode active material.
It is used to make up for.
【0028】すなわち、炭素材料を負極活物質とし、ス
ピネル結晶構造を有するLiMn2O4 と層構造を有す
るLiMnO2 よりなる混合酸化物を正極活物質とする
電池の充放電過程を見ると、まず1回目の充電では、上
記混合酸化物からLiが脱離し、それと同時に電解液に
溶解するLiがその脱離したLiに相当する量で炭素材
料に取り込まれる。That is, the charge and discharge process of a battery using a carbon material as a negative electrode active material and a mixed oxide of LiMn 2 O 4 having a spinel crystal structure and LiMnO 2 having a layer structure as a positive electrode active material is as follows. In the first charging, Li is desorbed from the mixed oxide, and at the same time, Li dissolved in the electrolytic solution is taken into the carbon material in an amount corresponding to the desorbed Li.
【0029】このようにして1回目の充電が完了した
後、放電を行うと、今度は炭素材料からLiが脱離して
電解液に溶出し、それと同時に、混合酸化物には、電解
液に溶解しているLiのうち、炭素材料から溶出したL
iに相当する量のLiが取り込まれる。When discharging is performed after the first charging is completed in this way, Li is desorbed from the carbon material and is eluted into the electrolytic solution. At the same time, the mixed oxide is dissolved in the electrolytic solution. L from the carbon material
An amount of Li corresponding to i is taken in.
【0030】このとき、炭素材料では、取り込まれたL
iの一部が損失し、混合酸化物には、溶出したLiより
も少ない量のLiしか取り込まれないことになる。At this time, in the carbon material, the incorporated L
A part of i is lost, and the mixed oxide takes in only a smaller amount of Li than the eluted Li.
【0031】ここで、上記混合酸化物では、このように
Liの一部が損失した状態となっても、さらに充放電を
繰り返すと、混合されているLiMnO2 から過剰にL
iが脱離し、当該LiMnO2 がスピネル結晶構造を有
するLiMn2 O4 に相変化する。すなわち、このLi
MnO2 がLiMn2 O4 に相変化する際に脱離したL
iが電池系内に供給され、相変化したLiMn2 O4 は
その後他のLiMn2O4 と同じように正極活物質とし
て機能する。したがって、不可逆的に取り込まれたLi
が補われたかたちで充放電が進行し、LiMn2 O4 単
独を正極活物質として用いる場合に比べて大きな充放電
容量が得られることになる。Here, in the above-mentioned mixed oxide, even when a part of Li is lost in this way, when charging and discharging are further repeated, excess L from the mixed LiMnO 2 is added.
i is desorbed, and the LiMnO 2 undergoes a phase change to LiMn 2 O 4 having a spinel crystal structure. That is, this Li
L desorbed during the phase change of MnO 2 to LiMn 2 O 4
When i is supplied into the battery system, the phase-changed LiMn 2 O 4 thereafter functions as a positive electrode active material like other LiMn 2 O 4 . Therefore, irreversibly incorporated Li
The charge and discharge proceed in a manner that is compensated for, and a large charge and discharge capacity can be obtained as compared with the case where LiMn 2 O 4 alone is used as the positive electrode active material.
【0032】しかも、上記混合酸化物に混合するLiM
nO2 は、大気中で化学的に安定な原料を約250〜1
000℃の温度範囲で焼成することで得られ、特別な操
作を用いない簡易な手法で製造できる。したがって、L
iMn2 O4 に化学的にLiを挿入する方法に比べて大
量生産に適しており、非水電解液二次電池の生産性の向
上にも有利である。Moreover, LiM mixed with the above mixed oxide
nO 2 is a raw material that is chemically stable in the atmosphere and is about 250 to 1
It is obtained by firing in the temperature range of 000 ° C., and can be manufactured by a simple method without using a special operation. Therefore, L
It is more suitable for mass production than the method of chemically inserting Li into iMn 2 O 4 and is also advantageous for improving the productivity of the non-aqueous electrolyte secondary battery.
【0033】なお、上記混合酸化物において、LiMn
O2 は、その目的から炭素材料に不可逆的に取り込まれ
てしまうLi量を供給できる量だけを混合するのが望ま
しい。通常の場合、LiMnO2 の混合率はLiMn2
O4 に対してモル比で0.2〜40%が適当である。In the above mixed oxide, LiMn
For the purpose, it is desirable to mix O 2 only in an amount capable of supplying the amount of Li irreversibly incorporated into the carbon material. Usually, the mixing ratio of LiMnO 2 is LiMn 2
A suitable molar ratio is 0.2 to 40% with respect to O 4 .
