[go: up one dir, main page]

JP2755428B2 - Reflective liquid crystal display - Google Patents

Reflective liquid crystal display

Info

Publication number
JP2755428B2
JP2755428B2 JP1129495A JP12949589A JP2755428B2 JP 2755428 B2 JP2755428 B2 JP 2755428B2 JP 1129495 A JP1129495 A JP 1129495A JP 12949589 A JP12949589 A JP 12949589A JP 2755428 B2 JP2755428 B2 JP 2755428B2
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
substrate
plane
substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1129495A
Other languages
Japanese (ja)
Other versions
JPH02308132A (en
Inventor
清吾 富樫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHICHIZUN TOKEI KK
Original Assignee
SHICHIZUN TOKEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHICHIZUN TOKEI KK filed Critical SHICHIZUN TOKEI KK
Priority to JP1129495A priority Critical patent/JP2755428B2/en
Publication of JPH02308132A publication Critical patent/JPH02308132A/en
Application granted granted Critical
Publication of JP2755428B2 publication Critical patent/JP2755428B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は斜め入射光学系に適した反射型の液晶表示素
子に関する。
Description: TECHNICAL FIELD The present invention relates to a reflection type liquid crystal display element suitable for an oblique incidence optical system.

液晶表示素子は低消費電力のフラットパネルディスプ
レイやプロジェクション用のライトバルブとして広く応
用されている。高密度のディスプレイの場合アクティブ
マトリクスの液晶表示素子が駆動能力の面で好ましいが
透過型では素子面積が開口率を制限してしまう。しかし
素子上に反射電極を形成した反射型では十分な開口率が
とれ高品位の高密度ディスプレイが可能である。特に光
の経路が特定出来るプロジェクション用やビュウファイ
ンダー用のライトバルブでは反射型の応用が容易であ
る。中でも斜め入射光学系を用いる反射型は構成が簡素
になるという長所を有する.本発明は斜め入射光学系に
適した新しいモードの反射型の液晶表示素子に関する。
Liquid crystal display devices are widely applied as low power consumption flat panel displays and light valves for projection. In the case of a high-density display, an active matrix liquid crystal display element is preferable in terms of driving capability, but in a transmission type, the element area limits the aperture ratio. However, in the reflection type in which a reflection electrode is formed on an element, a sufficient aperture ratio can be obtained, and a high-quality, high-density display is possible. In particular, a reflection-type light valve for a projection or view finder that can specify the path of light can be easily applied to a reflection type. Above all, the reflection type using the oblique incidence optical system has the advantage that the configuration is simple. The present invention relates to a new mode reflection type liquid crystal display device suitable for an oblique incidence optical system.

〔従来技術とその課題〕[Conventional technology and its problems]

従来の反射型液晶表示素子は一般的な透過型の表示モ
ードで反射層前後で2度通過させたものが主流である。
具体的には腕時計、電卓に用いられているTN(ツイステ
ッドネマティック)モードやOA端末に応用されているST
N(スーパーツイステッドネマティック)モードが反射
型液晶表示素子の代表例である。
In the conventional reflection type liquid crystal display device, the mainstream is one in which light is passed twice before and after the reflection layer in a general transmission type display mode.
Specifically, TN (twisted nematic) mode used for watches and calculators and ST applied to OA terminals
An N (super twisted nematic) mode is a typical example of a reflective liquid crystal display device.

このような従来例の第一の欠点は反射層を液晶層を挟
む基板の外側に配置せざるを得ない点にある。これは前
述のモードが液晶層を偏光板で両側から挟まねばならな
い事と、ガラス基板の液晶層側に偏光板を形成できない
事が原因である。
A first drawback of such a conventional example is that the reflection layer must be disposed outside the substrate with the liquid crystal layer interposed therebetween. This is because the above-described mode requires that the liquid crystal layer be sandwiched between the polarizing plates from both sides, and that the polarizing plate cannot be formed on the liquid crystal layer side of the glass substrate.

