JPH0862112A - Method for testing fatigue crack propagation of composite material - Google Patents
Method for testing fatigue crack propagation of composite materialInfo
- Publication number
- JPH0862112A JPH0862112A JP33442194A JP33442194A JPH0862112A JP H0862112 A JPH0862112 A JP H0862112A JP 33442194 A JP33442194 A JP 33442194A JP 33442194 A JP33442194 A JP 33442194A JP H0862112 A JPH0862112 A JP H0862112A
- Authority
- JP
- Japan
- Prior art keywords
- crack
- fatigue
- test piece
- length
- composite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 37
- 239000002131 composite material Substances 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title abstract description 9
- 238000009661 fatigue test Methods 0.000 claims abstract description 40
- 239000000463 material Substances 0.000 claims abstract description 12
- 238000010998 test method Methods 0.000 claims description 6
- 238000004088 simulation Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 5
- 102100040287 GTP cyclohydrolase 1 feedback regulatory protein Human genes 0.000 description 3
- 101710185324 GTP cyclohydrolase 1 feedback regulatory protein Proteins 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000012783 reinforcing fiber Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000011179 visual inspection Methods 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は複合材の疲労き裂伝播試
験方法に関する。FIELD OF THE INVENTION The present invention relates to a method for fatigue crack propagation testing of composite materials.
【0002】[0002]
【従来の技術】複合材は樹脂に硝子繊維(GFRP)や
炭素繊維(CFRP)等の強化繊維を織込んでいるため
に、疲労き裂は金属のような等方性材料とは異なり、図
7説明図に示すように直進せずにジグザグに進展した
り、強化繊維と樹脂の広い範囲にダメージが広がってき
裂の先端位置を明確に判定することが難しい。しかして
このような複合材の疲労き裂伝播試験では、1cycle 当
たりのき裂伝播速度:da/dN と応力拡大係数範囲:
ΔK=ΔS√πa・f(ΔS:作用応力範囲,a:き裂
長さ,f:補正係数)を求めるために、き裂長さ:aを
精度良く計測する必要があるが、き裂の測長は専ら目視
によっているので上記のようにき裂先端位置を明確に判
定することが難しく、また疲労き裂先端部の特異性から
金属材料等に使われるクラックゲージを利用した自動計
測は不可能であり、き裂長さの計測精度が低い。従って
精度の高い疲労き裂伝播特性データ(き裂伝播速度:d
a/dN mm/cycleと応力拡大係数範囲:ΔK Kgf/mm3/2
の関係を表わす Paris則da/dN =C・ΔKmm)が得
られない。2. Description of the Related Art Since a composite material is woven with a reinforcing fiber such as glass fiber (GFRP) or carbon fiber (CFRP) in a resin, fatigue cracks are different from isotropic materials such as metal. 7 As shown in the explanatory diagram, it progresses in a zigzag manner without going straight, or damage spreads over a wide range of the reinforcing fiber and resin, and it is difficult to clearly determine the tip position of the crack. However, in fatigue crack propagation tests of such composites, the crack propagation rate per cycle: da / dN and the stress intensity factor range:
In order to obtain ΔK = ΔS√πa · f (ΔS: working stress range, a: crack length, f: correction coefficient), it is necessary to accurately measure the crack length: a. Since it is exclusively by visual observation, it is difficult to determine the crack tip position clearly as described above, and due to the peculiarity of the fatigue crack tip, automatic measurement using a crack gauge used for metal materials is impossible. Yes, the crack length measurement accuracy is low. Therefore, highly accurate fatigue crack propagation characteristic data (crack propagation velocity: d
a / dN mm / cycle and stress intensity factor range: ΔK Kgf / mm 3/2
The Paris rule da / dN = C · ΔK mm ) that expresses the above relationship cannot be obtained.
【0003】[0003]
【発明が解決しようとする課題】本発明は、このような
事情に鑑みて提案されたもので、き裂先端位置が明確に
判定できない複合材の疲労き裂長さを正確に評価するこ
とができる複合材の疲労き裂伝播試験方法を提供するこ
とを目的とする。SUMMARY OF THE INVENTION The present invention has been proposed in view of the above circumstances, and can accurately evaluate the fatigue crack length of a composite material whose crack tip position cannot be clearly determined. An object is to provide a fatigue crack propagation test method for composite materials.
【0004】[0004]
【課題を解決するための手段】そのために本発明は、き
裂先端位置が明確に判定できない複合材の疲労き裂伝播
試験において、予め疲労試験片と同一材の模擬試験片で
切欠き長さとひずみの関係を求めておき、疲労試験片で
得られたひずみからき裂長さを推定することにより疲労
き裂長さを正確に評価することと、き裂先端位置が明確
に判定できない複合材の疲労き裂伝播試験において、予
め疲労試験片と同一材の模擬試験片で切欠き長さとき裂
開口量の関係を求めておき、疲労試験片で得られたき裂
開口量からき裂長さを推定することにより疲労き裂長さ
を正確に評価することとを、それぞれ特徴とする。Therefore, according to the present invention, in a fatigue crack propagation test of a composite material in which a crack tip position cannot be clearly determined, a notch length and a notch length are previously prepared in a simulated test piece of the same material as the fatigue test piece. Accurately evaluate the fatigue crack length by estimating the crack length from the strain obtained from the fatigue test piece, and the fatigue resistance of the composite material where the crack tip position cannot be clearly determined. In the crack propagation test, the relationship between the notch length and the crack opening amount was obtained in advance with a simulated test piece of the same material as the fatigue test piece, and the crack length was estimated from the crack opening amount obtained from the fatigue test piece. Accurate evaluation of fatigue crack length is characterized by each.
【0005】[0005]
【作用】本発明複合材の疲労き裂伝播試験方法の第1の
発明においては、模擬疲労試験片の切欠きの背面(切欠
き長さとひずみ変化の相関が最も得られる位置)にスト
レインゲージを貼付し、初期状態から段階的に先端が鋭
い切欠きを加工して行き切欠き全域それぞれの切欠き長
さにおいて実際の疲労試験荷重を負荷した時のストレイ
ンゲージ出力すなわちひずみを計測し、切欠き長さとひ
ずみに関するマスターカーブを作成しておく。そして実
際の疲労試験片にも模擬試験片と同一位置にストレイン
ゲージを貼付しておき疲労試験中のひずみを断続的に計
測し、マスターカーブからき裂長さを求める。In the first aspect of the fatigue crack propagation test method for a composite material of the present invention, a strain gauge is provided on the back surface of the notch of the simulated fatigue test piece (the position where the correlation between the notch length and the strain change is most obtained). After cutting, the notch with a sharp tip is machined step by step from the initial state, and the strain gauge output, that is, the strain is measured when the actual fatigue test load is applied at each notch length in each notch area, and the notch Create a master curve for length and strain. Then, a strain gauge is attached to the actual fatigue test piece at the same position as the simulated test piece, the strain during the fatigue test is intermittently measured, and the crack length is obtained from the master curve.
【0006】また第2の発明においては、模擬疲労試験
片の切欠き部にき裂開口量を計測する変位計を装着し、
初期状態から段階的に先端が鋭い切欠きを加工して行き
実際の疲労試験荷重を負荷して開口量を計測して切欠き
長さと開口量に関するマスターカーブを作成しておく。
そして実際の疲労試験片にも模擬試験片と同一位置に開
口量を計測する変位計を装着しておき疲労試験中の開口
量を計測し、マスターカーブからき裂長さを求める。In the second aspect of the invention, a displacement gauge for measuring the crack opening amount is attached to the notch of the simulated fatigue test piece,
A notch with a sharp tip is processed stepwise from the initial state, and an actual fatigue test load is applied to measure the opening amount to create a master curve for the notch length and the opening amount.
The actual fatigue test piece is also equipped with a displacement meter that measures the opening amount at the same position as the simulated test piece, the opening amount is measured during the fatigue test, and the crack length is obtained from the master curve.
【0007】[0007]
【実施例】本発明複合材の疲労き裂伝播試験方法の実施
例を図面について説明すると、図1は第1の発明の模擬
試験片の平面図、図2は切欠き長さ又はき裂長さとひず
みの関係の線図、図3は疲労試験片の平面図である。図
4は第2の発明の模擬試験片の平面図、図5は切欠き長
さ又はき裂長さと開口量の関係の線図、図6は疲労試験
片の平面図である。まず第1の発明の図1,図3におい
て、模擬試験片1,疲労試験片11は硝子繊維強化型の
GFRP材で、通常コンパクトテンションタイプ試験片
と呼ばれるものである。図1に示すように、模擬試験片
1の初期切欠き2の背面にストレインゲージ3を貼付し
ておき、切欠き長さa0 からa1 ,2,・・・7 と先端
が鋭い切欠きを加工してそれぞれの切欠き長さaにおい
て実際の疲労試験荷重Pを負荷し、図2に示すような切
欠き長さaとひずみεの関係を求めた。そして図3に示
すように、実際の疲労試験片11にも模擬試験片1と同
一位置にストレインゲージ13を貼付しておき、疲労き
裂12が発生する疲労試験中のひずみεを断続的に計測
し、図2矢印で示すように、マスターカーブからき裂長
さを求めた。なお図2には本発明の有効性を確認するた
めに疲労き裂を従来の目視法により計測したデータをプ
ロットしたところ、4つの疲労試験データ共にマスター
カーブを中心にばらついており本方法が有効であること
を確認した。プロット点を細かく見るとマスターカーブ
よりやや下方に偏っており、従来の目視法では若干き裂
を長く読んでいた傾向があることが判る。EXAMPLE An example of a fatigue crack propagation test method for a composite material of the present invention will be described with reference to the drawings. FIG. 1 is a plan view of a simulated test piece of the first invention, and FIG. 2 is a notch length or a crack length. 3 is a plan view of the fatigue test piece. FIG. 4 is a plan view of a simulated test piece of the second invention, FIG. 5 is a diagram showing a relation between a notch length or a crack length and an opening amount, and FIG. 6 is a plan view of a fatigue test piece. First, in FIGS. 1 and 3 of the first invention, a simulated test piece 1 and a fatigue test piece 11 are glass fiber reinforced GFRP materials, which are usually called compact tension type test pieces. As shown in FIG. 1, leave affixed strain gauge 3 on the back of the 2-out initial notch practice test piece 1, a 1, 2, notch ... 7 and the tip sharp from the length a 0 notches Was processed and an actual fatigue test load P was applied at each notch length a, and the relationship between the notch length a and the strain ε as shown in FIG. 2 was obtained. As shown in FIG. 3, the strain gauge 13 is attached to the actual fatigue test piece 11 at the same position as that of the simulated test piece 1, and the strain ε during the fatigue test in which the fatigue crack 12 occurs is intermittently applied. The crack length was measured and the crack length was determined from the master curve as shown by the arrow in FIG. In FIG. 2, the data obtained by measuring the fatigue cracks by the conventional visual method is plotted to confirm the effectiveness of the present invention. All four fatigue test data are scattered around the master curve, and this method is effective. Was confirmed. A closer look at the plot points reveals that it is biased slightly below the master curve, and that there is a tendency for cracks to be read a little longer by the conventional visual inspection method.
【0008】次に第2の発明の図4,図6において、模
擬試験片21,疲労試験片31はGFRP材で通常コン
パクトテンションタイプ試験片と呼ばれるものである。
図4に示すように、模擬試験片21の切欠き22の切口
にクリップゲージ23を取付けておき、切欠き長さa0
からa1 ,2 ・・・7 と先端が鋭い切欠きを加工してそ
れぞれの切欠き長さaにおいて実際の疲労試験荷重Pを
負荷し、図5に示すような切欠き長さaと開口量δの関
係を求めた。そして図6に示すように、実際の疲労試験
片31にも模擬試験片21と同一位置にクリップゲージ
33を取付けておき、疲労き裂32が進展する疲労試験
中の開口量δを計測し、図5矢印で示すように、マスタ
ーカーブからき裂長さを求めた。なお図5には本発明の
有効性を確認するために疲労き裂を従来の目視法により
計測したデータをプロットしたところ、4つの疲労試験
データ共にマスターカーブを中心にばらついており本方
法が有効であることを確認した。プロット点を細かく見
るとマスターカーブよりやや下方に偏っており、従来の
目視法では若干き裂を長目に計測していた傾向があるこ
とが判る。In FIGS. 4 and 6 of the second invention, the simulated test piece 21 and the fatigue test piece 31 are GFRP materials and are usually called compact tension type test pieces.
As shown in FIG. 4, a clip gauge 23 is attached to the cutout of the cutout 22 of the simulated test piece 21, and the cutout length a 0
To a 1 , 2 ... 7 and a notch having a sharp tip is machined and an actual fatigue test load P is applied at each notch length a, and the notch length a and opening as shown in FIG. The relationship of the quantity δ was determined. Then, as shown in FIG. 6, the clip gauge 33 is attached to the actual fatigue test piece 31 at the same position as the simulated test piece 21, and the opening amount δ during the fatigue test in which the fatigue crack 32 propagates is measured, As shown by the arrow in FIG. 5, the crack length was determined from the master curve. In FIG. 5, the data obtained by measuring the fatigue cracks by the conventional visual method is plotted to confirm the effectiveness of the present invention. All four fatigue test data are scattered around the master curve, and this method is effective. Was confirmed. A closer look at the plot points reveals that they are biased slightly below the master curve, and that there is a tendency for cracks to be measured over a long period by the conventional visual inspection method.
【0009】かくしてこのような第1の発明により、疲
労き裂12がジグザグに進展ししかもき裂先端部の広い
範囲でダメージを受けてき裂先端が明確に判定できない
複合材疲労試験片11の疲労き裂長さをひずみによって
正確に評価することが可能となり、従って疲労き裂寿命
予測の精度向上がはかれるようになった。また模擬試験
片1によるマスターカーブを作成する必要はあるが、同
一材料であればき裂を計測する必要が無く、ひずみ変化
だけを計測しておけば良く、無人連続運転が可能となり
大幅な省力化が可能となった。Thus, according to the first aspect of the invention, the fatigue of the composite material fatigue test piece 11 in which the fatigue crack 12 propagates in a zigzag manner and the crack tip portion is damaged in a wide range and the crack tip cannot be clearly determined. It has become possible to accurately evaluate the crack length by strain, and thus the accuracy of fatigue crack life prediction can be improved. In addition, it is necessary to create a master curve using the simulated test piece 1, but it is not necessary to measure cracks for the same material, only strain changes need to be measured, and unmanned continuous operation is possible, which is a significant labor saving. Became possible.
【0010】また第2の発明により、疲労き裂32がジ
グザグに進展ししかもき裂先端部の広い範囲でダメージ
を受けてき裂先端が明確に判定できない複合材疲労試験
片31の疲労き裂長さをき裂開口量によって正確に評価
することが可能となった。従って疲労き裂寿命予測の精
度向上がはかれるようになった。また模擬試験片21に
よるマスターカーブを作成する必要があるが、同一材料
であればき裂を計測する必要が無く、開口量変化だけを
計測しておけば良く、無人連続運転が可能となり大幅な
省力化が可能となった。According to the second aspect of the invention, the fatigue crack length of the composite fatigue test piece 31 in which the fatigue crack 32 propagates in a zigzag manner and is damaged in a wide range of the crack tip and the crack tip cannot be clearly determined. It has become possible to accurately evaluate cracks by the amount of crack opening. Therefore, the accuracy of fatigue crack life prediction has been improved. In addition, it is necessary to create a master curve using the simulated test piece 21, but it is not necessary to measure cracks with the same material, and it is sufficient to measure only the change in the opening amount, and unmanned continuous operation is possible, which is a significant Labor saving has become possible.
【0011】[0011]
【発明の効果】要するに本発明によれば、き裂先端位置
が明確に判定できない複合材の疲労き裂伝播試験におい
て、予め疲労試験片と同一材の模擬試験片で切欠き長さ
とひずみの関係を求めておき、疲労試験片で得られたひ
ずみからき裂長さを推定することにより疲労き裂長さを
正確に評価することと、き裂先端位置が明確に判定でき
ない複合材の疲労き裂伝播試験において、予め疲労試験
片と同一材の模擬試験片で切欠き長さとき裂開口量の関
係を求めておき、疲労試験片で得られたき裂開口量から
き裂長さを推定することにより疲労き裂長さを正確に評
価することとにより、それぞれき裂先端位置が明確に判
定できない複合材の疲労き裂長さを正確に評価すること
ができる複合材の疲労き裂伝播試験方法を得るから、本
発明は産業上極めて有益なものである。In summary, according to the present invention, in a fatigue crack propagation test of a composite material in which the crack tip position cannot be clearly determined, the relationship between the notch length and the strain is previously obtained from a simulated test piece of the same material as the fatigue test piece. In advance, the fatigue crack length is accurately evaluated by estimating the crack length from the strain obtained from the fatigue test piece, and the fatigue crack propagation test of the composite material in which the crack tip position cannot be clearly determined. In advance, the relationship between the notch length and the crack opening amount was obtained in advance with a simulated test piece of the same material as the fatigue test piece, and the fatigue crack length was estimated by estimating the crack length from the crack opening amount obtained from the fatigue test piece. By accurately evaluating the fatigue crack propagation test method of the composite material that can accurately evaluate the fatigue crack length of the composite material whose crack tip position cannot be clearly determined, respectively, the present invention Is the highest in the industry It is useful to investors.
【図1】本発明複合材の疲労き裂伝播試験方法の第1の
発明における模擬試験片の平面図である。FIG. 1 is a plan view of a simulated test piece in a first invention of a fatigue crack propagation testing method for a composite material of the present invention.
【図2】切欠き長さ又はき裂長さとひずみの関係の線図
である。FIG. 2 is a diagram showing a relationship between notch length or crack length and strain.
【図3】疲労試験片の平面図である。FIG. 3 is a plan view of a fatigue test piece.
【図4】第2の発明における模擬試験片の平面図であ
る。FIG. 4 is a plan view of a simulated test piece according to a second invention.
【図5】切欠き長さ又はき裂長さと開口量の関係の線図
である。FIG. 5 is a diagram showing a relationship between a notch length or a crack length and an opening amount.
【図6】疲労試験片の平面図である。FIG. 6 is a plan view of a fatigue test piece.
【図7】疲労き裂伝播状況の説明図である。FIG. 7 is an explanatory diagram of a fatigue crack propagation situation.
1 模擬試験片 2 切欠き 3 ストレインゲージ 11 疲労試験片 12 疲労き裂 13 ストレインゲージ 21 模擬試験片 22 切欠き 23 クリップゲージ 31 疲労試験片 32 疲労き裂 33 クリップゲージ a 切欠き長さ ε ひずみ δ 開口量 1 Simulated test piece 2 Notch 3 Strain gauge 11 Fatigue test piece 12 Fatigue crack 13 Strain gauge 21 Simulated test piece 22 Notch 23 Clip gauge 31 Fatigue test piece 32 Fatigue crack 33 Clip gauge a Notch length ε Strain δ Opening amount
Claims (2)
材の疲労き裂伝播試験において、予め疲労試験片と同一
材の模擬試験片で切欠き長さとひずみの関係を求めてお
き、疲労試験片で得られたひずみからき裂長さを推定す
ることにより疲労き裂長さを正確に評価することを特徴
とする複合材の疲労き裂伝播試験方法。1. In a fatigue crack propagation test of a composite material in which a crack tip position cannot be clearly determined, a relationship between the notch length and strain is obtained in advance from a simulated test piece of the same material as the fatigue test piece, and the fatigue test is performed. A fatigue crack propagation test method for a composite material, which comprises accurately estimating the fatigue crack length by estimating the crack length from the strain obtained from the piece.
材の疲労き裂伝播試験において、予め疲労試験片と同一
材の模擬試験片で切欠き長さとき裂開口量の関係を求め
ておき、疲労試験片で得られたき裂開口量からき裂長さ
を推定することにより疲労き裂長さを正確に評価するこ
とを特徴とする複合材の疲労き裂伝播試験方法。2. In a fatigue crack propagation test of a composite material in which the crack tip position cannot be clearly determined, the relationship between the notch length and the crack opening amount is obtained in advance from a simulated test piece of the same material as the fatigue test piece. , A fatigue crack propagation test method for a composite material, which comprises accurately estimating the fatigue crack length by estimating the crack length from the crack opening amount obtained from a fatigue test piece.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33442194A JPH0862112A (en) | 1994-06-16 | 1994-12-19 | Method for testing fatigue crack propagation of composite material |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6-158048 | 1994-06-16 | ||
JP15804894 | 1994-06-16 | ||
JP33442194A JPH0862112A (en) | 1994-06-16 | 1994-12-19 | Method for testing fatigue crack propagation of composite material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0862112A true JPH0862112A (en) | 1996-03-08 |
Family
ID=26485300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33442194A Withdrawn JPH0862112A (en) | 1994-06-16 | 1994-12-19 | Method for testing fatigue crack propagation of composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0862112A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2006006412A1 (en) * | 2004-07-09 | 2008-04-24 | 株式会社産学連携機構九州 | Fatigue crack growth curve estimation method, estimation program, and estimation apparatus |
JP2009250866A (en) * | 2008-04-09 | 2009-10-29 | Shimadzu Corp | Testing device, testing method of fatigue test, and crack evolution testing method |
CN103308381A (en) * | 2013-06-07 | 2013-09-18 | 合肥通用机械研究院 | Fatigue crack propagation rate normalization prediction method |
CN104406867A (en) * | 2014-12-01 | 2015-03-11 | 北京航空航天大学 | Fatigue crack propagation test method based on replication and small time scale life forecast |
JP2016038227A (en) * | 2014-08-06 | 2016-03-22 | 株式会社島津製作所 | Material testing machine |
CN115013264A (en) * | 2022-06-21 | 2022-09-06 | 湘潭大学 | Glue filling volume prediction method for in-service high-altitude wind power blade damage repair |
-
1994
- 1994-12-19 JP JP33442194A patent/JPH0862112A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2006006412A1 (en) * | 2004-07-09 | 2008-04-24 | 株式会社産学連携機構九州 | Fatigue crack growth curve estimation method, estimation program, and estimation apparatus |
JP2009250866A (en) * | 2008-04-09 | 2009-10-29 | Shimadzu Corp | Testing device, testing method of fatigue test, and crack evolution testing method |
CN103308381A (en) * | 2013-06-07 | 2013-09-18 | 合肥通用机械研究院 | Fatigue crack propagation rate normalization prediction method |
CN103308381B (en) * | 2013-06-07 | 2014-10-01 | 合肥通用机械研究院 | Fatigue crack propagation rate normalization prediction method |
JP2016038227A (en) * | 2014-08-06 | 2016-03-22 | 株式会社島津製作所 | Material testing machine |
CN104406867A (en) * | 2014-12-01 | 2015-03-11 | 北京航空航天大学 | Fatigue crack propagation test method based on replication and small time scale life forecast |
CN115013264A (en) * | 2022-06-21 | 2022-09-06 | 湘潭大学 | Glue filling volume prediction method for in-service high-altitude wind power blade damage repair |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Adams et al. | A vibration technique for non-destructively assessing the integrity of structures | |
Srawley et al. | Fracture toughness testing | |
US5841034A (en) | Bonded joint analysis | |
Lam et al. | The effect of residual stress and its redistribution of fatigue crack growth | |
JPH0621783B2 (en) | Fatigue / remaining life evaluation method for machine parts | |
JPH0862112A (en) | Method for testing fatigue crack propagation of composite material | |
Yamada et al. | Fatigue crack propagation from fillet weld toes | |
Murri et al. | Interlaminar G (IIc) evaluation of toughened-resin matrix composites using the end-notched flexure test | |
KR100404659B1 (en) | Specimen and test method of interfacial adhensive strength | |
Ashbaugh et al. | EXPERIMENTAL AND ANALYTICAL ESTIMATES OF FATIGUE CRACK CLOSURE IN AN ALUMINIUM‐COPPER ALLOY PART I: LASER INTERFEROMETRY AND ELECTRON FRACTOGRAPHY | |
JP2596083B2 (en) | Elasto-plastic fracture toughness test method | |
Andrews et al. | The effects of fastener hole defects | |
JPH075086A (en) | Method for estimating superposed damage of creep and fatigue of high-temperature structure material | |
WO2000012962A1 (en) | Method for strain deformation | |
Stanley et al. | Applications of the four function Weibull equation in the design of brittle components | |
JPS6366428A (en) | Gauge and method for measuring stress intensity factor and monitor apparatus for residual life of cracked member | |
Roebuck et al. | Data acquisition and analysis of tensile properties for metal matrix composites | |
Milne | Standardized joint descriptions for improved rock classification | |
KR100798100B1 (en) | Fatigue Load Level Gauge | |
Tarafder et al. | Compliance crack length relations for the four-point bend specimen | |
JPS6126015B2 (en) | ||
SU1583763A1 (en) | Method of determining mechanical stresses | |
JPH0752152B2 (en) | Weld damage detection method | |
JPH02248860A (en) | Evaluation of residual life of ferrite based heat resistant steel | |
JPS61286734A (en) | Method for measuring stress of fatigue crack |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020305 |