【0034】以上のように、本発明の非水電解液二次電
池では、正極活物質としてLiMn 2 O4 とLiMnO
2 よりなるリチウム含有金属酸化物混合物を用いるが、
負極に用いる炭素材料,非水電解液としては、通常用い
られているものがいずれも使用可能である。As described above, the non-aqueous electrolyte secondary battery of the present invention is used.
In the pond, LiMn is used as the positive electrode active material. 2OFourAnd LiMnO
2A lithium-containing metal oxide mixture consisting of
Normally used as a carbon material and non-aqueous electrolyte for the negative electrode
Any of the above can be used.
【0035】炭素材料としては、熱分解炭素類、コーク
ス類(ピッチコークス,ニードルコークス,石油コーク
ス等)、グラファイト類、ガラス状炭素類、有機高分子
化合物焼成体(フェノール樹脂,フラン樹脂等を適当な
温度で焼成し、炭素化したもの)、炭素繊維、活性炭、
黒鉛等が挙げられる。As the carbon material, pyrolytic carbons, cokes (pitch cokes, needle cokes, petroleum cokes, etc.), graphites, glassy carbons, organic polymer compound fired bodies (phenol resin, furan resin, etc.) are suitable. Carbonized by firing at various temperatures), carbon fiber, activated carbon,
Examples include graphite.
【0036】電解液としては、例えば、リチウム塩を電
解質とし、これを有機溶媒に溶解させてなる非水電解液
が用いられる。As the electrolytic solution, for example, a non-aqueous electrolytic solution obtained by using a lithium salt as an electrolyte and dissolving this in an organic solvent is used.
【0037】有機溶媒としては、特に限定されるもので
はないが、プロピレンカーボネート、エチレンカーボネ
ート、1,2−ジメトキシエタン、γ−ブチルラクト
ン、テトラヒドロフラン、2−メチルテトラヒドロフラ
ン、1,3−ジオキソラン、スルホラン、アセトニトリ
ル、ジエチルカーボネート、ジプロピルカーボネート等
の単独もしくは2種類以上の混合溶媒が使用可能であ
る。The organic solvent is not particularly limited, but propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, γ-butyl lactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, sulfolane, A single solvent such as acetonitrile, diethyl carbonate, dipropyl carbonate or a mixed solvent of two or more kinds can be used.
【0038】電解質としては、LiClO4 ,LiAs
F6 ,LiPF6 ,LiBF4 ,LiB(C
6 H5 )4 ,LiCl,LiBr,CH3 SO3 Li,
CF3 SO3 Li等が使用可能である。As the electrolyte, LiClO 4 , LiAs
F 6 , LiPF 6 , LiBF 4 , LiB (C
6 H 5 ) 4 , LiCl, LiBr, CH 3 SO 3 Li,
CF 3 SO 3 Li or the like can be used.
【0039】[0039]
【作用】層構造を有するLiMnO2 は、過剰のLiを
脱離すると、スピネル結晶構造を有するLiMn2 O4
に相変化する。When LiMnO 2 having a layer structure is desorbed from excess Li, LiMn 2 O 4 having a spinel crystal structure is formed.
Changes to.
【0040】このようなLiMnO2 とLiMn2 O4
よりなる混合酸化物を正極活物質とする非水電解液二次
電池では、1回目の充電過程で負極活物質にLiが不可
逆的に取り込まれてしまっても、その後充放電を繰り返
す過程でLiMnO2 からLiが脱離してLiMn2 O
4 に相変化し、その後他のLiMn2 O4 と同じように
正極活物質として機能する。したがって、不可逆的に取
り込まれたLiが補われたかたちで充放電が進行し、L
iMn2 O4 単独を正極活物質として用いる場合に比べ
て大きな充放電容量が得られることになる。Such LiMnO 2 and LiMn 2 O 4
In a non-aqueous electrolyte secondary battery having a mixed oxide composed of a mixed oxide as a positive electrode active material, even if Li is irreversibly taken into the negative electrode active material during the first charging process, LiMnO 2 is repeatedly charged and discharged. Li is desorbed from 2 to form LiMn 2 O
The phase changes to 4 and then functions as a positive electrode active material like other LiMn 2 O 4 . Therefore, charging / discharging progresses in the form of being supplemented with Li that is irreversibly taken in, and L
A large charge / discharge capacity can be obtained as compared with the case where iMn 2 O 4 alone is used as the positive electrode active material.
【0041】[0041]
【実施例】以下、本発明の好適な実施例について実験結
果に基づいて説明する。EXAMPLES Preferred examples of the present invention will be described below based on experimental results.
【0042】実施例1 まず、負極活物質として、フルフリル樹脂焼成体等の難
黒鉛化炭素材料を用意し、そのリチウム挿入量に対する
リチウム脱離量の比(脱離量/挿入量)ηを求めた。 Example 1 First, a non-graphitizable carbon material such as a fired furfuryl resin material was prepared as a negative electrode active material, and the ratio (desorption amount / insertion amount) η of the lithium desorption amount to the lithium insertion amount was determined. It was
【0043】上記難黒鉛化炭素材料のリチウム挿入量及
びリチウム脱離量は、この難黒鉛化炭素材料よりなる電
極と、その対極となるリチウム金属を用いて評価用セル
を作成し、この評価用セルの1回目の充電容量及び放電
容量を測定することで調査した。その結果、本実施例で
用いる難黒鉛化炭素材料では、リチウムの脱離量/挿入
量比ηが0.75であり、リチウムの不可逆取り込み量
/挿入量比は0.25であると判断された。The lithium insertion amount and the lithium desorption amount of the above-mentioned non-graphitizable carbon material were evaluated by preparing an evaluation cell by using an electrode made of this non-graphitizable carbon material and lithium metal which is the opposite electrode. It was investigated by measuring the first charge capacity and discharge capacity of the cell. As a result, in the non-graphitizable carbon material used in this example, the lithium desorption / insertion ratio η was 0.75, and the lithium irreversible uptake / insertion ratio was determined to be 0.25. It was
【0044】次に、正極活物質を以下のようにして調製
した。スピネル結晶構造のLiMn2 O4 を、二酸化マ
ンガンと炭酸リチウムを所定の割合で混合し、大気雰囲
気下、温度700〜850℃で焼成することで生成し
た。Next, a positive electrode active material was prepared as follows. LiMn 2 O 4 having a spinel crystal structure was produced by mixing manganese dioxide and lithium carbonate at a predetermined ratio and firing the mixture at a temperature of 700 to 850 ° C. in an air atmosphere.
【0045】また、層構造のLiMnO2 を、三酸化二
マンガンと酸化リチウムを所定の割合で混合し、アルゴ
ン雰囲気下、温度約750℃で焼成することで生成し
た。LiMnO 2 having a layer structure was produced by mixing dimanganese trioxide and lithium oxide in a predetermined ratio and firing the mixture at a temperature of about 750 ° C. in an argon atmosphere.
【0046】そして、これらLiMn2 O4 とLiMn
O2 を、難黒鉛化炭素材料の不可逆取り込み量/挿入量
の比0.25に基づいて、1:0.25(モル比)で混
合し、リチウム含有金属酸化物混合物とした。Then, these LiMn 2 O 4 and LiMn
O 2 was mixed at a ratio of 1: 0.25 (molar ratio) based on an irreversible uptake / insertion ratio of 0.25 of the non-graphitizable carbon material to obtain a lithium-containing metal oxide mixture.
【0047】上記難黒鉛化炭素材料に5重量%のバイン
ダーを混合し、加圧成型してペレット状の負極を作製
し、一方、リチウム含有金属酸化物に5重量%のバイン
ダー,10重量%の導電助剤を混合し、加圧成型してペ
レット状の正極を作製した。The above non-graphitizable carbon material was mixed with 5% by weight of a binder and pressure-molded to prepare a pellet-shaped negative electrode, while a lithium-containing metal oxide was added with 5% by weight of a binder and 10% by weight. A conductive additive was mixed and pressure-molded to produce a pellet-shaped positive electrode.
【0048】そして、作製された負極,正極及びプロピ
レンカーボネートとジエチルカーボネートとの混合溶媒
にLiPF6 を溶解させた電解液およびポリオレフィン
のセパレータを用いて厚さ20mm,半径25mmのコ
イン型セルを組み立てた。Then, a coin type cell having a thickness of 20 mm and a radius of 25 mm was assembled using the prepared negative electrode, positive electrode, electrolytic solution in which LiPF 6 was dissolved in a mixed solvent of propylene carbonate and diethyl carbonate, and a separator of polyolefin. .
【0049】比較例1 正極活物質としてLiMn2 O4 単独を用いること以外
は実施例1と同様にしてコイン型セルを組み立てた。 Comparative Example 1 A coin type cell was assembled in the same manner as in Example 1 except that LiMn 2 O 4 alone was used as the positive electrode active material.
【0050】以上のようにして作成された非水電解液二
次電池について、充放電を行い、放電特性を調べた。The non-aqueous electrolyte secondary battery prepared as described above was charged and discharged to examine the discharge characteristics.
【0051】なお、充電は、0.5mAの定電流で4.
2Vまで充電した後、さらに4.2Vの定電圧で2時間
充電するといった条件で行い、放電は、0.5mA定電
流、終止電圧2.5Vの条件で行った。以上の条件で求
められた実施例1のセル,比較例1のセルの放電特性を
図1に併せて示す。Charging is performed at a constant current of 0.5 mA.
After charging to 2V, charging was further performed at a constant voltage of 4.2V for 2 hours, and discharging was performed at a constant current of 0.5 mA and a final voltage of 2.5V. The discharge characteristics of the cell of Example 1 and the cell of Comparative Example 1 obtained under the above conditions are also shown in FIG.
【0052】図1からわかるように、スピネル結晶構造
を有するLiMn2 O4 と層構造を有するLiMnO2
の混合酸化物を正極活物質として用いた実施例1のセル
は、LiMn2 O4 単独を用いた比較例1のセルに比べ
て、大きな放電容量が得られている。As can be seen from FIG. 1, LiMn 2 O 4 having a spinel crystal structure and LiMnO 2 having a layer structure.
The cell of Example 1 using the mixed oxide of Example 1 as a positive electrode active material has a larger discharge capacity than the cell of Comparative Example 1 using LiMn 2 O 4 alone.
【0053】このことから、正極活物質としてスピネル
結晶構造を有するLiMn2 O4 と層構造を有するLi
MnO2 の混合酸化物を用いることは、炭素材料に不可
逆的に取り込まれてしまうLiを補い、大きな放電容量
を得る上で有効であることがわかる。From this fact, LiMn 2 O 4 having a spinel crystal structure and Li having a layer structure were used as the positive electrode active material.
It can be seen that the use of the mixed oxide of MnO 2 is effective in compensating for Li that is irreversibly incorporated into the carbon material and obtaining a large discharge capacity.
【0054】なお、本実施例で負極活物質として用いた
炭素材料はLiの脱離量/挿入量比ηが0.75であっ
たが、本発明者等がさらに実験を行ったところ比較的大
きな負極容量が得られる炭素材料でLiの脱離量/挿入
量比ηは0.6〜0.998の範囲にあった。したがっ
て、LiMnO2 は、LiMn2 O4 に対してモル比で
0.2〜40%となるような量を目安として混合するの
が適当である。The carbon material used as the negative electrode active material in this example had a Li desorption / insertion ratio η of 0.75. The desorption amount / insertion amount ratio η of Li was in the range of 0.6 to 0.998 in the carbon material with which a large negative electrode capacity was obtained. Therefore, it is appropriate to mix LiMnO 2 with an amount such that the molar ratio is 0.2 to 40% with respect to LiMn 2 O 4 .
【0055】[0055]
【発明の効果】以上の説明からも明らかなように、本発
明の非水電解液二次電池では、負極活物質として炭素材
料を、正極活物質として、LiMn2 O4 なる化学式で
表されるスピネル結晶構造を有するリチウム含有マンガ
ン酸化物と、LiMnO2 なる化学式で表される層構造
を有するリチウム含有マンガン酸化物との混合酸化物を
用いるので、1回目の充電過程で負極活物質に不可逆的
に取り込まれてしまうLiがLiMnO2 の相変化に際
して脱離するLiによって補われ、その後の充放電過程
で大きな放電容量を得ることが可能である。また、この
正極活物質となるLiMn2 O4 とLiMnO2 はいず
れも特別な操作を必要としない簡易な手法で製造でき
る。As is clear from the above description, in the non-aqueous electrolyte secondary battery of the present invention, a carbon material is used as the negative electrode active material and a LiMn 2 O 4 chemical compound is used as the positive electrode active material. Since the mixed oxide of the lithium-containing manganese oxide having the spinel crystal structure and the lithium-containing manganese oxide having the layer structure represented by the chemical formula LiMnO 2 is used, it is irreversible in the negative electrode active material during the first charging process. Li taken in by is supplemented by Li desorbed during the phase change of LiMnO 2 , and it is possible to obtain a large discharge capacity in the subsequent charge and discharge process. Further, both LiMn 2 O 4 and LiMnO 2 which are the positive electrode active materials can be manufactured by a simple method which does not require a special operation.
【0056】したがって、本発明によれば、電池の生産
性を低下させることなく、性能の高い非水電解液二次電
池を得ることが可能となる。Therefore, according to the present invention, it is possible to obtain a high performance non-aqueous electrolyte secondary battery without lowering the productivity of the battery.
【図1】電池の放電特性を示す特性図である。FIG. 1 is a characteristic diagram showing discharge characteristics of a battery.
Claims (2)
可能な炭素材料を負極活物質とする負極と、正極及び非
水電解液を有してなる非水電解液二次電池において、 上記正極を構成する正極活物質が、LiMn2 O4 なる
化学式で表されるスピネル結晶構造を有するリチウム含
有マンガン酸化物と、LiMnO2 なる化学式で表され
る層構造を有するリチウム含有マンガン酸化物との混合
酸化物であることを特徴とする非水電解液二次電池。1. A non-aqueous electrolyte secondary battery comprising a negative electrode using a carbon material capable of doping / dedoping lithium as a negative electrode active material, and a positive electrode and a non-aqueous electrolyte solution. The constituent positive electrode active material is a mixed oxidation of a lithium-containing manganese oxide having a spinel crystal structure represented by the chemical formula LiMn 2 O 4 and a lithium-containing manganese oxide having a layer structure represented by the chemical formula LiMnO 2. A non-aqueous electrolyte secondary battery characterized by being a product.
が、LiMn2 O4 量に対してモル比で0.2〜40%
であることを特徴とする請求項1記載の非水電解液二次
電池。 2. The mixed amount of LiMnO 2 in the mixed oxide is 0.2 to 40% in molar ratio with respect to the amount of LiMn 2 O 4.
The non-aqueous electrolyte secondary battery according to claim 1, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6142065A JPH087883A (en) | 1994-06-23 | 1994-06-23 | Nonaqueous electrolytic secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6142065A JPH087883A (en) | 1994-06-23 | 1994-06-23 | Nonaqueous electrolytic secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH087883A true JPH087883A (en) | 1996-01-12 |
Family
ID=15306620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6142065A Pending JPH087883A (en) | 1994-06-23 | 1994-06-23 | Nonaqueous electrolytic secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH087883A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0813256A2 (en) * | 1996-06-13 | 1997-12-17 | Japan Storage Battery Company Limited | Layered, hexagonal lithium manganese oxide as a positive electrode active material for lithium battery, method for producing the same, and lithium battery containing the same |
US5789110A (en) * | 1996-09-27 | 1998-08-04 | Valence Technology, Inc. | Cathode-active material blends comprising Lix Mn2 O4 (0<x≦2) |
WO1999053556A1 (en) * | 1998-04-09 | 1999-10-21 | Danionics A/S | Rechargeable lithium electrochemical cell |
WO2001015252A1 (en) * | 1999-08-19 | 2001-03-01 | Mitsubishi Chemical Corporation | Positive electrode material for lithium secondary cell and positive electrode, and lithium secondary cell |
US6580678B2 (en) | 1999-09-08 | 2003-06-17 | Mitsubishi Chemical Corporation | Rewritable compact disk and manufacturing method thereof |
KR100868259B1 (en) * | 2005-04-29 | 2008-11-11 | 주식회사 엘지화학 | Cathode active material for lithium secondary battery and lithium secondary battery containing same |
US20110076564A1 (en) * | 2009-09-30 | 2011-03-31 | Sanyo Electric Co., Ltd. | Positive electrode active material, method of manufacturing the positive electrode active material, and non-aqueous electrolyte secondary battery using the positive electrode active material |
-
1994
- 1994-06-23 JP JP6142065A patent/JPH087883A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0813256A2 (en) * | 1996-06-13 | 1997-12-17 | Japan Storage Battery Company Limited | Layered, hexagonal lithium manganese oxide as a positive electrode active material for lithium battery, method for producing the same, and lithium battery containing the same |
EP0813256A3 (en) * | 1996-06-13 | 1998-09-16 | Japan Storage Battery Company Limited | Layered, hexagonal lithium manganese oxide as a positive electrode active material for lithium battery, method for producing the same, and lithium battery containing the same |
US5789110A (en) * | 1996-09-27 | 1998-08-04 | Valence Technology, Inc. | Cathode-active material blends comprising Lix Mn2 O4 (0<x≦2) |
WO1999053556A1 (en) * | 1998-04-09 | 1999-10-21 | Danionics A/S | Rechargeable lithium electrochemical cell |
US6551746B1 (en) | 1998-04-09 | 2003-04-22 | Danionics A/S | Rechargeable electrochemical cell of lithium ion or lithium alloy-type possessing metal oxide modified cathode structure with high first charge capacity |
WO2001015252A1 (en) * | 1999-08-19 | 2001-03-01 | Mitsubishi Chemical Corporation | Positive electrode material for lithium secondary cell and positive electrode, and lithium secondary cell |
US6580678B2 (en) | 1999-09-08 | 2003-06-17 | Mitsubishi Chemical Corporation | Rewritable compact disk and manufacturing method thereof |
KR100868259B1 (en) * | 2005-04-29 | 2008-11-11 | 주식회사 엘지화학 | Cathode active material for lithium secondary battery and lithium secondary battery containing same |
US20110076564A1 (en) * | 2009-09-30 | 2011-03-31 | Sanyo Electric Co., Ltd. | Positive electrode active material, method of manufacturing the positive electrode active material, and non-aqueous electrolyte secondary battery using the positive electrode active material |
US8557440B2 (en) * | 2009-09-30 | 2013-10-15 | Sanyo Electric Co., Ltd. | Positive electrode active material including particle comprising crystal structure changing from a layered structure to a spinel structure, method of manufacturing the positive electrode active material, and non-aqueous electrolyte secondary battery using the positive electrode active material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3319258B2 (en) | Method for producing positive electrode active material for lithium secondary battery and method for producing lithium secondary battery | |
JP3669064B2 (en) | Nonaqueous electrolyte secondary battery | |
JP3200867B2 (en) | Non-aqueous electrolyte secondary battery | |
US5506078A (en) | Method of forming a stable form of LiMnO2 as cathode in lithium cell | |
JP3624578B2 (en) | Anode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery | |
JP2002117847A (en) | Positive electrode active material and nonaqueous electrolyte battery, as well as their manufacturing method | |
JPH09293508A (en) | Positive electrode material for lithium secondary battery, its manufacture and nonaqueous electrolyte secondary battery using it | |
JP3929548B2 (en) | Method for producing non-aqueous electrolyte secondary battery | |
JPH07235330A (en) | Manufacture of nonaqueous electrolyte secondary battery | |
JP4910228B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2004031131A (en) | Nonaqueous electrolyte liquid secondary battery | |
JP3640108B2 (en) | Method for synthesizing active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery | |
KR20000071371A (en) | Non-Aqueous Electrolyte Battery | |
JPH087883A (en) | Nonaqueous electrolytic secondary battery | |
JPH08195200A (en) | Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery provided with this active material | |
JP2006012613A (en) | Non-aqueous electrolyte secondary battery charging method and battery system | |
JP2004063270A (en) | Manufacturing method of positive electrode active material, and manufacturing method of nonaqueous electrolyte battery | |
JPH09306475A (en) | Lithium ion battery and manufacture thereof | |
JPH09199172A (en) | Nonaqueous electrolyte secondary battery | |
JP2024519879A (en) | Positive electrode additive for lithium secondary battery, its manufacturing method, positive electrode and lithium secondary battery including the additive | |
JP3198545B2 (en) | Non-aqueous electrolyte secondary battery | |
US5747194A (en) | Use of a stable form of LiMnO2 as cathode in lithium cell | |
JP3395370B2 (en) | Lithium secondary battery | |
JP4001947B2 (en) | Method for producing positive electrode active material for lithium secondary battery | |
JPH09231975A (en) | Positive electrode material for lithium secondary battery, and nonaqueous electrolyte secondary battery using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040706 |