先に述べたようにアクティブマトリクス方式の液晶表
示素子に於て、スイッチング素子の上に反射層を形成し
て開口率を確保する場合、反射層は基板の液晶層側に配
置されるため当然偏光板を液晶層と反射層の間に入れる
事は出来ない。反射層と液晶層との間の偏光板を必要と
しないモードを直接反射型と呼ぶと、前述の例ではこの
直接反射型が実現できない。
As described above, in an active matrix type liquid crystal display element, when a reflective layer is formed on a switching element to secure an aperture ratio, the reflective layer is disposed on the liquid crystal layer side of the substrate, so that it is naturally polarized light. The plate cannot be inserted between the liquid crystal layer and the reflective layer. If a mode that does not require a polarizing plate between the reflective layer and the liquid crystal layer is called a direct reflection type, the direct reflection type cannot be realized in the above-described example.

従来例では直接反射型は存在する。ゲストホストモー
ドやDS(動的散乱)モードを用いた反射型液晶表示素子
は1979-80年頃から報告されている。しかしコントラス
ト、安定性等が十分でなく現在では実用化されていな
い。
In the conventional example, there is a direct reflection type. Reflective liquid crystal display devices using the guest-host mode or the DS (dynamic scattering) mode have been reported since 1979-80. However, the contrast, stability and the like are not sufficient and have not been put to practical use at present.

従来例の第2の欠点は斜め入射光学系での表示特性が
十分でない点にある。
A second disadvantage of the conventional example is that display characteristics in an oblique incidence optical system are not sufficient.

TNモードやSTNモードは基本的に垂直入射系付近で最
も高い表示品質が得られる。ところが垂直入射系では偏
光分離プリズム等の高価な光学系がないと効率の良い表
示が難しい。より簡素なシステムとするには斜め入射光
学系が必要となる。
In the TN mode and the STN mode, basically, the highest display quality can be obtained near the vertical incidence system. However, in a vertical incidence system, efficient display is difficult without an expensive optical system such as a polarization splitting prism. To make the system simpler, an oblique incidence optical system is required.

本発明は斜め入射系であり且つ直接反射型の新規なモ
ードの液晶表示素子の提供を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a novel mode liquid crystal display device of an oblique incidence type and a direct reflection type.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の反射型液晶表示素子は電極及び配向層の設け
られた2枚の基板と、該基板間に挟持された液晶層と、
反射層を有し、基板面内をX−Y平面、基板に垂直な方
向をZ方向とすると、該反射型液晶表示素子に入射する
入射光は入射方向がX−Z平面内にあってZ方向に対し
て傾いており偏光軸が基板に対し平行なY方向である光
であり、少なくとも入射側の基極側の液晶分子の配向方
向はほぼZ−Y面にあり両基板に印加される電圧の程度
によってY方向に対する角度が変調する事により斜め入
射系であり且つ直接反射型の可能な新規なモードを提供
する。
The reflection type liquid crystal display device of the present invention includes two substrates provided with electrodes and an alignment layer, a liquid crystal layer sandwiched between the substrates,
Assuming that the substrate has a reflective layer, the plane of the substrate is an XY plane, and the direction perpendicular to the substrate is the Z direction, the incident light incident on the reflective liquid crystal display element is in the XZ plane, This is light that is tilted with respect to the direction and whose polarization axis is in the Y direction parallel to the substrate. At least the orientation direction of the liquid crystal molecules on the base electrode side on the incident side is substantially in the ZY plane and is applied to both substrates. By modulating the angle with respect to the Y direction in accordance with the degree of the voltage, a novel mode of an oblique incidence type and a direct reflection type is provided.

〔実施例〕〔Example〕

以下、実施例に基づき本発明を説明する。第1図は本
発明の実施例の反射型液晶表示素子の電圧無印加状態で
の模式断面図である。
Hereinafter, the present invention will be described based on examples. FIG. 1 is a schematic sectional view of a reflective liquid crystal display element according to an embodiment of the present invention in a state where no voltage is applied.

本実施例の反射型液晶表示素子は電極(透明電極3と
反射電極4)及び配向層5、6の設けられた2枚の基板
(上基板1と下基板2)と、該基板間1、2に挟持され
た液晶層7と、反射層(本実施例では反射電極4が反射
層を兼ねる)から構成される。
The reflection type liquid crystal display element of this embodiment includes two substrates (an upper substrate 1 and a lower substrate 2) provided with electrodes (a transparent electrode 3 and a reflection electrode 4) and alignment layers 5 and 6, and a substrate 1 between the substrates. 2 and a reflective layer (in this embodiment, the reflective electrode 4 also serves as a reflective layer).

