[go: up one dir, main page]

JPH0871371A - Exhaust gas purification method - Google Patents

Exhaust gas purification method

Info

Publication number
JPH0871371A
JPH0871371A JP6210116A JP21011694A JPH0871371A JP H0871371 A JPH0871371 A JP H0871371A JP 6210116 A JP6210116 A JP 6210116A JP 21011694 A JP21011694 A JP 21011694A JP H0871371 A JPH0871371 A JP H0871371A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
nox
excess
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6210116A
Other languages
Japanese (ja)
Other versions
JP3391569B2 (en
Inventor
Hideaki Ueno
秀章 植野
Tatsuji Mizuno
達司 水野
Takeshi Hirabayashi
武史 平林
Ryusuke Tsuji
龍介 辻
Yoshio Hayakawa
美穂 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP21011694A priority Critical patent/JP3391569B2/en
Publication of JPH0871371A publication Critical patent/JPH0871371A/en
Application granted granted Critical
Publication of JP3391569B2 publication Critical patent/JP3391569B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

(57)【要約】 【目的】酸素過剰の排気ガス中のNOxをさらに効率良
く浄化する。 【構成】触媒貴金属を担持したY型ゼオライトあるいは
モルデナイトからなる触媒を酸素過剰の排気ガスの流路
内に配置し、排気ガスにパラフィン系HCを添加して触
媒と接触させることにより排気ガスに含まれるNOxを
還元浄化することを特徴とする。Y型ゼオライトあるい
はモルデナイトは他のゼオライトに比べて細孔径が比較
的大きいため、分子の大きなパラフィン系HCの吸着性
に優れていると考えられ、高いNOx浄化性能を示す。
(57) [Abstract] [Purpose] To more efficiently purify NOx in exhaust gas with excess oxygen. [Composition] A catalyst made of Y-type zeolite or mordenite carrying a noble metal is placed in a flow path of exhaust gas in excess of oxygen, and paraffin-based HC is added to the exhaust gas to bring it into contact with the catalyst to be included in the exhaust gas. It is characterized by reducing and purifying the generated NOx. Since Y-type zeolite or mordenite has a relatively large pore size as compared with other zeolites, it is considered to be excellent in adsorbing paraffinic HC having a large molecule, and exhibits high NOx purification performance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ディーゼルエンジンな
どから排出される排気ガスを浄化する排気ガス浄化方法
に関し、詳しくは、排気ガス中の一酸化炭素(CO)や
炭化水素(HC)を酸化するのに必要な量より過剰な酸
素が含まれている排気ガス中の、窒素酸化物(NOx)
を効率よく浄化する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purification method for purifying exhaust gas discharged from a diesel engine or the like, and more specifically, it oxidizes carbon monoxide (CO) or hydrocarbon (HC) in the exhaust gas. Nitrogen oxides (NOx) in the exhaust gas containing excess oxygen than is necessary to
The present invention relates to a method for efficiently purifying water.

【0002】[0002]

【従来の技術】従来より、自動車の排気ガス浄化用触媒
として、CO及びHCの酸化とNOxの還元とを同時に
行って排気ガスを浄化する三元触媒が用いられている。
このような触媒としては、例えばコージェライトなどの
耐熱性担体にγ−アルミナからなる担持層を形成し、そ
の担持層にPt,Pd,Rhなどの触媒貴金属を担持さ
せたものが広く知られている。
2. Description of the Related Art Conventionally, a three-way catalyst for purifying exhaust gas by simultaneously oxidizing CO and HC and reducing NOx has been used as a catalyst for purifying exhaust gas of an automobile.
As such a catalyst, for example, a catalyst in which a supporting layer made of γ-alumina is formed on a heat resistant carrier such as cordierite and a catalytic precious metal such as Pt, Pd, Rh is supported on the supporting layer is widely known. There is.

【0003】ところで、このような排気ガス浄化用触媒
の浄化性能は、エンジンの空燃比(A/F)によって大
きく異なる。すなわち、空燃比の大きい、つまり燃料濃
度が希薄なリーン側での運転では排気ガス中の酸素量が
多くなり、COやHCを浄化する酸化反応が活発である
反面、NOxを浄化する還元反応が不活発になる。逆に
空燃比の小さい、つまり燃料濃度が濃いリッチ側での運
転では排気ガス中の酸素量が少なくなり、酸化反応は不
活発となるが還元反応は活発になる。
By the way, the purification performance of such an exhaust gas purification catalyst greatly differs depending on the air-fuel ratio (A / F) of the engine. That is, in the operation on the lean side where the air-fuel ratio is large, that is, the fuel concentration is lean, the amount of oxygen in the exhaust gas is large and the oxidation reaction for purifying CO and HC is active, while the reduction reaction for purifying NOx is Become inactive. On the contrary, when the air-fuel ratio is small, that is, when the engine is operated on the rich side where the fuel concentration is high, the amount of oxygen in the exhaust gas is small and the oxidation reaction becomes inactive but the reduction reaction becomes active.

【0004】一方、自動車の走行において、市街地走行
の場合には加速・減速が頻繁に行われ、空燃比はストイ
キ(理論空燃比)近傍からリッチ状態までの範囲内で頻
繁に変化する。このような走行における低燃費化の要請
に応えるには、なるべく酸素過剰の混合気を供給するリ
ーン側での運転が必要となる。したがってリーン側での
運転時においてNOxを十分に浄化できる触媒の開発が
望まれている。
On the other hand, when driving an automobile, acceleration and deceleration are frequently performed in urban areas, and the air-fuel ratio frequently changes within the range from near stoichiometric (theoretical air-fuel ratio) to the rich state. In order to meet the demand for low fuel consumption in such traveling, it is necessary to operate on the lean side to supply an air-fuel mixture with excess oxygen as much as possible. Therefore, there is a demand for the development of a catalyst that can sufficiently purify NOx during operation on the lean side.

【0005】そこで特開平1−135541号公報や特
開平3−232533号公報には、ゼオライトに触媒貴
金属を担持した排気ガス浄化用触媒が開示されている。
この排気ガス浄化用触媒によれば、リーン雰囲気におけ
るNOx浄化性能に優れかつ耐熱性に優れているので、
高い浄化性能を長期間維持することができる。
Therefore, JP-A-1-135541 and JP-A-3-232533 disclose an exhaust gas purifying catalyst in which a catalytic precious metal is supported on zeolite.
According to this exhaust gas purification catalyst, the NOx purification performance in the lean atmosphere is excellent and the heat resistance is excellent.
High purification performance can be maintained for a long time.

【0006】[0006]

【発明が解決しようとする課題】ところでゼオライトに
触媒貴金属を担持した排気ガス浄化用触媒においては、
NOxの還元反応の機構は明らかになっていないが、触
媒貴金属上でNOxと排気ガスに含まれるHCとが反応
していると考えられる。しかしリーン雰囲気の排気ガス
では、排気ガス中のHCが少なくかつ分子量が低分子量
化し、また多環化しているため還元力が不十分で、これ
以上のNOx浄化性能の向上は望めなかった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In an exhaust gas purifying catalyst in which a catalytic precious metal is supported on zeolite,
Although the mechanism of the NOx reduction reaction has not been clarified, it is considered that NOx reacts with HC contained in the exhaust gas on the catalytic noble metal. However, in the exhaust gas in the lean atmosphere, the amount of HC in the exhaust gas is small, the molecular weight is low, and the polycycle is formed, so that the reducing power is insufficient and further improvement of the NOx purification performance cannot be expected.

【0007】本発明はこのような事情に鑑みてなされた
ものであり、酸素過剰の排気ガス中のNOxをさらに効
率良く浄化することを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to more efficiently purify NOx in exhaust gas in excess of oxygen.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する第1
発明の排気ガス浄化方法は、触媒貴金属を担持したY型
ゼオライトあるいはモルデナイトからなる触媒を酸素過
剰の排気ガスの流路内に配置し、排気ガスにパラフィン
系HCを添加して触媒と接触させることにより排気ガス
に含まれるNOxを還元浄化することを特徴とする。
Means for Solving the Problems A first method for solving the above problems is described below.
The exhaust gas purifying method of the present invention comprises placing a catalyst composed of Y-type zeolite or mordenite carrying a catalytic noble metal in a flow path of exhaust gas in excess of oxygen, and adding paraffinic HC to the exhaust gas to bring it into contact with the catalyst. Is characterized by reducing and purifying NOx contained in the exhaust gas.

【0009】また第2発明の排気ガス浄化方法は、シリ
カ/アルミナ比(SiO2 /Al23 )が20〜25
0である担体に触媒貴金属を担持してなる触媒を酸素過
剰の排気ガスの流路内に配置し、排気ガスにパラフィン
系HCを添加して触媒と接触させることにより排気ガス
に含まれるNOxを還元浄化することを特徴とする。第
3発明の排気ガス浄化方法は、平均細孔径が0.5〜
1.0nmである担体に触媒貴金属を担持してなる触媒
を酸素過剰の排気ガスの流路内に配置し、排気ガスにパ
ラフィン系HCを添加して触媒と接触させることにより
排気ガスに含まれるNOxを還元浄化することを特徴と
する。
In the exhaust gas purifying method of the second invention, the silica / alumina ratio (SiO 2 / Al 2 O 3 ) is 20 to 25.
A catalyst in which a catalyst noble metal is supported on a carrier of 0 is disposed in a flow path of exhaust gas in excess of oxygen, and paraffin-based HC is added to the exhaust gas to bring the catalyst into contact with the catalyst to remove NOx contained in the exhaust gas. It is characterized by reducing and purifying. In the exhaust gas purification method of the third invention, the average pore diameter is 0.5 to
A catalyst in which a catalytic noble metal is supported on a carrier having a thickness of 1.0 nm is placed in a flow path of exhaust gas in excess of oxygen, and paraffinic HC is added to the exhaust gas to bring it into contact with the catalyst to be contained in the exhaust gas. It is characterized by reducing and purifying NOx.

【0010】さらに第4発明の排気ガス浄化方法は、ゼ
オライトに触媒貴金属とアルカリ金属及びアルカリ土類
金属の中から選ばれる少なくとも一種の金属とを担持し
た触媒を酸素過剰の排気ガスの流路内に配置し、排気ガ
スに還元性物質を添加して触媒と接触させることにより
排気ガスに含まれるNOxを還元浄化することを特徴と
する。
Further, in the exhaust gas purifying method of the fourth invention, a catalyst in which a catalytic noble metal and at least one metal selected from alkali metals and alkaline earth metals are supported on zeolite is provided in the exhaust gas flow path in excess of oxygen. The NOx contained in the exhaust gas is reduced and purified by adding a reducing substance to the exhaust gas and bringing it into contact with the catalyst.

【0011】[0011]

【作用】第1発明の排気ガス浄化方法では、酸素過剰の
排気ガスにパラフィン系HCを添加し、それを触媒貴金
属を担持したY型ゼオライトあるいはモルデナイトから
なる触媒と接触させる。Y型ゼオライトあるいはモルデ
ナイトは他のゼオライトに比べて細孔径が比較的大きい
ため、大きな分子サイズのパラフィン系HCの吸着性に
優れていること、及び鎖状で分子量が高く単環であるパ
ラフィン系HCを還元剤として用いた時、Y型ゼオライ
トあるいはモルデナイトによってこれらのHCがNOと
反応しやすいHCに改質されることによって、高いNO
x浄化性能を示すと考えられる。後述の実施例に示され
るように、他のオレフィン系HCあるいは他のゼオライ
トを用いても、Y型ゼオライトあるいはモルデナイトと
パラフィン系HCの組合せほどの効果が得られない。
In the exhaust gas purification method of the first aspect of the present invention, paraffinic HC is added to the exhaust gas in excess of oxygen, and this is brought into contact with a catalyst composed of Y-type zeolite or mordenite carrying a catalytic noble metal. Since Y-type zeolite or mordenite has a relatively large pore size compared to other zeolites, it is excellent in adsorbing paraffinic HC having a large molecular size, and paraffinic HC having a chain shape and a high molecular weight and a single ring. When used as a reducing agent, Y-type zeolite or mordenite reforms these HCs into HCs that easily react with NO, resulting in high NO
x It is considered to show purification performance. As shown in Examples described later, even if other olefinic HCs or other zeolites are used, the effect as much as the Y-type zeolite or the combination of mordenite and paraffinic HC is not obtained.

【0012】第2発明の排気ガス浄化方法では、シリカ
/アルミナ比(SiO2 /Al2 3 )が20〜250
である担体に触媒貴金属を担持してなる触媒を用いてい
る。シリカ/アルミナ比をこの範囲とすることにより、
酸点の数が最適となると考えられ、高いNOx浄化性能
を示す。第1発明と同様に、他のオレフィン系HCなど
ではパラフィン系HCほどの効果が得られない。
In the exhaust gas purification method of the second invention, silica is used.
/ Alumina ratio (SiO2/ Al2O 3) Is 20-250
A catalyst in which a precious metal catalyst is supported on a carrier is used.
It By setting the silica / alumina ratio within this range,
It is thought that the number of acid points will be optimal, and high NOx purification performance
Is shown. Similar to the first invention, other olefinic HC, etc.
Is not as effective as paraffinic HC.

【0013】第3発明の排気ガス浄化方法では、平均細
孔径が0.5〜1.0nmである担体に触媒貴金属を担
持してなる触媒を用いている。平均細孔径をこの範囲と
することにより、分子の大きなパラフィン系HCの吸着
性に優れるようになると考えられ、高いNOx浄化性能
を示す。第1発明と同様に、他のオレフィン系HCなど
ではパラフィン系HCほどの効果が得られない。
In the exhaust gas purifying method of the third aspect of the present invention, a catalyst is used in which a catalyst precious metal is supported on a carrier having an average pore size of 0.5 to 1.0 nm. It is considered that by setting the average pore diameter within this range, the adsorbability of paraffinic HC having a large molecule will be excellent, and high NOx purification performance will be exhibited. Similar to the first aspect of the invention, other olefinic HCs and the like are not as effective as the paraffinic HCs.

【0014】また第4発明の排気ガス浄化方法では、ゼ
オライトに触媒貴金属とアルカリ金属及びアルカリ土類
金属の中から選ばれる少なくとも一種の金属とを担持し
た触媒を用いている。アルカリ金属及びアルカリ土類金
属の中から選ばれる少なくとも一種の金属はNOxを吸
収しやすく、ゼオライトは還元性物質を吸着しやすいの
で、触媒貴金属近辺にNOxと還元性物質が共存するこ
ととなり、NOxの還元反応が起こり易くなるので浄化
性能が向上する。
Further, in the exhaust gas purifying method of the fourth invention, a catalyst in which a catalytic precious metal and at least one metal selected from alkali metals and alkaline earth metals are supported on zeolite is used. At least one metal selected from alkali metals and alkaline earth metals easily absorbs NOx, and zeolite easily adsorbs reducing substances, so that NOx and reducing substances coexist in the vicinity of the catalytic noble metal, and NOx Since the reduction reaction of 1 is likely to occur, the purification performance is improved.

【0015】この第4発明の場合は、還元性物質として
パラフィン系HCに限らずオレフィン系HCや芳香族H
Cなども用いることができる。これはアルカリ金属等を
添加することにより、触媒貴金属の酸化活性が抑制さ
れ、HCとNOxの反応が多くなり(HC利用効率が向
上)NOx浄化率が向上するためと考えられる。またゼ
オライトへの触媒貴金属とアルカリ金属又はアルカリ土
類金属の担持は、イオン交換担持ではなく吸着担持とす
る方が高いNOx浄化性能を示すことが明らかとなって
いる。
In the case of the fourth aspect of the invention, the reducing substance is not limited to paraffinic HC but olefinic HC and aromatic H.
C etc. can also be used. This is considered to be because the addition of an alkali metal or the like suppresses the oxidation activity of the catalytic noble metal, increases the reaction between HC and NOx (improves the HC utilization efficiency), and improves the NOx purification rate. Further, it has been clarified that the catalytic noble metal and the alkali metal or alkaline earth metal supported on the zeolite exhibit higher NOx purification performance when adsorbed instead of ion-exchanged.

【0016】[0016]

【実施例】【Example】

〔本発明の具体例〕触媒貴金属としては、白金(Pt)
が代表的に用いられるが、パラジウム(Pd)又はロジ
ウム(Rh)を用いることもできる。この触媒貴金属の
担持量は、Y型ゼオライトなどの担体に対して0.5〜
10重量%の範囲が望ましい。
[Specific Example of the Present Invention] As the catalyst noble metal, platinum (Pt) is used.
Is typically used, but palladium (Pd) or rhodium (Rh) can also be used. The amount of the catalytic noble metal supported is 0.5 to 0.5 with respect to a carrier such as Y-type zeolite.
A range of 10% by weight is desirable.

【0017】パラフィン系HC又は還元性物質の排気ガ
スへの添加割合は、炭素換算で500〜3000ppm
(ppmC)の範囲が適当である。これより少ないと添
加した効果が現れず、これ以上多く添加しても効果が飽
和する。シリカ/アルミナ比を上記範囲とするには、シ
リカとアルミナをその組成比で混合してもよいが、ゼオ
ライトの脱アルミニウムの程度を調製することで行うの
が便利である。
The proportion of paraffinic HC or reducing substance added to the exhaust gas is 500 to 3000 ppm in terms of carbon.
A range of (ppmC) is suitable. If it is less than this, the effect added is not exhibited, and if it is added more than this, the effect is saturated. In order to adjust the silica / alumina ratio to the above range, silica and alumina may be mixed in the composition ratio, but it is convenient to adjust the dealumination degree of the zeolite.

【0018】アルカリ金属としては、Li,Na,K,
Rb,Csから選ばれる金属が用いられる。またアルカ
リ土類金属としては、Be,Mg,Ca,Sr,Baか
ら選ばれる金属が用いられる。それぞれ単独でもよい
し、複数種類組み合わせて用いることもできる。なお、
この金属の担持量は、ゼオライトに対して0.06〜1
0重量%の範囲が望ましい。これより少ないと担持した
効果が現れず、これ以上多く担持しても効果が飽和す
る。 〔実施例〕以下、実施例及び比較例により具体的に説明
する。 (実施例1) <触媒1の調製>Y型ゼオライト100重量部に純水9
0重量部を混合してスラリーを調製した。次に、長さ5
0mm直径30mmのコージェライト質ハニカム担体を
純水に浸漬し、余分な水分を吹き払った後、このスラリ
ーに浸漬する。そして余分なスラリーを吹き払い、10
0℃で3時間乾燥後300℃で1.5時間焼成する。こ
の操作を3回繰り返し、さらに500℃で3時間焼成し
て,Y型ゼオライト層を形成した。Y型ゼオライト層
は,ハニカム担体1L当たり120±5g形成された。
Alkali metals include Li, Na, K,
A metal selected from Rb and Cs is used. As the alkaline earth metal, a metal selected from Be, Mg, Ca, Sr and Ba is used. Each may be used alone or in combination of two or more kinds. In addition,
The supported amount of this metal is 0.06 to 1 with respect to zeolite.
A range of 0% by weight is desirable. If the amount is less than this, the effect of supporting will not appear, and the effect will be saturated if more than this is supported. [Examples] Hereinafter, examples and comparative examples will be specifically described. (Example 1) <Preparation of catalyst 1> Pure water 9 to 100 parts by weight of Y-type zeolite
A slurry was prepared by mixing 0 parts by weight. Next, length 5
A cordierite honeycomb carrier having a diameter of 0 mm and a diameter of 30 mm is immersed in pure water to blow off excess water, and then immersed in this slurry. Then blow off the excess slurry, 10
After drying at 0 ° C. for 3 hours, baking is performed at 300 ° C. for 1.5 hours. This operation was repeated 3 times, and the mixture was further baked at 500 ° C. for 3 hours to form a Y-type zeolite layer. The Y-type zeolite layer was formed at 120 ± 5 g per 1 L of the honeycomb carrier.

【0019】次にY型ゼオライト層をもつハニカム担体
を4価の白金アンミン水溶液に24時間浸漬し、引き上
げて余分な溶液を吹き払った後、250℃で1時間乾燥
し排気ガス浄化用触媒1を調製した。Ptの担持量はハ
ニカム担体1Lに対して2gである。この担持はイオン
交換担持ではなく、単なる吸着担持である。 <試験例1>この排気ガス浄化用触媒1を図1に示すよ
うに2.4Lのディーゼルエンジンの排気系に装着し、
触媒の上流側で軽油を炭素換算濃度3000ppmCと
なるように添加しながら、SV=6万/h、触媒床温度
150〜450℃の条件で触媒前後のNOx量からNO
x浄化率を測定した。そして全温度範囲における最大N
Ox浄化率を表2に示す。 <触媒2〜7>Y型ゼオライトに代えてモルデナイト、
ZSM−5、ゼオライト−β、フェリエライト、SiO
2 及びAl2 3 をそれぞれ用いたこと以外は触媒1と
同様にして、排気ガス浄化用触媒2〜7をそれぞれ調製
した。
Next, the honeycomb carrier having the Y-type zeolite layer is immersed in a tetravalent platinum ammine aqueous solution for 24 hours, pulled up to blow off the excess solution, and then dried at 250 ° C. for 1 hour, and the exhaust gas purifying catalyst 1 Was prepared. The amount of Pt carried is 2 g per 1 L of the honeycomb carrier. This support is not an ion exchange support, but a simple adsorption support. <Test Example 1> As shown in FIG. 1, the exhaust gas purifying catalyst 1 was attached to an exhaust system of a 2.4 L diesel engine,
The amount of NOx before and after the catalyst was changed from NOx amount before and after the catalyst under the conditions of SV = 60,000 / h and the catalyst bed temperature of 150 to 450 ° C. while adding light oil on the upstream side of the catalyst so that the carbon conversion concentration was 3000 ppmC.
x Purification rate was measured. And maximum N in the entire temperature range
Table 2 shows the Ox purification rate. <Catalyst 2 to 7> Mordenite instead of Y-type zeolite
ZSM-5, Zeolite-β, Ferrierite, SiO
Exhaust gas purifying catalysts 2 to 7 were prepared in the same manner as the catalyst 1 except that 2 and Al 2 O 3 were used, respectively.

【0020】そして触媒1と同様にして最大NOx浄化
率を測定し、結果を表2に示す。 <試験例2>次に、触媒5を除く6種類の触媒につい
て、モデルガスを用いて最大NOx浄化率を測定した。
モデルガスとしては、表1に示すベースガスに添加ガス
としてヘキサン(パラフィン系HC)、ヘキセン(オレ
フィン系HC)、シクロヘキサン(シクロパラフィン系
HC)、ベンゼン(芳香族系HC)をそれぞれ炭素換算
濃度3000ppmCとなるように添加したものを用
い、SV=4万/hの条件で測定した。結果を表2及び
図2に示す。
Then, the maximum NOx purification rate was measured in the same manner as the catalyst 1, and the results are shown in Table 2. <Test Example 2> Next, the maximum NOx purification rate of six types of catalysts except the catalyst 5 was measured using model gas.
As model gases, hexane (paraffinic HC), hexene (olefinic HC), cyclohexane (cycloparaffinic HC) and benzene (aromatic HC) were added to the base gas shown in Table 1 as carbon concentration 3000 ppmC Was measured under the condition of SV = 40,000 / h. The results are shown in Table 2 and FIG.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 表2及び図2より、通常のゼオライトやシリカあるいは
アルミナを担体とした触媒は、添加ガス種がオレフィン
系HCの場合に優れたNOx浄化性能を示すのに対し、
Y型ゼオライト又はモルデナイトを担体とした触媒は、
添加ガス種がパラフィン系HCの場合に特に優れたNO
x浄化性能を示すことがわかる。なお、軽油はパラフィ
ン系HCが約75%を占めているので、実用の場合はデ
ィーゼルエンジンの燃料である軽油を用いるのが便利で
ある。 (実施例2)表3に示すように各種シリカ/アルミナ比
をもつ担体を用意し、実施例1と同様にしてPtを2g
/L担持した排気ガス浄化用触媒を調製した。それぞれ
の触媒を図1に示す2.4Lのディーゼルエンジンの排
気系に装着し、触媒の上流側で軽油を炭素換算濃度20
00ppmCとなるように添加しながら、SV=6万/
h、触媒床温度150〜450℃の条件でNOx浄化率
を測定した。最大NOx浄化率を表3及び図3に示す。
[Table 2] From Table 2 and FIG. 2, while the catalyst using ordinary zeolite, silica or alumina as a carrier shows excellent NOx purification performance when the added gas species is olefinic HC,
The catalyst using Y-type zeolite or mordenite as a carrier is
Particularly excellent NO when the additive gas type is paraffinic HC
It can be seen that x purification performance is exhibited. Since paraffinic HC occupies about 75% of light oil, it is convenient to use light oil which is a fuel of a diesel engine in practical use. (Example 2) As shown in Table 3, carriers having various silica / alumina ratios were prepared, and 2 g of Pt was added in the same manner as in Example 1.
An exhaust gas-purifying catalyst carrying / L was prepared. Each catalyst was installed in the exhaust system of the 2.4-liter diesel engine shown in Fig. 1, and light oil was added at a carbon conversion concentration of 20 at the upstream side of the catalyst.
SV = 60,000 / while adding so that it becomes 00 ppmC
The NOx purification rate was measured under the conditions of h and catalyst bed temperature of 150 to 450 ° C. The maximum NOx purification rate is shown in Table 3 and FIG.

【0023】また上記試験において、触媒から排出され
る排気ガス中のN2 濃度も測定し、浄化されたNOxの
うちN2 に転化した割合を算出した。結果を表3及び図
3に合わせて示す。
In the above test, the N 2 concentration in the exhaust gas discharged from the catalyst was also measured, and the ratio of the converted NOx converted to N 2 was calculated. The results are shown in Table 3 and FIG.

【0024】[0024]

【表3】 表3及び図3より、シリカ/アルミナ比が20〜250
の範囲にあれば、最大NOx浄化率が25%以上でN2
選択性も50%以上となり、他の触媒に比べてNOx浄
化性能に優れていることが明らかである。 (実施例3)表4に示すようにSiO2 −Al2 3
らなり各種細孔径をもつ担体を用意し、実施例1と同様
にしてPtを2g/L担持した排気ガス浄化用触媒を調
製した。それぞれの触媒を図1に示す2.4Lのディー
ゼルエンジンの排気系に装着し、触媒の上流側で軽油を
炭素換算濃度2500ppmCとなるように添加しなが
ら、SV=6万/h、触媒床温度150〜450℃の条
件でNOx浄化率を測定した。最大NOx浄化率を表4
及び図4に示す。
[Table 3] From Table 3 and FIG. 3, the silica / alumina ratio is 20 to 250.
If the maximum NOx purification rate is 25% or more, N 2
The selectivity is also 50% or more, and it is clear that the NOx purification performance is superior to other catalysts. (Example 3) As shown in Table 4, a carrier made of SiO 2 -Al 2 O 3 having various pore diameters was prepared, and an exhaust gas purifying catalyst carrying 2 g / L of Pt was prepared in the same manner as in Example 1. Prepared. Each catalyst was installed in the exhaust system of the 2.4-liter diesel engine shown in FIG. 1, and SV = 60,000 / h, catalyst bed temperature was added while adding light oil to the carbon conversion concentration of 2500 ppmC on the upstream side of the catalyst. The NOx purification rate was measured under the condition of 150 to 450 ° C. Table 4 shows the maximum NOx purification rate
And shown in FIG.

【0025】[0025]

【表4】 表4及び図4より、平均細孔径が0.5〜1.0nmの
範囲にあれば、最大NOx浄化率が35%以上となり、
他の触媒に比べてNOx浄化性能に優れていることが明
らかである。 (実施例4)表5及び表6に示す各種担体から触媒1と
同様にしてPtを2g/L担持した触媒を調製した。そ
して必要に応じて表5及び表6に示す各種アルカリ金属
又はアルカリ土類金属の水溶性塩を用い、水溶液を含浸
後焼成する方法でこれらの金属をそれぞれ表5及び表6
に示す担持量で担持した。
[Table 4] From Table 4 and FIG. 4, when the average pore diameter is in the range of 0.5 to 1.0 nm, the maximum NOx purification rate is 35% or more,
It is clear that the NOx purification performance is superior to other catalysts. Example 4 A catalyst carrying 2 g / L of Pt was prepared from each of the carriers shown in Tables 5 and 6 in the same manner as the catalyst 1. Then, if necessary, water-soluble salts of various alkali metals or alkaline earth metals shown in Tables 5 and 6 are used, and the metals are impregnated with an aqueous solution and then calcined.
It was carried in the carrying amount shown in.

【0026】それぞれの触媒を図1に示す2.4Lのデ
ィーゼルエンジンの排気系に装着し、触媒の上流側で軽
油又はプロピレン(C3 6 )を炭素換算濃度1100
ppmCとなるように添加しながら、SV=6万/h、
触媒床温度150〜450℃の条件でNOx浄化率を測
定した。最大NOx浄化率を表5及び表6に示す。また
上記試験において、触媒から排出される排気ガス中のN
2 濃度も測定し、浄化されたNOxのうちN2 に転化し
た割合を算出した。結果を表5及び表6に合わせて示
す。
Each catalyst was installed in the exhaust system of a 2.4-liter diesel engine shown in FIG. 1, and diesel oil or propylene (C 3 H 6 ) was added at a carbon conversion concentration of 1100 on the upstream side of the catalyst.
SV = 60,000 / h, while adding so as to be ppmC,
The NOx purification rate was measured under the condition that the catalyst bed temperature was 150 to 450 ° C. The maximum NOx purification rates are shown in Tables 5 and 6. In the above test, N in the exhaust gas discharged from the catalyst
2 concentration was measured to calculate the percentage conversion to N 2 of the clarified NOx. The results are shown in Table 5 and Table 6 together.

【0027】[0027]

【表5】 [Table 5]

【0028】[0028]

【表6】 表5、6より、ゼオライトにアルカリ金属及び/又はア
ルカリ土類金属を担持した触媒は、他の触媒に比べてN
Ox浄化性能に優れていることが明らかである。またこ
の触媒は、添加ガス種がパラフィン系HCとオレフィン
系HCの両方で優れたNOx浄化性能を示すこともわか
り、添加ガス種の選択性がないこともわかる。
[Table 6] From Tables 5 and 6, the catalyst in which the zeolite is loaded with the alkali metal and / or the alkaline earth metal is N compared with the other catalysts.
It is clear that the Ox purification performance is excellent. It is also found that this catalyst exhibits excellent NOx purification performance with both paraffinic HC and olefinic HC as additive gas species, and that there is no selectivity of additive gas species.

【0029】さらに、平均細孔径が0.5〜1.0nm
であってシリカ/アルミナ比が20〜250のY型ゼオ
ライトを用いたもの(No.30-38, No.53-56)は、軽油と
の組合せにより特にNOx浄化性能に優れていることも
明らかである。 (実施例5)実施例1で調製した触媒1を用い、図5に
示すように3.7Lのディーゼルエンジンの排気系に装
着して、触媒の上流側で軽油を炭素換算濃度0〜500
0ppmCの各種濃度となるように排気ガスに添加しな
がら、10・15モード走行を実施した。
Further, the average pore diameter is 0.5 to 1.0 nm.
It is also clear that the one using Y-type zeolite with a silica / alumina ratio of 20 to 250 (No.30-38, No.53-56) is particularly excellent in NOx purification performance in combination with light oil. Is. (Example 5) Using the catalyst 1 prepared in Example 1, the exhaust system of a 3.7 L diesel engine was mounted as shown in FIG.
The 10/15 mode running was performed while adding various concentrations of 0 ppmC to the exhaust gas.

【0030】そして走行中のNOx浄化率を触媒前後の
NOx濃度から算出するとともに、排出されるパティキ
ュレート量を測定し、1km走行したときの積算排出量
を算出して、結果を図6に示す。図6より、NOx浄化
率は軽油の添加量が増大するにつれて向上するが、約3
000ppmC程度の添加量でNOx浄化率は飽和して
いることがわかる。一方パティキュレート量は軽油の添
加により低減されるが、2000ppmC程度で最低値
を示した後再び増大し、4000ppm程度で軽油無添
加の場合と同等の排出量に戻り、それ以上の添加量では
パティキュレートの排出量が急激に増大している。した
がってパティキュレートの排出量を軽油無添加の場合よ
り低減させ、かつ所定以上のNOx浄化率を得るために
は、軽油の添加量は500〜3000ppmCが望まし
いことが分かる。
The NOx purification rate during running is calculated from the NOx concentration before and after the catalyst, the amount of particulates discharged is measured, and the cumulative amount of exhausted after running 1 km is calculated. The results are shown in FIG. . From FIG. 6, the NOx purification rate improves as the amount of light oil added increases, but it is about 3
It can be seen that the NOx purification rate is saturated at an addition amount of about 000 ppmC. On the other hand, the amount of particulates is reduced by the addition of light oil, but after reaching the lowest value at around 2000ppmC, it increases again and returns to the same emission level as when no diesel oil is added at around 4000ppm. The amount of curate discharged is increasing rapidly. Therefore, in order to reduce the emission amount of particulates as compared with the case where no diesel oil is added and to obtain the NOx purification rate above a predetermined level, it is understood that the amount of diesel oil added is preferably 500 to 3000 ppmC.

【0031】[0031]

【発明の効果】すなわち本発明の排気ガス浄化方法によ
れば、リーン雰囲気の排気ガスであってもパラフィン系
HCを添加することによりNOxを確実に浄化すること
ができる。したがってリーン側での低公害化運転が可能
となり、市街地走行における低燃費化の要請に応えるこ
とができる。また所定量のパラフィン系HCを添加すれ
ば、NOxばかりかディーゼルエンジンからの排気ガス
中のパティキュレート量を低減することもできる。
According to the exhaust gas purifying method of the present invention, NOx can be surely purified by adding the paraffinic HC even if the exhaust gas has a lean atmosphere. Therefore, the lean side can be operated with low pollution, and the demand for low fuel consumption in city driving can be met. If a predetermined amount of paraffinic HC is added, not only NOx but also the amount of particulates in the exhaust gas from the diesel engine can be reduced.

【0032】そしてパラフィン系HCとして軽油を用い
れば、ディーゼルエンジンからの排気ガスを容易に浄化
することができ、極めて実用的である。
If light oil is used as the paraffinic HC, the exhaust gas from the diesel engine can be easily purified, which is extremely practical.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で用いたNOx浄化率測定装置
の模式図である。
FIG. 1 is a schematic diagram of a NOx purification rate measurement device used in an example of the present invention.

【図2】各種担体材質を用いた触媒において、各種炭化
水素使用の場合のNOx浄化性能を示す図である。
FIG. 2 is a diagram showing NOx purification performance in the case of using various hydrocarbons in a catalyst using various carrier materials.

【図3】シリカ/アルミナ比とNOx浄化性能との関係
を示す図である。
FIG. 3 is a diagram showing a relationship between a silica / alumina ratio and NOx purification performance.

【図4】平均細孔径とNOx浄化性能との関係を示す図
である。
FIG. 4 is a diagram showing a relationship between average pore diameter and NOx purification performance.

【図5】実施例5で用いた測定装置の模式図である。5 is a schematic diagram of a measuring device used in Example 5. FIG.

【図6】軽油の添加量に対するNOx浄化率とパティキ
ュレート量との関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the NOx purification rate and the amount of particulates with respect to the amount of light oil added.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 29/12 ZAB A 29/22 ZAB A (72)発明者 水野 達司 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 平林 武史 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 辻 龍介 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 早川 美穂 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location B01J 29/12 ZAB A 29/22 ZAB A (72) Inventor Tatsushi Mizuno 1 Toyota Town, Toyota City, Aichi Prefecture Address Toyota Motor Co., Ltd. (72) Inventor Takeshi Hirabayashi 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Co., Ltd. (72) Inventor Ryusuke Tsuji 1 of 41, Nagakage-cho, Aichi-gun, Aichi Prefecture Toyota Central Research Institute Co., Ltd. (72) Inventor Miho Hayakawa 1st 41st Yokomichi Nagakute-cho, Aichi-gun, Aichi Prefecture

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 触媒貴金属を担持したY型ゼオライトあ
るいはモルデナイトからなる触媒を酸素過剰の排気ガス
の流路内に配置し、該排気ガスにパラフィン系炭化水素
を添加して該触媒と接触させることにより該排気ガスに
含まれるNOxを還元浄化することを特徴とする排気ガ
ス浄化方法。
1. A catalyst composed of Y-type zeolite or mordenite carrying a catalytic noble metal is arranged in a flow path of an exhaust gas in excess of oxygen, and paraffin hydrocarbon is added to the exhaust gas and brought into contact with the catalyst. The exhaust gas purification method is characterized in that the NOx contained in the exhaust gas is reduced and purified by the above method.
【請求項2】 シリカ/アルミナ比(SiO2 /Al2
3 )が20〜250である担体に触媒貴金属を担持し
てなる触媒を酸素過剰の排気ガスの流路内に配置し、該
排気ガスにパラフィン系炭化水素を添加して該触媒と接
触させることにより該排気ガスに含まれるNOxを還元
浄化することを特徴とする排気ガス浄化方法。
2. A silica / alumina ratio (SiO 2 / Al 2
A catalyst in which a catalytic noble metal is supported on a carrier having O 3 ) of 20 to 250 is arranged in a flow path of an oxygen-excess exhaust gas, and paraffin hydrocarbon is added to the exhaust gas to bring it into contact with the catalyst. Thus, the exhaust gas purification method is characterized in that NOx contained in the exhaust gas is reduced and purified.
【請求項3】 平均細孔径が0.5〜1.0nmである
担体に触媒貴金属を担持してなる触媒を酸素過剰の排気
ガスの流路内に配置し、該排気ガスにパラフィン系炭化
水素を添加して該触媒と接触させることにより該排気ガ
スに含まれるNOxを還元浄化することを特徴とする排
気ガス浄化方法。
3. A catalyst in which a catalyst noble metal is supported on a carrier having an average pore diameter of 0.5 to 1.0 nm is arranged in a flow path of exhaust gas in excess of oxygen, and paraffin hydrocarbon is contained in the exhaust gas. Is added to bring the catalyst into contact with the catalyst to reduce and purify NOx contained in the exhaust gas.
【請求項4】 ゼオライトに触媒貴金属とアルカリ金属
及びアルカリ土類金属の中から選ばれる少なくとも一種
の金属とを担持した触媒を酸素過剰の排気ガスの流路内
に配置し、該排気ガスに還元性物質を添加して該触媒と
接触させることにより該排気ガスに含まれるNOxを還
元浄化することを特徴とする排気ガス浄化方法。
4. A catalyst in which a catalytic noble metal and at least one metal selected from alkali metals and alkaline earth metals are supported on zeolite is arranged in a channel of exhaust gas with excess oxygen, and reduced to the exhaust gas. An exhaust gas purification method, characterized in that NOx contained in the exhaust gas is reduced and purified by adding a volatile substance and bringing it into contact with the catalyst.
JP21011694A 1994-09-02 1994-09-02 Exhaust gas purification method Expired - Fee Related JP3391569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21011694A JP3391569B2 (en) 1994-09-02 1994-09-02 Exhaust gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21011694A JP3391569B2 (en) 1994-09-02 1994-09-02 Exhaust gas purification method

Publications (2)

Publication Number Publication Date
JPH0871371A true JPH0871371A (en) 1996-03-19
JP3391569B2 JP3391569B2 (en) 2003-03-31

Family

ID=16584067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21011694A Expired - Fee Related JP3391569B2 (en) 1994-09-02 1994-09-02 Exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP3391569B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080081A (en) * 2001-09-12 2003-03-18 Cataler Corp Catalyst for cleaning exhaust gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080081A (en) * 2001-09-12 2003-03-18 Cataler Corp Catalyst for cleaning exhaust gas

Also Published As

Publication number Publication date
JP3391569B2 (en) 2003-03-31

Similar Documents

Publication Publication Date Title
JP2660411B2 (en) Method for reducing and removing nitrogen oxides in exhaust gas
JP3479980B2 (en) Exhaust gas purification method and exhaust gas purification catalyst
JP3311012B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH0899034A (en) Catalyst for purifying exhaust gas
US20030039597A1 (en) Close coupled catalyst with a SOx trap and methods of making and using the same
CN112041051B (en) Hydrocarbon trapping catalyst
JP3409894B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3282344B2 (en) Exhaust gas purification device
JP3407901B2 (en) Exhaust gas purifying catalyst, method for producing the catalyst, and method for purifying exhaust gas
JP3391569B2 (en) Exhaust gas purification method
JP3695394B2 (en) Exhaust gas purification device and manufacturing method
JPH07171349A (en) Exhaust gas purification
JP2849585B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP4290391B2 (en) Method and apparatus for catalytic removal of nitrogen oxides
JPH0568888A (en) Waste gas cleaning catalyst
JP3300027B2 (en) Exhaust gas purification catalyst
JPH1099691A (en) Exhaust gas cleaning catalyst and exhaust gas cleaning method
JPH08141405A (en) Catalyst for purification of exhaust gas from internal-combustion engine
JPH06190245A (en) Exhaust gas purifying catalyst structure
JP3291316B2 (en) Exhaust gas purification catalyst
JP3781243B2 (en) Exhaust gas purification device
JP2932106B2 (en) Exhaust gas purification catalyst
JP3623255B2 (en) Catalyst and method for removing nitrogen oxides from engine exhaust gas
JPH0985092A (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH04219143A (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees