JPH0862564A - Projection type liquid crystal display device - Google Patents
Projection type liquid crystal display deviceInfo
- Publication number
- JPH0862564A JPH0862564A JP6199798A JP19979894A JPH0862564A JP H0862564 A JPH0862564 A JP H0862564A JP 6199798 A JP6199798 A JP 6199798A JP 19979894 A JP19979894 A JP 19979894A JP H0862564 A JPH0862564 A JP H0862564A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- phase difference
- display device
- film
- projection type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Liquid Crystal (AREA)
- Projection Apparatus (AREA)
- Transforming Electric Information Into Light Information (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、陰極線管(以下、CR
Tという)及び光導電型液晶ライトバルブ(以下、LC
LVという)からなる投影光出力手段を有する投射型液
晶表示装置(以下、プロジェクタともいう)に関し、特
にLCLVへの入射光線束に投影画像を付与しつつその
反射光を投影レンズ系により投射するプロジェクタに関
する。BACKGROUND OF THE INVENTION The present invention relates to a cathode ray tube (hereinafter referred to as CR
T) and photoconductive liquid crystal light valve (hereinafter LC)
A projection type liquid crystal display device (hereinafter, also referred to as a projector) having a projection light output unit composed of an LV), and in particular, a projector for projecting reflected light by a projection lens system while imparting a projection image to an incident light flux to the LCLV. Regarding
【0002】[0002]
【従来の技術】図1は、LCLV1の一例を示す。LC
LV1は、基板2及び3間にそれぞれ配置された、透明
電極4及び5、アモルファスシリコン(a−Si)から
なる光導電膜6、遮光膜7、誘電体からなる反射膜8、
液晶配向膜9及び10、並びに液晶配向膜間に配置され
る液晶11からなる構造を有する。LCLVの液晶層1
1は、スペーサ及び配向膜によって画定される。読み出
し側ガラス基板2には透明電極4が配され、光導電膜6
の書き込み側ガラス基板3には電極5が配されている。
LCLV1の形成方法は、一方の読み出し側基板2上に
対向すべき内面に透明電極4、及び液晶配向膜9を形成
し、他方の書き込み側ガラス基板3上には電極5、a−
Si膜6、遮光膜7、反射膜8、液晶配向膜10を順に
形成し、更に、該液晶配向膜9及び10間に液晶11を
封入する。遮光膜7は投射光源からの入射光がa−Si
膜6へ洩れるのを防ぐ膜であり、反射膜8は投射光源か
らの入射光を効率良く反射する役割をする膜である。L
CLV1は、基本的には光信号を電気信号に変換するa
−Si等の材料からなる光導電膜6と、電気信号を光信
号に変換する液晶等の材料からなる液晶層11と、を組
み合わせた光−光変換素子である。2. Description of the Related Art FIG. 1 shows an example of LCLV1. LC
The LV 1 includes transparent electrodes 4 and 5, a photoconductive film 6 made of amorphous silicon (a-Si), a light-shielding film 7, and a reflective film 8 made of a dielectric, which are arranged between the substrates 2 and 3, respectively.
It has a structure including liquid crystal alignment films 9 and 10 and a liquid crystal 11 arranged between the liquid crystal alignment films. LCLV liquid crystal layer 1
1 is defined by the spacer and the alignment film. A transparent electrode 4 is arranged on the reading side glass substrate 2, and a photoconductive film 6 is formed.
An electrode 5 is arranged on the writing side glass substrate 3.
The LCLV 1 is formed by forming the transparent electrode 4 and the liquid crystal alignment film 9 on the inner surface to be opposed on one read side substrate 2, and forming the electrode 5, a- on the other write side glass substrate 3.
A Si film 6, a light-shielding film 7, a reflective film 8 and a liquid crystal alignment film 10 are sequentially formed, and a liquid crystal 11 is sealed between the liquid crystal alignment films 9 and 10. The light-shielding film 7 receives a-Si from the incident light from the projection light source.
The reflection film 8 is a film that prevents leakage to the film 6, and the reflection film 8 plays a role of efficiently reflecting the incident light from the projection light source. L
CLV1 basically converts an optical signal into an electrical signal a
A light-to-light conversion element in which a photoconductive film 6 made of a material such as -Si and a liquid crystal layer 11 made of a material such as liquid crystal for converting an electric signal into an optical signal are combined.
【0003】図2は、a−Si膜6への像の書き込み用
のCRT14及びLCLV1からなる投影光出力手段を
有するプロジェクタの一例を示す。CRT14及びLC
LV1間において、ファイバーオプティックプレート1
4aが、CRT2のフロントフェイスに表示された像を
LCLV1の光導電膜に効率良く書き込むように配置さ
れている。偏光ビームスプリッタ12は、メタルハライ
ドランプ等の投射光源13からの平行光をS及びP偏光
に分離する。FIG. 2 shows an example of a projector having a projection light output means composed of a CRT 14 and an LCLV 1 for writing an image on the a-Si film 6. CRT14 and LC
Fiber optic plate 1 between LV1
4a is arranged so as to efficiently write the image displayed on the front face of the CRT 2 to the photoconductive film of the LCLV 1. The polarization beam splitter 12 splits parallel light from a projection light source 13 such as a metal halide lamp into S and P polarized light.
【0004】次に、LCLV1の動作原理について説明
する。LCLVの動作は、図1に示すように駆動電源2
0により透明電極4及び5間に交流電圧が印加されてい
るとき、書き込み側ガラス基板3からの入射光によって
光導電膜6上に像を描くと、光導電膜6の内部抵抗が像
の明暗(受光量の変化)に従って局部的に変化する。光
導電膜の抵抗変化部分に対応する隣接する液晶層11の
一部分には透明電極4及び5間の交流電圧が印加され、
像の明暗に従って、液晶分子が空間変調され複屈折率が
生じる。Next, the operating principle of the LCLV1 will be described. The operation of the LCLV is as shown in FIG.
When an AC voltage is applied between the transparent electrodes 4 and 5 by 0, when an image is drawn on the photoconductive film 6 by the incident light from the writing side glass substrate 3, the internal resistance of the photoconductive film 6 causes the brightness of the image to change. It locally changes in accordance with (change in received light amount). An AC voltage between the transparent electrodes 4 and 5 is applied to a portion of the adjacent liquid crystal layer 11 corresponding to the variable resistance portion of the photoconductive film,
The liquid crystal molecules are spatially modulated according to the brightness of the image, and a birefringence is generated.
【0005】LCLVの液晶層11の投影画像の複屈折
率の変化があるとき、図1に示すように、光源13から
の略平行光線束を、偏光ビームスプリッタ12に入射
し、この入射光のうちS偏光成分をLCLV1の読み出
し側ガラス基板2に入射することによって、行われる。
ここで、LCLV1の液晶層の複屈折率変化が生じてい
ると、LCLVにおいて反射された反射光中では液晶層
の複屈折率に応じてS偏光成分がP偏光成分に変換され
る。そして、このP偏光成分が偏光ビームスプリッタ1
2をそのまま通過することにより、このP偏光成分すな
わち投影光が投影レンズ15を介してスクリーン16上
に像が投射される。When there is a change in the birefringence of the projected image of the liquid crystal layer 11 of the LCLV, a substantially parallel light flux from the light source 13 is incident on the polarization beam splitter 12 as shown in FIG. It is carried out by injecting the S-polarized light component into the glass substrate 2 on the reading side of the LCLV 1.
Here, when the birefringence change of the liquid crystal layer of the LCLV1 occurs, the S-polarized component is converted into the P-polarized component in the reflected light reflected by the LCLV according to the birefringence of the liquid crystal layer. Then, this P-polarized component is the polarization beam splitter 1
By passing 2 as it is, the P-polarized component, that is, the projection light, is projected on the screen 16 via the projection lens 15.
【0006】LCLV1における印加電圧(VOLTAGE)
対明るさ(OUTPUT LEVEL)の基本的な関係を図3のA及び
Bの曲線に示す。図3のAはa−Si膜6への書き込み
を行うCRT14が光っていない状態(暗状態)、図3
のBはa−Si膜6への書き込みを行うCRT14が光
った状態(明状態)である。ここで、液晶11には誘電
率異方性が負のネマティック液晶を、液晶配向膜9及び
10には液晶分子がほぼ垂直に配向する膜を用いてあ
る。Applied voltage (VOLTAGE) in LCLV1
The basic relationship between the brightness (OUTPUT LEVEL) is shown by the curves A and B in FIG. 3A shows a state in which the CRT 14 for writing to the a-Si film 6 is not illuminated (dark state), and FIG.
B is a state (bright state) in which the CRT 14 for writing in the a-Si film 6 is illuminated. Here, the liquid crystal 11 is a nematic liquid crystal having a negative dielectric anisotropy, and the liquid crystal alignment films 9 and 10 are films in which liquid crystal molecules are aligned substantially vertically.
【0007】透明導電膜4及び5に印加する交流の電圧
を0Vから徐々に増加させると、図3のAの暗状態では
CRT14によるa−Si膜6への書き込みが無いた
め、a−Si膜6のインピーダンスが高く、印加された
電圧はa−Si膜6と液晶11の両方に分割され、みか
け上の液晶の閾値電圧が高くなる。これに対して、同様
に印加電圧を振ると図3のBの明状態ではCRT14の
光がa−Si膜6へ照射されているため、a−Si膜6
のインピーダンスが低下する。この結果、電圧が液晶1
1に大部分印加されるため、液晶の閾値電圧が低くな
る。When the AC voltage applied to the transparent conductive films 4 and 5 is gradually increased from 0 V, there is no writing to the a-Si film 6 by the CRT 14 in the dark state of FIG. The impedance of 6 is high, and the applied voltage is divided into both the a-Si film 6 and the liquid crystal 11, and the apparent threshold voltage of the liquid crystal becomes high. On the other hand, when the applied voltage is similarly varied, the light of the CRT 14 is irradiated to the a-Si film 6 in the bright state of FIG.
Impedance will decrease. As a result, the voltage is
Since most of them are applied to 1, the threshold voltage of the liquid crystal becomes low.
【0008】従って、図3のAの暗状態でのみかけ上の
液晶の閾値電圧(図では約10V)を駆動電圧として透
明導電膜4及び5に印加した状態における、a−Si膜
6へ書き込みを行うCRT14をオンオフとすることで
a−Si膜6のインピーダンスが変化し、その変化量に
応じた電圧が液晶11に印加され液晶11が応答する。
すなわち、投射光源13が偏光ビームスプリッタ12を
介し、直線偏光にしてLCLV1に入射した光は、CR
T14がオフの時は液晶11が応答しなく複屈折が生じ
ない。このため、入射した直線偏光は偏光ビームスプリ
ッタ12を通過できずスクリーン16では黒い画像が得
られる。Therefore, in the dark state of FIG. 3A, the threshold voltage of the apparent liquid crystal (about 10 V in the figure) is applied to the transparent conductive films 4 and 5 as a drive voltage to write to the a-Si film 6. The impedance of the a-Si film 6 changes by turning on and off the CRT 14 for performing the above, and a voltage corresponding to the amount of change is applied to the liquid crystal 11 and the liquid crystal 11 responds.
That is, the light which the projection light source 13 has passed through the polarization beam splitter 12 to make it linearly polarized and incident on the LCLV 1 is CR.
When T14 is off, the liquid crystal 11 does not respond and birefringence does not occur. Therefore, the incident linearly polarized light cannot pass through the polarization beam splitter 12, and a black image is obtained on the screen 16.
【0009】一方、CRT14がオンの時は液晶11に
電圧が印加されるため、液晶11が応答し液晶の複屈折
性によって生じる位相差により出射光は楕円偏光とな
る。このため、偏光ビームスプリッタ12を通過しスク
リーン16では明るい画像が得られる。約10Vの閾値
電圧で明るさは約50%である。On the other hand, when the CRT 14 is on, a voltage is applied to the liquid crystal 11, so that the emitted light becomes elliptically polarized light due to the phase difference caused by the birefringence of the liquid crystal 11 in response. Therefore, a bright image is obtained on the screen 16 after passing through the polarization beam splitter 12. The brightness is about 50% at a threshold voltage of about 10V.
【0010】[0010]
【発明が解決しようとする課題】図3における液晶の閾
値付近(7〜12V)の拡大図を図4に示す。図4か
ら、実際のLCLV1では暗状態でも約8Vから液晶1
1が徐々に応答し位相差を生ぜしめていることがわる。
このため、図4のCの暗状態の約9Vに駆動電圧を設定
すると黒の明るさは約0.1%と暗くできるが、CRT
14の光がa−Si膜6に照射されたときは液晶11が
応答して変調できる光の量が図3のBの明状態から分か
るように明るさが約18%と少ない。その結果、コント
ラスト(18%/0.1%)は約180対1と高い値を
得られるが、全体として暗い投射画像となってしまう。FIG. 4 shows an enlarged view of the liquid crystal near the threshold value (7 to 12 V) in FIG. From FIG. 4, in the actual LCLV1, even if the dark state is about 8V from the liquid crystal 1
It can be seen that 1 gradually responds and causes a phase difference.
Therefore, if the drive voltage is set to about 9 V in the dark state of C in FIG. 4, the brightness of black can be darkened to about 0.1%.
When the light of 14 is applied to the a-Si film 6, the amount of light that can be modulated by the liquid crystal 11 in response is as small as about 18% as can be seen from the bright state of FIG. 3B. As a result, the contrast (18% / 0.1%) can be as high as about 180 to 1, but a dark projected image is obtained as a whole.
【0011】一方、図4のDの暗状態における黒の明る
さが約1%得られる電圧10Vに駆動電圧を設定する
と、CRT14の光がa−Si膜6に照射されたとき
は、液晶11が応答して変調できる光量が図3の暗状態
より分かるように明るさが約50%となるものの、コン
トラスト(50%/1%)は約50対1と低い投射画像
となる。On the other hand, when the drive voltage is set to a voltage of 10 V which gives about 1% of the brightness of black in the dark state of D in FIG. 4, when the light of the CRT 14 is irradiated on the a-Si film 6, the liquid crystal 11 is emitted. As can be seen from the dark state of FIG. 3, the amount of light that can be modulated in response to is about 50%, but the contrast (50% / 1%) is about 50: 1, which is a low projected image.
【0012】本発明の目的は、投影画像の明るさ維持と
高コントラストとの両立を図るためのLCLVを有した
投射型液晶表示装置を提供することを目的としている。It is an object of the present invention to provide a projection type liquid crystal display device having an LCLV for maintaining both the brightness of a projected image and a high contrast.
【0013】[0013]
【問題点を解決するための手段】本発明の投射型液晶表
示装置は、光源から出射された光線束が透過する偏光ビ
ームスプリッタと、一対の透明基板の対向面に設けられ
た一対の透明電極間に前記偏光ビームスプリッタに近い
側から順に積層された、液晶層、反射膜及び光導電膜を
有する光導電型液晶ライトバルブと、前記一対の透明電
極に駆動電圧を印加する駆動手段と、水平走査により画
像を形成しこの画像を前記光導電膜側から前記光導電膜
に入射する書き込み手段とを含む投射型液晶表示装置で
あって、所定駆動電圧時の前記液晶層から透過する反射
光の直線偏光成分の電気ベクトルの振動面が互いに垂直
となるように前記偏光ビームスプリッタと前記光導電型
液晶ライトバルブとの間に配置されかつ、前記液晶層の
液晶による複屈折により生じた位相差を補償する位相差
補償素子を有することを特徴とする。A projection type liquid crystal display device according to the present invention comprises a polarizing beam splitter through which a light beam emitted from a light source is transmitted, and a pair of transparent electrodes provided on opposing surfaces of a pair of transparent substrates. A photoconductive liquid crystal light valve having a liquid crystal layer, a reflective film, and a photoconductive film, which are sequentially stacked between the polarization beam splitters, a drive unit for applying a drive voltage to the pair of transparent electrodes, and a horizontal drive unit. A projection type liquid crystal display device comprising a writing means for forming an image by scanning and for making the image incident on the photoconductive film from the photoconductive film side, wherein the reflected light transmitted from the liquid crystal layer at a predetermined driving voltage It is arranged between the polarization beam splitter and the photoconductive liquid crystal light valve so that the planes of oscillation of the electric vectors of the linearly polarized light components are perpendicular to each other, and the birefringence of the liquid crystal in the liquid crystal layer. Characterized in that it has a retardation compensation element to compensate for the resulting phase difference.
【0014】[0014]
【作用】本発明によれば、プロジェクタの所定駆動電圧
時におけるLCLVの液晶層から透過する反射光の直線
偏光の電気ベクトルの振動面が互いに垂直となるよう
に、位相差補償素子が設置されている、即ち、位相差補
償素子とLCLVの所定駆動電圧時の液晶層とが直交ニ
コルとなるように構成されている。According to the present invention, the phase difference compensating element is installed so that the vibrating planes of the linearly polarized electric vectors of the reflected light transmitted from the liquid crystal layer of the LCLV at the predetermined driving voltage of the projector are perpendicular to each other. That is, the phase difference compensating element and the liquid crystal layer at a predetermined driving voltage of the LCLV are configured to be in the crossed Nicols.
【0015】一般に、それぞれ位相差を生ぜしめる二つ
の素子、例えば位相差R1とR2をそれぞれもつ偏光子
及び検光子を重ねて設置したとき、全体の位相差は、二
つの素子の光軸(複屈折が生じない方向の軸:液晶分子
軸)が一致しているとき(平行ニコル)には、R1+R2
で、二つの素子の光軸が直交しているとき(直交ニコル)
には、R1−R2で、表される。すなわち、LCLVの
駆動電圧で生じた位相差をR1、位相差補償素子で生じ
る位相差をR2とし、この二つの素子の光軸を互いに直
交させ、R1とR2の値を等しくすることで、全体での
位相差をゼロにすることができる。In general, when two elements each of which causes a phase difference, for example, a polarizer and an analyzer having phase differences R1 and R2, respectively, are placed in an overlapping manner, the total phase difference is calculated by comparing the optical axes of the two elements. When the axes in the direction in which refraction does not occur: liquid crystal molecular axes) are aligned (parallel Nicols), R1 + R2
And when the optical axes of the two elements are orthogonal (orthogonal Nicols)
Is represented by R1-R2. That is, the phase difference caused by the LCLV drive voltage is R1, the phase difference caused by the phase difference compensating element is R2, the optical axes of these two elements are orthogonal to each other, and the values of R1 and R2 are equal, The phase difference at can be made zero.
【0016】これより、明るさを得るためにLCLVの
液晶が僅かに応答する駆動電圧を設定しても、これによ
って生じた位相差を補償する位相差補償素子をLCLV
の前面に設けることで、投射光の暗状態における位相差
をゼロ、すなわち黒を得ることができ、明るく、高コン
トラストの投射像を得ることができる。Therefore, even if the driving voltage to which the LCLV liquid crystal slightly responds is set in order to obtain the brightness, the phase difference compensating element for compensating the phase difference caused by the driving voltage is provided in the LCLV.
By providing it on the front surface of, the phase difference in the dark state of the projected light can be zero, that is, black can be obtained, and a bright, high-contrast projected image can be obtained.
【0017】[0017]
【実施例】以下に本発明による実施例を図面を参照しつ
つ説明する。本実施例のプロジェクタを図5に示す。本
実施例のプロジェクタは、偏光ビームスプリッタ12と
LCLV1との間に設けられた位相差補償素子17を有
する以外は図2に示すプロジェクタと同一の構造を有す
る。すなわち、本実施例のプロジェクタは、光源13か
ら出射された光線束が透過する偏光ビームスプリッタ1
2と、LCLV1と、一対の透明電極に駆動電圧を印加
する駆動電源20と、水平走査により画像を形成しこの
画像を前記光導電膜側から前記光導電膜に入射するCR
T14とを含む。LCLV1は、一対の透明基板2及び
3の対向面に設けられた一対の透明電極4及び5間に偏
光ビームスプリッタ12に近い側から順に積層された、
液晶層11、反射膜8及び光導電膜6を有する。Embodiments of the present invention will be described below with reference to the drawings. The projector of this embodiment is shown in FIG. The projector of this embodiment has the same structure as the projector shown in FIG. 2 except that it has a phase difference compensation element 17 provided between the polarization beam splitter 12 and the LCLV 1. That is, the projector according to the present embodiment has the polarization beam splitter 1 through which the light flux emitted from the light source 13 is transmitted.
2, a LCLV1, a drive power source 20 for applying a drive voltage to a pair of transparent electrodes, an image is formed by horizontal scanning, and the image is incident on the photoconductive film from the photoconductive film side.
And T14. The LCLV 1 is sequentially laminated between the pair of transparent electrodes 4 and 5 provided on the opposing surfaces of the pair of transparent substrates 2 and 3 from the side closer to the polarization beam splitter 12.
It has a liquid crystal layer 11, a reflective film 8 and a photoconductive film 6.
【0018】位相差補償素子17は、所定駆動電圧時に
おける液晶層11から透過する反射光の直線偏光成分の
電気ベクトルの振動面が互いに垂直となるように配置さ
れ、液晶層の液晶による複屈折により生じた位相差を補
償する。図6に、具体的に作製した位相差補償素子17
の部分断面を含む斜視図を示す。図6において、二枚の
基板18及び19の互いに対向すべき内面に透明電極2
0及び21及び液晶配向膜22及び23を形成し、更
に、液晶配向膜22及び23間に液晶24を封入するこ
とにより、位相差補償素子17を形成している。The phase difference compensating element 17 is arranged so that the vibrating planes of the electric vectors of the linearly polarized components of the reflected light transmitted from the liquid crystal layer 11 at a predetermined driving voltage are perpendicular to each other, and the birefringence by the liquid crystal of the liquid crystal layer is provided. The phase difference caused by is compensated. FIG. 6 shows the specifically manufactured phase difference compensating element 17
The perspective view including the partial cross section of FIG. In FIG. 6, the transparent electrodes 2 are formed on the inner surfaces of the two substrates 18 and 19 that should face each other.
0 and 21 and the liquid crystal alignment films 22 and 23 are formed, and the liquid crystal 24 is sealed between the liquid crystal alignment films 22 and 23 to form the phase difference compensation element 17.
【0019】この位相差補償素子17に使用した液晶は
ネマティック液晶であり、物性値は誘電率異方性が約−
2で、屈折率異方性が0.2である。また、セル厚は2
μmでプレチルト角は基板法線方向から約1°であっ
た。まず、位相差補償素子17とLCLV1の液晶配向
膜の配向方向(図6の矢印X及びY)が互いに角度90
°となるように、位相差補償素子17をLCLV1の前
面に設置する。この後、明るさが最小となるように可変
電圧電源により交流電圧を位相差補償素子17に印加し
た。これにより、駆動電圧時の液晶層から透過する反射
光の直線偏光成分の電気ベクトルの振動面が互いに垂直
となるようにすることが出来る。この時の電圧は3.3
7V電圧であった。そして、LCLV1の印加電圧(VO
LTAGE)対明るさ(OUTPUT LEVEL)の曲線を測定した。The liquid crystal used for the phase difference compensating element 17 is a nematic liquid crystal, and its physical property value is that the dielectric anisotropy is about −.
2, the refractive index anisotropy is 0.2. The cell thickness is 2
In μm, the pretilt angle was about 1 ° from the substrate normal direction. First, the alignment directions (arrows X and Y in FIG. 6) of the phase difference compensating element 17 and the liquid crystal alignment film of the LCLV1 are at an angle of 90 degrees to each other.
The phase difference compensating element 17 is installed on the front surface of the LCLV 1 so that the angle becomes °. After that, an AC voltage was applied to the phase difference compensating element 17 by the variable voltage power source so that the brightness was minimized. As a result, the vibration planes of the electric vectors of the linearly polarized light components of the reflected light transmitted from the liquid crystal layer at the time of driving voltage can be made perpendicular to each other. The voltage at this time is 3.3.
The voltage was 7V. Then, the applied voltage (VO
The curve of (LTAGE) vs. brightness (OUTPUT LEVEL) was measured.
【0020】その結果を図7に、また、その拡大図を図
8に示す。図7のAはa−Si膜6への書き込みを行う
CRT14が光っていない状態(暗状態)、図7のBは
a−Si膜6への書き込みを行うCRT14が光った状
態(明状態)である。図8のA(暗状態)からLCLV
1の印加電圧が10Vで明るさが約0.1%となる最小
値が得られた。これにより、位相差補償素子17をLC
LV1の前面に設け、この位相差補償素子17へ電圧を
印加することでLCLV1の位相差を補償できたことが
わかる。The results are shown in FIG. 7, and an enlarged view thereof is shown in FIG. 7A is a state in which the CRT 14 for writing to the a-Si film 6 is not illuminated (dark state), and FIG. 7B is a state in which the CRT 14 for writing to the a-Si film 6 is illuminated (bright state). Is. LCLV from A (dark state) in FIG.
When the applied voltage of 1 was 10 V, the minimum value at which the brightness was about 0.1% was obtained. As a result, the phase difference compensation element 17 is
It can be seen that the phase difference of LCLV1 can be compensated by providing it on the front surface of LV1 and applying a voltage to this phase difference compensating element 17.
【0021】この状態(LCLV1の駆動電圧:10
V,位相差補償素子17の駆動電圧:3.37V)で、
a−Si膜6への書き込み(書き込み波長660nm、
平均書き込み光強度約150μW/cm2、書き込み光の波
形EXPで書き込み光強度が1/10になる時間15ミ
リ秒)を60Hzの周期で16パルス行った。そのとき
の明るさ(OUTPUT LEVEL(%))の時間変化(TIME(ms:ミリ
秒))を図9に示す。これより、1回の光パルスで得られ
る投射光の平均明るさは約50%で、書き込みが行わな
い時(暗状態)では投射光の明るさが約0.1%である
ことからコントラストは約500対1で得られることが
わかる。This state (LCLV1 drive voltage: 10
V, the drive voltage of the phase difference compensation element 17: 3.37 V),
Writing to the a-Si film 6 (writing wavelength 660 nm,
16 pulses were performed at a period of 60 Hz with an average writing light intensity of about 150 μW / cm 2 and a writing light waveform EXP of a writing light intensity of 1/10 for 15 milliseconds. FIG. 9 shows the time change (TIME (ms: millisecond)) of the brightness (OUTPUT LEVEL (%)) at that time. As a result, the average brightness of the projected light obtained by one light pulse is about 50%, and the brightness of the projected light is about 0.1% when writing is not performed (in the dark state). It can be seen that it can be obtained at about 500 to 1.
【0022】比較例として、位相差補償素子17を取り
除いたプロジェクタで、実施例と同じ黒が得られる明る
さ約0.1%の電圧9.1VをLCLV1の駆動電圧と
して、実施例と同様に書き込みを行った。図10に比較
例の明るさ(OUTPUT LEVEL)の時間変化(TIME)を示す。こ
れより、1回の光パルスで得られる明るさは約27%、
また、コントラストは約250対1であり、明るさおよ
びコントラストとも実施例の約半分であった。As a comparative example, in a projector from which the phase difference compensating element 17 has been removed, a voltage of 9.1 V with a brightness of about 0.1% that produces the same black as that of the example is used as the driving voltage of the LCLV1 as in the example. I wrote. FIG. 10 shows the time change (TIME) of the brightness (OUTPUT LEVEL) of the comparative example. From this, the brightness obtained by one light pulse is about 27%,
The contrast was about 250: 1, and the brightness and the contrast were about half of those of the example.
【0023】また、比較例のLCLV1の駆動電圧を実
施例と同じ10Vとして応答特性を測定した結果を図1
1に示す。図11より、1回の光パルスで得られる明る
さは約60%で得られたが、書き込みか行われていない
時の黒の明るさが約1%であることから、コントラスト
は約60対1しか得られない。本実施例によれば、誘電
率異方性が負であるネマティック液晶を用いたLCLV
において、偏光ビームスプリッタとLCLVの間に位相
差補償素子を設けることで、明るさを損なわず、高コン
トラストの投射像を得ることが可能なプロジェクタを得
ることができる。また、位相差補償素子の液晶層とし
て、ほぼ水平に配向した正の誘電率異方性を有するネマ
ティック液晶を用いることもできることは明らかであ
る。Further, the result of measuring the response characteristics with the driving voltage of the LCLV1 of the comparative example being 10 V, which is the same as that of the embodiment, is shown in FIG.
It is shown in FIG. From FIG. 11, the brightness obtained by one light pulse was obtained at about 60%, but since the brightness of black when writing is not performed is about 1%, the contrast is about 60%. I only get 1. According to this embodiment, an LCLV using a nematic liquid crystal having a negative dielectric anisotropy is used.
In the above, by providing the phase difference compensating element between the polarization beam splitter and the LCLV, it is possible to obtain a projector capable of obtaining a high-contrast projected image without impairing the brightness. Further, it is apparent that a nematic liquid crystal having a positive dielectric anisotropy oriented substantially horizontally can be used as the liquid crystal layer of the phase difference compensating element.
【0024】さらに、上記実施例では位相差補償素子1
7に電圧を印加して液晶分子を応答させ位相差を生じさ
せたが、予め、液晶分子を所定の角度だけ倒れた液晶素
子を作製することで、位相差補償素子に電圧を印加しな
くても、位相差の補償ができる。また、上記のような位
相差を補償する位相差補償素子として、誘電率異方性が
正のネマティック液晶を用いても良いし、さらに、一軸
性の高分子フィルム、例えばポリスチレンやポリカーボ
ネートフィルム等の位相板又は波長板を用いても良い。Further, in the above embodiment, the phase difference compensating element 1 is used.
Although a voltage was applied to 7 to cause the liquid crystal molecules to respond and a phase difference was generated, it was possible to prepare a liquid crystal element in which the liquid crystal molecules were tilted by a predetermined angle in advance, without applying a voltage to the phase difference compensation element. Also, the phase difference can be compensated. Further, as the phase difference compensating element for compensating the phase difference as described above, a nematic liquid crystal having a positive dielectric anisotropy may be used, and further, a uniaxial polymer film such as polystyrene or polycarbonate film may be used. A phase plate or a wave plate may be used.
【0025】[0025]
【発明の効果】以上述べたように、本発明によれば、偏
光ビームスプリッタと光導電型液晶ライトバルブを有す
る投射型液晶表示装置において、液晶層から透過する反
射光の直線偏光の電気ベクトルの振動面が互いに垂直と
なるように偏光ビームスプリッタと光導電型液晶ライト
バルブとの間に設けられかつ、所定駆動電圧時におい
て、液晶層の液晶による複屈折により生じた位相差を補
償する位相差補償素子を有するので、明るさが維持でき
る高コントラストな投射画像が達成できる。As described above, according to the present invention, in the projection type liquid crystal display device having the polarization beam splitter and the photoconductive type liquid crystal light valve, the linearly polarized electric vector of the reflected light transmitted from the liquid crystal layer is A phase difference that is provided between the polarization beam splitter and the photoconductive liquid crystal light valve so that the oscillating planes are perpendicular to each other, and that compensates for the phase difference caused by the birefringence of the liquid crystal of the liquid crystal layer at a predetermined driving voltage. Since it has a compensating element, it is possible to achieve a high-contrast projected image in which the brightness can be maintained.
【図1】 従来のLCLVの概略断面図である。FIG. 1 is a schematic sectional view of a conventional LCLV.
【図2】 従来のプロジェクタの概略構成図である。FIG. 2 is a schematic configuration diagram of a conventional projector.
【図3】 従来のプロジェクタにおけるLCLVの印加
電圧対明るさの特性を示すグラフである。FIG. 3 is a graph showing characteristics of applied voltage of LCLV vs. brightness in a conventional projector.
【図4】 図3の部分拡大図である。FIG. 4 is a partially enlarged view of FIG.
【図5】 本発明のプロジェクタの概略構成図である。FIG. 5 is a schematic configuration diagram of a projector of the present invention.
【図6】 本発明の位相差補償素子及びLCLVの概略
一部切欠斜視図である。FIG. 6 is a schematic partially cutaway perspective view of a phase difference compensating element and an LCLV of the present invention.
【図7】 本発明のプロジェクタにおけるLCLVの印
加電圧対明るさの特性を示すグラフである。FIG. 7 is a graph showing characteristics of applied voltage vs. brightness of LCLV in the projector of the present invention.
【図8】 図3の部分拡大図である。FIG. 8 is a partially enlarged view of FIG. 3;
【図9】 本発明のプロジェクタを用いて、実際に投射
表示を行ったときの明るさの時間変化を示したグラフで
ある。FIG. 9 is a graph showing a temporal change in brightness when projection display is actually performed using the projector of the present invention.
【図10】 比較例のプロジェクタを用いて、実際に投
射表示を行ったときの明るさの時間変化を示したグラフ
である。FIG. 10 is a graph showing a temporal change in brightness when projection display is actually performed using the projector of the comparative example.
【図11】 比較例のプロジェクタを用いて、実際に投
射表示を行ったときの明るさの時間変化を示したグラフ
である。FIG. 11 is a graph showing a temporal change in brightness when projection display is actually performed using the projector of the comparative example.
1 LCLV 2,3 基板(ガラス板) 4,5 透明導電膜 6 a−Si膜 7 遮光膜 8 誘電体反射膜 9,10 液晶配向膜 11 液晶 12 偏光ビームスプリッタ 13 投射光源 14 CRT 15 投影レンズ 16 スクリーン 17 位相差補償素子 18,19 基板(ガラス) 20,21 透明導電膜 22,23 液晶配向膜 24 液晶 1 LCLV 2,3 Substrate (glass plate) 4,5 Transparent conductive film 6 a-Si film 7 Light-shielding film 8 Dielectric reflective film 9,10 Liquid crystal alignment film 11 Liquid crystal 12 Polarization beam splitter 13 Projection light source 14 CRT 15 Projection lens 16 Screen 17 Phase difference compensator 18, 19 Substrate (glass) 20, 21 Transparent conductive film 22, 23 Liquid crystal alignment film 24 Liquid crystal
Claims (6)
光ビームスプリッタと、 一対の透明基板の対向面に設けられた一対の透明電極間
に前記偏光ビームスプリッタに近い側から順に積層され
た、液晶層、反射膜及び光導電膜を有する光導電型液晶
ライトバルブと、 前記一対の透明電極に駆動電圧を印加する駆動手段と、 水平走査により画像を形成しこの画像を前記光導電膜側
から前記光導電膜に入射する書き込み手段とを含む投射
型液晶表示装置であって、 所定駆動電圧時の前記液晶層から透過する反射光の直線
偏光成分の電気ベクトルの振動面が互いに垂直となるよ
うに前記偏光ビームスプリッタと前記光導電型液晶ライ
トバルブとの間に配置されかつ、前記液晶層の液晶によ
る複屈折により生じた位相差を補償する位相差補償素子
を有することを特徴とする投射型液晶表示装置。1. A polarizing beam splitter, through which a light beam emitted from a light source passes, and a pair of transparent electrodes provided on opposite surfaces of a pair of transparent substrates, which are sequentially stacked from a side closer to the polarizing beam splitter. A photoconductive type liquid crystal light valve having a liquid crystal layer, a reflective film and a photoconductive film, a driving means for applying a drive voltage to the pair of transparent electrodes, an image is formed by horizontal scanning, and the image is formed from the photoconductive film side. A projection type liquid crystal display device including a writing means that is incident on the photoconductive film, wherein vibration planes of electric vectors of linearly polarized light components of reflected light transmitted from the liquid crystal layer at a predetermined drive voltage are perpendicular to each other. A phase difference compensating element disposed between the polarization beam splitter and the photoconductive liquid crystal light valve and compensating for a phase difference caused by birefringence of the liquid crystal of the liquid crystal layer. Projection type liquid crystal display device which is characterized in that.
液晶層の液晶配向膜の液晶配向処理方向と前記光導電型
液晶ライトバルブの液晶配向膜の液晶配向処理方向とに
所望の角度を付与し、かつ、それぞれの液晶配向間の液
晶配向処理方向がなす角度を90度またはその近傍の角
度をなすことを特徴とする請求項1記載の投射型液晶表
示装置。2. The phase difference compensating element has a liquid crystal layer, and has a desired liquid crystal alignment processing direction of a liquid crystal alignment film of the liquid crystal layer and a liquid crystal alignment processing direction of a liquid crystal alignment film of the photoconductive liquid crystal light valve. The projection type liquid crystal display device according to claim 1, wherein an angle is given and an angle formed by the liquid crystal alignment treatment directions between the respective liquid crystal alignments is 90 degrees or in the vicinity thereof.
直に配向した負の誘電率異方性を有するネマティック液
晶を有することを特徴とする請求項2記載の投射型液晶
表示装置。3. The projection type liquid crystal display device according to claim 2, wherein the liquid crystal layer of the phase difference compensating element comprises a nematic liquid crystal having a negative dielectric anisotropy oriented substantially vertically.
平に配向した正の誘電率異方性を有するネマティック液
晶を有することを特徴とする請求項2記載の投射型液晶
表示装置。4. The projection type liquid crystal display device according to claim 2, wherein the liquid crystal layer of the phase difference compensating element comprises a nematic liquid crystal having a positive dielectric anisotropy oriented substantially horizontally.
加して位相差を補償することを特徴とする請求項2記載
の投射型液晶表示装置。5. The projection type liquid crystal display device according to claim 2, wherein a voltage is applied to the liquid crystal layer of the phase difference compensating element to compensate for the phase difference.
であることを特徴とする請求項1記載の投射型液晶表示
装置。6. The projection type liquid crystal display device according to claim 1, wherein the phase difference compensating element is a phase plate or a wave plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6199798A JPH0862564A (en) | 1994-08-24 | 1994-08-24 | Projection type liquid crystal display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6199798A JPH0862564A (en) | 1994-08-24 | 1994-08-24 | Projection type liquid crystal display device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0862564A true JPH0862564A (en) | 1996-03-08 |
Family
ID=16413805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6199798A Pending JPH0862564A (en) | 1994-08-24 | 1994-08-24 | Projection type liquid crystal display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0862564A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6580484B2 (en) | 1997-05-09 | 2003-06-17 | Sharp Kabushiki Kaisha | Laminated phase plate and liquid crystal display comprising the laminated phase plate |
CN1320395C (en) * | 2002-06-24 | 2007-06-06 | 日本胜利株式会社 | Projector with reflective LCD element |
CN118409457A (en) * | 2024-07-02 | 2024-07-30 | 中国工程物理研究院流体物理研究所 | Optically addressed liquid crystal light valve and preparation method thereof |
US12124115B2 (en) | 2019-06-28 | 2024-10-22 | Essilor International | Optical article |
-
1994
- 1994-08-24 JP JP6199798A patent/JPH0862564A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6580484B2 (en) | 1997-05-09 | 2003-06-17 | Sharp Kabushiki Kaisha | Laminated phase plate and liquid crystal display comprising the laminated phase plate |
CN1320395C (en) * | 2002-06-24 | 2007-06-06 | 日本胜利株式会社 | Projector with reflective LCD element |
US12124115B2 (en) | 2019-06-28 | 2024-10-22 | Essilor International | Optical article |
CN118409457A (en) * | 2024-07-02 | 2024-07-30 | 中国工程物理研究院流体物理研究所 | Optically addressed liquid crystal light valve and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10215854B2 (en) | Distance measuring module comprising a variable optical attenuation unit including an LC cell | |
KR100239266B1 (en) | Optical compensator for liquid crystal display | |
JP4805130B2 (en) | Reflective liquid crystal display element and reflective liquid crystal projector | |
JPH0449929B2 (en) | ||
JPH05203915A (en) | Display device | |
EP0448124A2 (en) | Optical modulation device and display apparatus | |
JPH1164852A (en) | Projection type liquid crystal display | |
JP2005352068A (en) | Liquid crystal display device | |
JPH08292413A (en) | Liquid crystal display | |
US6429915B1 (en) | Tilted polarizers for liquid crystal displays | |
JPH0862564A (en) | Projection type liquid crystal display device | |
JPH06301006A (en) | Color liquid crystal display device | |
JPH0498223A (en) | Liquid crystal element | |
Hong et al. | Novel nematic liquid crystal device associated with hybrid alignment controlled by fringe field | |
JPH06281927A (en) | Liquid crystal display device | |
GB2326245A (en) | Liquid crystal device | |
JPH07244280A (en) | Twisted nematic type liquid crystal display element | |
JP2755428B2 (en) | Reflective liquid crystal display | |
KR100210688B1 (en) | Photo switch using lc cell | |
JPS5812164Y2 (en) | Devices with liquid crystal cells including nematic liquid crystals | |
US6650383B1 (en) | Band-shifted liquid crystal structure for projection of images without spectral distortion | |
KR920002493Y1 (en) | B/w liquid crystal display device | |
JP2820163B2 (en) | Cell thickness measurement device for liquid crystal cells | |
JPH0364850B2 (en) | ||
EP0600541A1 (en) | Spatial light modulator |