ここで基板面内をX−Y平面、基板に垂直な方向をZ
方向とした時、第1図(a)はX−Z面での断面図、第
1図(b)はY−Z面での断面図である。
Here, the plane within the substrate is an XY plane, and the direction perpendicular to the substrate is Z
FIG. 1A is a cross-sectional view along the XZ plane, and FIG. 1B is a cross-sectional view along the YZ plane.

第2図(a)、(b)は電圧印加状態でのX−Z面で
の断面図、及びY−Z面での断面図である。
FIGS. 2A and 2B are a cross-sectional view on the XZ plane and a cross-sectional view on the YZ plane in a voltage applied state.

第1図の電圧無印加状態に於て、該反射型液晶表示素
子に入射する入射光11の入射方向はX−Z平面内にあっ
てZ方向に対して傾いている。又、偏光軸は基板に対し
平行なY方向である。
In the state where no voltage is applied in FIG. 1, the incident direction of the incident light 11 incident on the reflective liquid crystal display element is in the XZ plane and is inclined with respect to the Z direction. The polarization axis is in the Y direction parallel to the substrate.

少なくとも入射側の基板側の液晶分子16の配向方向は
ほぼZ−Y面にある。更に本実施例では両基板1、2の
間で液晶分子の電圧無印加での配向方向はほぼ平行であ
り一様にZ−Y平面にある。
At least the alignment direction of the liquid crystal molecules 16 on the substrate side on the incident side is substantially on the ZY plane. Further, in the present embodiment, the alignment direction of the liquid crystal molecules between the substrates 1 and 2 when no voltage is applied is substantially parallel and uniformly on the ZY plane.

このような電圧無印加状態では、斜め入射光の偏光軸
は常に液晶分子の配列方向に対しほぼ一定の角度で入り
入射偏光は一定程度回転され出射される。
In such a state where no voltage is applied, the polarization axis of the obliquely incident light always enters at an almost constant angle with respect to the alignment direction of the liquid crystal molecules, and the incident polarized light is rotated by a certain degree and emitted.

特に液晶分子の配列方向16のY方向に対する角度がお
およそ10度以内の場合には斜め入射光の偏光軸は常に液
晶分子の配列方向にほぼ平行であり入射偏光は殆ど回転
されずそのまま12のように出射される。
In particular, when the angle of the arrangement direction 16 of the liquid crystal molecules with respect to the Y direction is within about 10 degrees, the polarization axis of the obliquely incident light is always almost parallel to the arrangement direction of the liquid crystal molecules, and the incident polarized light is hardly rotated and is like 12 as it is. Is emitted.

第2図の電圧印加状態に於て、少なくとも入射側の基
板側の液晶分子17の配向方向15はほぼZ−Y面にあり且
つ基板平面のY方向に対し傾いている。本実施例では両
基板1、2の間で液晶分子の電圧無印加での配向方向は
ほぼ平行であるため、電圧印加状態でも両基板間でもほ
ぼZ−Y平面にあり、中心部ではY方向に対し角度θ傾
いている。
In the voltage application state shown in FIG. 2, the orientation direction 15 of the liquid crystal molecules 17 on at least the incident side of the substrate is substantially on the ZY plane and is inclined with respect to the Y direction of the substrate plane. In this embodiment, since the alignment direction of the liquid crystal molecules between the two substrates 1 and 2 when no voltage is applied is almost parallel, the liquid crystal molecules are almost in the ZY plane both in the voltage applied state and between the two substrates. With respect to the angle θ.

このような電圧印加状態では、斜め入射光13の偏光軸
は常に液晶分子の配列方向に対し一定の角度を有し、入
射偏光13は楕円偏光となり楕円主軸は回転され14のよう
に出射される。
In such a voltage applied state, the polarization axis of the obliquely incident light 13 always has a fixed angle with respect to the alignment direction of the liquid crystal molecules, the incident polarized light 13 becomes elliptically polarized light, and the principal axis of the ellipse is rotated and emitted like 14. .

特に電圧印加状態の液晶分子のY方向に対する角度が
約45度附近の場合には液晶層の複屈折量(Δn×d)を
適当に選ぶと出射偏光は入射偏光に対しほぼ直交させる
事が可能である。
In particular, when the angle of the liquid crystal molecules with respect to the Y direction in the voltage applied state is about 45 degrees, the output polarized light can be made almost orthogonal to the incident polarized light by appropriately selecting the birefringence amount (Δnxd) of the liquid crystal layer. It is.

第4図に本発明の反射型液晶表示素子の電圧V対変調
反射強度Rの関係を示す。入射偏光の偏光軸と出射側の
偏光子の偏光軸は直交させてある。電圧印加状態では第
1図で説明したように、入射光と出射光の偏光軸は光線
軸に対して平行なため偏光子を経た後の反射光強度は第
4図42のようにほぼ0%となる。この状態は波長分散が
少なく無彩色の高品位の黒表示が得られる。一方電圧印
加状態で、特に液晶分子のY方向に対する角度が約45度
附近の場合には液晶層の複屈折量(Δn×d)を適当に
設計すると出射偏光は入射偏光に対しほぼ直交となり、
偏光子をほとんど通過する。よって偏光子通過後の反射
光強度は43のように非常に高くする事が可能である。こ
の状態の色分散は黒状態程は良くないが、白は黒程色調
に敏感ではないため、実用上は十分良好な白表示が得ら
れる。
FIG. 4 shows the relationship between the voltage V and the modulation reflection intensity R of the reflection type liquid crystal display device of the present invention. The polarization axis of the incident polarized light is perpendicular to the polarization axis of the output polarizer. In the voltage applied state, as described with reference to FIG. 1, since the polarization axes of the incident light and the outgoing light are parallel to the ray axis, the reflected light intensity after passing through the polarizer is almost 0% as shown in FIG. Becomes In this state, an achromatic high-quality black display with little wavelength dispersion can be obtained. On the other hand, when the voltage is applied, particularly when the angle of the liquid crystal molecules with respect to the Y direction is about 45 degrees, if the birefringence amount (Δn × d) of the liquid crystal layer is appropriately designed, the output polarized light becomes almost orthogonal to the incident polarized light.
Mostly pass through the polarizer. Therefore, the intensity of the reflected light after passing through the polarizer can be made extremely high as indicated by 43. The color dispersion in this state is not as good as the black state, but white is not as sensitive to the color tone as black, so that a practically satisfactory white display can be obtained.

第3図は第1図、第2図の実施例の反射型液晶表示素
子31を用いたプロジェクションディスプレーの一例であ
る。偏光子35で基板面に平行に偏光した入射光33は反射
型液晶表示素子31で変調され、一方の偏光のみが偏光子
36で取り出された変調光34としてスクリーン32に投影さ
れる。本実施例では斜め入射光学系が可能なため高価な
偏光ビームスプリッターや光利用効率の悪いビームスプ
リッターが不用となっている。
FIG. 3 shows an example of a projection display using the reflection type liquid crystal display element 31 of the embodiment shown in FIGS. The incident light 33 polarized parallel to the substrate surface by the polarizer 35 is modulated by the reflective liquid crystal display element 31, and only one polarized light is polarized.
The modulated light 34 extracted at 36 is projected on the screen 32. In this embodiment, since an oblique incidence optical system is possible, an expensive polarizing beam splitter or a beam splitter having poor light use efficiency is not required.

第5図は本発明の他の実施例の反射型液晶表示素子の
電圧無印加状態での断面図である。
FIG. 5 is a sectional view of a reflection type liquid crystal display device according to another embodiment of the present invention in a state where no voltage is applied.

第1図、第2図の実施例では液晶分子の配向方向は電
圧無印加状態で両基板の間でほぼ平行であったが、本実
施例では液晶分子の配向方向は電圧無印加状態で両基板
の間でX−Y平面内でツイストしている。しかし少なく
とも入射側の基板側の液晶分子の配向方向が第1図、第
2図の実施例と同様ほぼZ−Y面にあれば、ツイスト構
造の旋光性によって同様な効果が得られる。ツイスト構
造を用いた場合の長所は電圧−反透光強度の関係の急峻
性が向上し、コントラストや駆動電圧が改善される点に
ある。
In the embodiment shown in FIGS. 1 and 2, the alignment direction of the liquid crystal molecules was substantially parallel between the two substrates when no voltage was applied, but in this embodiment, the alignment direction of the liquid crystal molecules was both parallel when no voltage was applied. It is twisted in the XY plane between the substrates. However, if the orientation direction of the liquid crystal molecules on at least the substrate side on the incident side is substantially in the ZY plane as in the embodiment of FIGS. 1 and 2, a similar effect can be obtained by the optical rotation of the twisted structure. The advantage of using the twisted structure is that the steepness of the relationship between the voltage and the anti-light transmission is improved, and the contrast and the driving voltage are improved.

第6図は本発明の他の実施例である。第1図、第2図
の実施例との違いは前面に位相補正板61が設けられてい
る点にある。この位相補正板61は延伸した一軸性の復屈
折フィルムか、パラレルあるいはツイスト配向した液晶
セルである。位相補正板61を入れると液晶セルの最適復
屈折量Δn×dをずらす事が可能となり、液晶層厚や材
料の設計自由度が向上する。
FIG. 6 shows another embodiment of the present invention. 1 and 2 is that a phase correction plate 61 is provided on the front surface. The phase correction plate 61 is a stretched uniaxial birefringent film or a liquid crystal cell in parallel or twist alignment. When the phase correction plate 61 is inserted, the optimum amount of refraction Δn × d of the liquid crystal cell can be shifted, and the degree of freedom in designing the thickness of the liquid crystal layer and the material is improved.

実施例ではプロジェクターの例を示したが、他の反射
型液晶表示素子の応用範囲でも本発明は有効である。例
えばビュウファインダー等に応用すれば極めて高品位、
高密度の製品が実現可能となる。
In the embodiment, the example of the projector has been described, but the present invention is also effective in the application range of other reflective liquid crystal display elements. For example, if applied to a viewfinder, etc., extremely high quality,
High-density products can be realized.

また駆動方法もアクティブマトリクス駆動のみなら
ず、単純マトリクス駆動でも可能である。
The driving method is not limited to active matrix driving, and simple matrix driving is also possible.

〔発明の効果〕〔The invention's effect〕

以上の実施例で明らかな如く、本発明は従来にない新
規な反射型液晶表示素子を提供する。本発明では反射層
を液晶セル内に内蔵でき、構成が簡素化出来るのみなら
ず、高密度のアクティブマトリクス駆動等の適用が可能
となる。使用する光学系も簡素であり、本発明を用いれ
ば、高品位、高密度の反射型ディスプレーを簡単な構成
で実現できる。
As is clear from the above embodiments, the present invention provides a novel reflection type liquid crystal display device which has not been conventionally provided. According to the present invention, the reflection layer can be built in the liquid crystal cell, so that not only the configuration can be simplified, but also high-density active matrix driving and the like can be applied. The optical system to be used is simple, and a high-quality, high-density reflective display can be realized with a simple configuration by using the present invention.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)、(b)、第2図(a)、(b)、第5
図、第6図は本発明の反射型液晶表示素子の実施例を示
す模式断面図、第3図は本発明の反射型液晶表示素子を
用いたプロジェクターの実施例における配置を示す説明
図、第4図は第1図、第2図の実施例に用いた反射型液
晶表示素子の電圧対反射強度特性を示すグラフである。 1……上基板、2……下基板、3……透明電極、4……
反射電極、5、6……配向層、7……液晶層。
1 (a), (b), 2 (a), (b), 5
FIG. 6 is a schematic cross-sectional view showing an embodiment of the reflective liquid crystal display device of the present invention. FIG. 3 is an explanatory diagram showing an arrangement of the projector using the reflective liquid crystal display device of the present invention in the embodiment. FIG. 4 is a graph showing the voltage versus reflection intensity characteristics of the reflection type liquid crystal display device used in the embodiment of FIGS. 1 ... upper substrate, 2 ... lower substrate, 3 ... transparent electrode, 4 ...
Reflecting electrodes, 5, 6,..., Alignment layers, 7,.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電極及び配向層の設けられた2枚の基板
と、基板間に挟持された液晶層と反射層と、入射光側お
よび反射光側に設けられた偏光子とを有する反射型液晶
表示素子に於て、 基板面内をX−Y平面、基板に垂直な方向をZ方向とす
るとき、反射型液晶表示素子に入射する入射光は入射方
向がX−Z平面内にあってZ方向に対して傾いており偏
光軸が基板に対し平行なY方向である直線偏光であり、
少なくとも入射側の基板側の液晶分子の配向方向はほぼ
Z−Y面にあり両基板に印加される電圧の程度によって
Y方向に対する角度が変調される事を特徴とする反射型
液晶表示素子。
1. A reflective type comprising: two substrates provided with electrodes and an alignment layer; a liquid crystal layer and a reflective layer sandwiched between the substrates; and a polarizer provided on an incident light side and a reflected light side. In a liquid crystal display device, when the plane in the substrate is an XY plane and the direction perpendicular to the substrate is a Z direction, the incident light incident on the reflective liquid crystal display element is in the XZ plane. Linearly polarized light that is inclined with respect to the Z direction and whose polarization axis is in the Y direction parallel to the substrate,
A reflective liquid crystal display device characterized in that at least the orientation direction of the liquid crystal molecules on the substrate side on the incident side is substantially in the ZY plane, and the angle with respect to the Y direction is modulated by the degree of the voltage applied to both substrates.
【請求項2】両基板に印加される電圧によって変調され
る液晶分子の配列方向は、Y方向に対する角度がおおよ
そ10度以下の状態と、約45度付近の状態との間で変調さ
れる事を特徴とする請求項1記載の反射型液晶表示素
子。
2. The arrangement direction of liquid crystal molecules modulated by a voltage applied to both substrates is modulated between a state in which the angle with respect to the Y direction is about 10 degrees or less and a state in which the angle is about 45 degrees. The reflective liquid crystal display device according to claim 1, wherein:
【請求項3】液晶分子の配向方向は電圧無印加状態で両
基板の間でほぼ平行であることを特徴とする請求項1記
載の反射型液晶表示素子。
3. The reflective liquid crystal display device according to claim 1, wherein the orientation direction of the liquid crystal molecules is substantially parallel between the two substrates when no voltage is applied.
【請求項4】液晶分子の配向方向は電圧無印加状態で両
基板の間でX−Y平面内でツイストしている事を特徴と
する請求項1記載の反射型液晶表示素子。
4. The reflective liquid crystal display device according to claim 1, wherein the alignment direction of the liquid crystal molecules is twisted between the two substrates in the XY plane in a state where no voltage is applied.
【請求項5】入射側基板の入射光側或は出射光側には位
相補償板が配置されてなる請求項1記載の反射型液晶表
示素子。
5. The reflection type liquid crystal display device according to claim 1, wherein a phase compensator is disposed on an incident light side or an outgoing light side of the incident side substrate.
JP1129495A 1989-05-23 1989-05-23 Reflective liquid crystal display Expired - Fee Related JP2755428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1129495A JP2755428B2 (en) 1989-05-23 1989-05-23 Reflective liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1129495A JP2755428B2 (en) 1989-05-23 1989-05-23 Reflective liquid crystal display

Publications (2)

Publication Number Publication Date
JPH02308132A JPH02308132A (en) 1990-12-21
JP2755428B2 true JP2755428B2 (en) 1998-05-20

Family

ID=15010893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1129495A Expired - Fee Related JP2755428B2 (en) 1989-05-23 1989-05-23 Reflective liquid crystal display

Country Status (1)

Country Link
JP (1) JP2755428B2 (en)

Also Published As

Publication number Publication date
JPH02308132A (en) 1990-12-21

Similar Documents

Publication Publication Date Title
KR100239266B1 (en) Optical compensator for liquid crystal display
US5933207A (en) Reflective-type liquid crystal displays using mixed-mode twist nematic cells
JP3410663B2 (en) Liquid crystal display
JP3289386B2 (en) Color liquid crystal display
US6429915B1 (en) Tilted polarizers for liquid crystal displays
JPH04218025A (en) liquid crystal electro-optical element
JP2755428B2 (en) Reflective liquid crystal display
JP3022477B2 (en) Reflective liquid crystal display
JP3289392B2 (en) Color liquid crystal display
JPH06281927A (en) Liquid crystal display device
JPH03134622A (en) liquid crystal electro-optical element
JP3081615B2 (en) Liquid crystal electro-optical device
JP3090020B2 (en) Liquid crystal display device
JPH11109336A (en) Liquid crystal display
JP3289391B2 (en) Color liquid crystal display
JPH03243919A (en) Liquid crystal electrooptical element
JP3289370B2 (en) Color liquid crystal display
JPH03276122A (en) Projection type liquid crystal display device
JPH095702A (en) Color liquid crystal display
KR100816337B1 (en) Liquid crystal display
JP3289368B2 (en) Color liquid crystal display
JP2933857B2 (en) Color liquid crystal display panel
JPH11174497A (en) Color liquid crystal display
JP2003186014A (en) Liquid crystal display device
JPH07318968A (en) Color liquid crystal display

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees