JPH02248860A - Evaluation of residual life of ferrite based heat resistant steel - Google Patents
Evaluation of residual life of ferrite based heat resistant steelInfo
- Publication number
- JPH02248860A JPH02248860A JP1069185A JP6918589A JPH02248860A JP H02248860 A JPH02248860 A JP H02248860A JP 1069185 A JP1069185 A JP 1069185A JP 6918589 A JP6918589 A JP 6918589A JP H02248860 A JPH02248860 A JP H02248860A
- Authority
- JP
- Japan
- Prior art keywords
- hardness
- weld
- life
- weld heat
- heat affected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 18
- 239000010959 steel Substances 0.000 title claims abstract description 18
- 238000011156 evaluation Methods 0.000 title abstract description 22
- 229910000859 α-Fe Inorganic materials 0.000 title abstract 2
- 238000010586 diagram Methods 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 22
- 239000010953 base metal Substances 0.000 claims description 17
- 235000019589 hardness Nutrition 0.000 abstract description 48
- 239000000463 material Substances 0.000 abstract description 15
- 238000005530 etching Methods 0.000 abstract 1
- 230000002035 prolonged effect Effects 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 11
- 230000001066 destructive effect Effects 0.000 description 4
- 230000032683 aging Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009658 destructive testing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000009659 non-destructive testing Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
Landscapes
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は高温機器として長時間使用されているフェライ
ト系耐熱鋼の保守管理に適用される非破壌検査法に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a non-destructive inspection method applied to the maintenance and management of ferritic heat-resistant steel that is used for long periods of time as high-temperature equipment.
従来、高温機器に使用されているフェライト系耐熱鋼の
寿命評価法としては、長時間使用材を抜管し、クリープ
破断試験等の破壌試験に供する方法、理論解析による方
法、損傷の蓄積によって生じるき裂、微視き裂等の欠陥
を検査する超音波探傷法、磁粉探傷法、レプリカ法等の
非破壌検査法がある。Conventional methods for evaluating the lifespan of heat-resistant ferritic steel used in high-temperature equipment include methods of removing long-term use material and subjecting it to fracture tests such as creep rupture tests, methods based on theoretical analysis, and methods that evaluate the lifespan of heat-resistant ferritic steels caused by accumulation of damage. There are non-destructive inspection methods such as ultrasonic flaw detection, magnetic particle flaw detection, and replica methods that inspect for defects such as cracks and microscopic cracks.
前述した破壊検査法は、実際に機器部材として長時間使
用された材料の破壊試験を行う方法であるから、最も精
度の高い寿命評価法として多用されているが、特に厚肉
部等では大規模な抜管、復旧工事が必要である上にその
試験に約半年の期間を必要としていた。The above-mentioned destructive testing method is a method of destructively testing materials that have actually been used as equipment components for a long time, so it is often used as the most accurate life evaluation method. In addition to requiring extensive pipe removal and restoration work, the test required approximately six months.
また、理論解析法では当該部の使用温度、未使用材の強
度データを必要とするが、これらの精度の高い推定は困
難であった。In addition, the theoretical analysis method requires the operating temperature of the relevant part and the strength data of unused materials, but it has been difficult to estimate these with high accuracy.
さらに、非破壌検査法は実機を直接検査する方法である
ことから精度は高くその場的に寿命評価を行うことがで
き、さらには非破壌的な検査であることから調査に大規
模な付帯工事を必要としないが、検出できる欠陥が機器
寿命の末期にしか発生しないことから、寿命前半に対す
る寿命評価を行うことができなかった。Furthermore, since the non-destructive testing method directly inspects the actual equipment, it is highly accurate and allows for on-the-spot life evaluation.Furthermore, since it is a non-destructive test, it is possible to carry out large-scale investigations. Although no additional work is required, since detectable defects only occur at the end of the equipment's life, it was not possible to perform life evaluations for the first half of the equipment's life.
そこで、本発明者らは母材部においては硬さとクリープ
損傷との間に明確な関係は認められないとされていたフ
ェライト系耐熱鋼の溶接継手のクリープ破断試験を種々
の寿命比で中断した試験片の硬さ分布測定を行った結果
、母材部の硬さとクリープ破断寿命消費率との間には相
関は見出せなかったが、溶接部、特にクリープ損傷の蓄
積が最も速い溶接熱影響部の硬さが特に寿命前半におい
てクリープ損傷の進展に伴って低下することを見出した
。Therefore, the present inventors conducted creep rupture tests on welded joints made of ferritic heat-resistant steel, for which it was believed that there was no clear relationship between hardness and creep damage in the base metal, at various life ratios. As a result of measuring the hardness distribution of the test pieces, no correlation was found between the hardness of the base metal and the creep rupture life consumption rate. It was found that the hardness of steel decreases as creep damage progresses, especially in the first half of its life.
本発明は上記知見をもとに、長時間使用材の溶接熱影響
部及び母材の硬さ測定値をもとにあらかじめ作成した溶
接熱影響部の硬さあるいは溶接熱影響部の硬さと母材の
硬さの差とクリープ破断寿命消費率との関係を示す寿命
評価基準線図から調査位置の余寿命を評価することに思
い至り、本発明を完成した。Based on the above knowledge, the present invention is based on the hardness of the weld heat affected zone or the hardness of the weld heat affected zone that is prepared in advance based on the hardness measurements of the weld heat affected zone and base metal of materials used for a long time. We came up with the idea of evaluating the remaining life at the survey position from a life evaluation reference diagram showing the relationship between the difference in hardness of materials and the creep rupture life consumption rate, and completed the present invention.
すなわち、本発明はフェライト系耐熱鋼の溶接部の余寿
命を評価する方法において、該耐熱鋼の溶接熱影響部及
び母材部の硬さを測定し、上記溶接熱影響部の硬さある
いは上記溶接熱影響部の硬さと母材の硬さの差と、溶接
熱影響部のクリープ損傷度との関係を示す基準線図に、
調査位置の溶接熱影響部の硬さあるいは溶接熱影響部と
母材の硬さの差をあてはめることによって該耐熱鋼の溶
接部の寿命を評価することを特徴とするフェライト系耐
熱鋼の余寿命評価方法である。That is, the present invention provides a method for evaluating the remaining life of a welded part of ferritic heat-resistant steel, in which the hardness of the weld heat-affected zone and the base metal part of the heat-resistant steel is measured, and the hardness of the weld heat-affected zone or the above-mentioned A reference line diagram showing the relationship between the difference in hardness of the weld heat affected zone and the hardness of the base metal and the creep damage degree of the weld heat affected zone,
The remaining life of the ferritic heat-resistant steel is characterized in that the life of the weld of the heat-resistant steel is evaluated by applying the hardness of the weld heat-affected zone at the survey position or the difference in hardness between the weld heat-affected zone and the base metal. This is an evaluation method.
本発明方法によれば、実機部材の硬さの測定だけで寿命
評価を行うことから、破壊試験等に比べて付帯する工事
が少なく、また、その場的に特に寿命前半のクリープ損
傷を検出できる。According to the method of the present invention, since life evaluation is performed only by measuring the hardness of actual machine parts, there is less incidental work compared to destructive tests, etc., and creep damage, especially in the first half of life, can be detected on the spot. .
さらに、温度、応力等の間接的手法で求められる物理量
を必要としないことからこれらの推定値の誤差に起因す
る寿命評価精度の低下が生じにくい。Furthermore, since physical quantities such as temperature and stress that can be obtained by indirect methods are not required, the life evaluation accuracy is less likely to deteriorate due to errors in these estimated values.
また、実機においてクリープ損傷が最も蓄積されやすい
溶接熱影響部に着目したことにより、母材部に着目した
場合に比べて寿命評価精度を向上させることができる。Furthermore, by focusing on the weld heat-affected zone where creep damage is most likely to accumulate in an actual machine, the accuracy of life evaluation can be improved compared to when focusing on the base material.
以下、本発明の実施例を図を参照して説明する。第1図
は本発明方法を見出す過程で実施した数種のフェライト
系耐熱鋼の溶接継手のクリープ破断試験結果にもとすく
溶接熱影響部の硬さとクリープ破断寿命消費率との関係
、すなわち溶接熱影響部の硬さによる寿命評価基準線図
を示す。また、第2図は同上試験片の溶接熱影響部の硬
さと母材の硬さの差とクリープ破断寿命消費率との関係
、すなわち溶接熱影響部と母材の硬さの差による寿命評
価基準線図を示す。Embodiments of the present invention will be described below with reference to the drawings. Figure 1 shows the relationship between the hardness of the weld heat-affected zone and the creep rupture life consumption rate, based on the creep rupture test results of several types of ferritic heat-resistant steel welded joints conducted in the process of discovering the method of the present invention. A life evaluation standard diagram based on the hardness of the heat-affected zone is shown. In addition, Figure 2 shows the relationship between the difference in hardness between the weld heat affected zone and the base metal of the same specimen as above and the creep rupture life consumption rate, that is, the life evaluation based on the difference in hardness between the weld heat affected zone and the base metal. A reference line diagram is shown.
いずれの硬さもクリープ破断寿命消費率と良い相関関係
にあった。Both hardnesses had a good correlation with creep rupture life consumption rate.
そこで、本発明方法によって寿命評価を行った結果を以
下に示す。供給材は火力発電用蒸気配管として長時間使
用された2・1/4 Cr −I M。Therefore, the results of life evaluation performed using the method of the present invention are shown below. The material to be supplied is 2-1/4 Cr-IM, which has been used for a long time as steam piping for thermal power generation.
鋼製溶接鋼管である。まず、該供給材の表面を研磨、エ
ツチングして溶接部を明確にした後、その溶接熱影響部
(溶接境界から0.5 mm母材側の位置)の硬さと溶
接境界からさらに10mm離れた母材の硬さを、超音波
硬さ計によって測定し、第1図、第2図を用いて、それ
ぞれ溶接熱影響部の硬さ及び溶接熱影響部の硬さと母材
の硬さの差からクリープ破断寿命消費率を求めた。It is a welded steel pipe. First, the surface of the supplied material was polished and etched to clarify the weld zone, and then the hardness of the weld heat affected zone (0.5 mm from the weld boundary on the base metal side) and the hardness of the weld heat affected zone (position 0.5 mm from the weld boundary on the base metal side) and 10 mm away from the weld boundary were determined. The hardness of the base metal was measured using an ultrasonic hardness meter, and the hardness of the weld heat affected zone and the difference between the hardness of the weld heat affected zone and the hardness of the base metal were measured using Figures 1 and 2, respectively. The creep rupture life consumption rate was calculated from
次に該供試材を抜管しクリープ破断試験を行って未使用
材との硬さの差から該供試材のりIJ−ブ破断寿命消費
率を求めた。Next, the sample material was extubated and subjected to a creep rupture test, and the glue IJ-bu rupture life consumption rate of the sample material was determined from the difference in hardness from the unused material.
これらの結果を下記第1表に示す。なお、第1表中、「
本発明方法(1)」は溶接熱影響部の硬さを第1図にあ
てはめて評価したクリープ破断寿命消費率を示し、同「
本発明方法(2)」は溶接熱影響部の硬さと母材の硬さ
の差を第2図にあてはめて評価したクリープ破断寿命消
費率を示す。本発明方法によって評価した寿命評価結果
はクリープ破断試験による評価結果とほぼ一致していた
。These results are shown in Table 1 below. In addition, in Table 1, “
Method (1) of the present invention" shows the creep rupture life consumption rate evaluated by applying the hardness of the weld heat affected zone to FIG.
Method (2) of the present invention" shows the creep rupture life consumption rate evaluated by applying the difference between the hardness of the weld heat affected zone and the hardness of the base metal to FIG. 2. The life evaluation results evaluated by the method of the present invention were almost in agreement with the evaluation results by the creep rupture test.
また溶接熱影響部の硬さと母材の硬さによる評価はそれ
ぞの硬さの比による評価におきかえられることは上記実
施例から明らかである。Furthermore, it is clear from the above examples that the evaluation based on the hardness of the weld heat affected zone and the hardness of the base metal can be replaced with the evaluation based on the ratio of the respective hardnesses.
以上、詳述した如く、本発明方法によれば高温機器部材
として長時間使用されたフェライト系耐熱鋼の余寿命を
、該部材を破壌することなく外表面から硬さを測定する
だけで評価する方法を提供できることから、老朽化した
高温機器の保守管理を効率に行うことができるとともに
、その信頼性を向上させることができる。As detailed above, according to the method of the present invention, the remaining life of ferritic heat-resistant steel that has been used for a long time as a high-temperature equipment component can be evaluated by simply measuring the hardness from the outer surface without destroying the component. Since it is possible to provide a method for maintaining aging high-temperature equipment, it is possible to efficiently maintain and manage aging high-temperature equipment, and to improve its reliability.
第1図は本発明の一実施例としての溶接熱影響部の硬さ
によるクリープ破断寿命評価基準線図、第2図は本発明
の一実施例としての溶接熱影響部の硬さと母材の硬さの
差によるクリープ破断寿命評価基準線図である。Fig. 1 is a creep rupture life evaluation standard diagram based on the hardness of the weld heat affected zone as an embodiment of the present invention, and Fig. 2 is a diagram showing the hardness of the weld heat affected zone and the base material as an embodiment of the present invention. FIG. 3 is a creep rupture life evaluation standard diagram based on hardness differences.
Claims (1)
おいて、該耐熱鋼の溶接熱影響部及び母材部の硬さを測
定し、上記溶接熱影響部の硬さあるいは上記溶接熱影響
部の硬さと母材の硬さの差と、溶接熱影響部のクリープ
損傷度との関係を示す基準線図に、調査位置の溶接熱影
響部の硬さあるいは溶接熱影響部と母材の硬さの差をあ
てはめることによって該耐熱鋼の溶接部の寿命を評価す
ることを特徴とするフェライト系耐熱鋼の余寿命評価方
法。In a method for evaluating the remaining life of a welded zone of ferritic heat-resistant steel, the hardness of the welded heat-affected zone and base metal of the heat-resistant steel is measured, and the hardness of the welded heat-affected zone or the welded heat-affected zone is evaluated. The reference diagram showing the relationship between the difference in hardness and the hardness of the base metal and the degree of creep damage in the weld heat affected zone shows the hardness of the weld heat affected zone at the survey position or the hardness of the weld heat affected zone and base metal. A method for evaluating the remaining life of a ferritic heat-resistant steel, characterized in that the life of a welded part of the heat-resistant steel is evaluated by applying the difference between the two.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1069185A JP2540630B2 (en) | 1989-03-23 | 1989-03-23 | Method of evaluating remaining life of ferritic heat resistant steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1069185A JP2540630B2 (en) | 1989-03-23 | 1989-03-23 | Method of evaluating remaining life of ferritic heat resistant steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02248860A true JPH02248860A (en) | 1990-10-04 |
JP2540630B2 JP2540630B2 (en) | 1996-10-09 |
Family
ID=13395415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1069185A Expired - Fee Related JP2540630B2 (en) | 1989-03-23 | 1989-03-23 | Method of evaluating remaining life of ferritic heat resistant steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2540630B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006145327A (en) * | 2004-11-18 | 2006-06-08 | Sumitomo Kinzoku Technol Kk | Remaining life diagnosis method for Cr-Mo heat resistant steel |
JP2010230322A (en) * | 2009-03-25 | 2010-10-14 | Chugoku Electric Power Co Inc:The | Method for evaluating life of metal member |
CN108458971A (en) * | 2018-01-08 | 2018-08-28 | 国电锅炉压力容器检验中心 | Position while welding lookup method |
JP2019002786A (en) * | 2017-06-15 | 2019-01-10 | 株式会社日立パワーソリューションズ | Creep damage evaluation method |
-
1989
- 1989-03-23 JP JP1069185A patent/JP2540630B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006145327A (en) * | 2004-11-18 | 2006-06-08 | Sumitomo Kinzoku Technol Kk | Remaining life diagnosis method for Cr-Mo heat resistant steel |
JP4522828B2 (en) * | 2004-11-18 | 2010-08-11 | 住友金属テクノロジー株式会社 | Remaining life diagnosis method for Cr-Mo heat resistant steel |
JP2010230322A (en) * | 2009-03-25 | 2010-10-14 | Chugoku Electric Power Co Inc:The | Method for evaluating life of metal member |
JP2019002786A (en) * | 2017-06-15 | 2019-01-10 | 株式会社日立パワーソリューションズ | Creep damage evaluation method |
CN108458971A (en) * | 2018-01-08 | 2018-08-28 | 国电锅炉压力容器检验中心 | Position while welding lookup method |
Also Published As
Publication number | Publication date |
---|---|
JP2540630B2 (en) | 1996-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109883859A (en) | Test method for zoned strain during low-cycle fatigue of welded joints with heterogeneous microstructure | |
CN202092997U (en) | Natural defect welding test piece | |
Roshan et al. | Non-destructive testing by liquid penetrant testing and ultrasonic testing—A review | |
CN102393419A (en) | Nondestructive detection method for early damage of ferromagnetic material | |
JPH02248860A (en) | Evaluation of residual life of ferrite based heat resistant steel | |
CN103776895B (en) | Nondestructive examination method for evaluating contact damage of ferromagnetic material | |
JPH05142203A (en) | Method for diagnosing environmental stress cracking of high-strength material | |
CN108982651A (en) | Exchange leakage field sensor based on ferromagnetic butt plates welding seam crack detection and the method using its progress crack detection | |
Goldfine et al. | Introduction to the Meandering Winding Magnetometer (MWM) and the grid measurement approach | |
Ma et al. | FATIGUE DESIGN OF CAST STEEL NODES IN OFFSHORE STRUCTURES BASED ON RESEARCH DATA. | |
US6563309B2 (en) | Use of eddy current to non-destructively measure crack depth | |
Roskosz | Capabilities and limitations of using the residual magnetic field in NDT | |
JP2643000B2 (en) | High-temperature damage evaluation method for weld heat affected zone | |
Dong et al. | Characterizing stress concentration by metal magnetic memory signal of (x) | |
JPH0650942A (en) | Measuring method for crack length of surface of ferrite-based steel material | |
Husin et al. | Development of references of anomalies detection on P91 material using Self-Magnetic Leakage Field (SMLF) technique | |
Dat et al. | Design and assembly of an apparatus system based on the Villari effect for detecting stress concentration zone on ferromagnetic materials | |
RU2064672C1 (en) | Method of determination of content of ferrite phase in article | |
Choi et al. | Nondestructive evaluation of welding residual stress in power plant facilities using instrumented indentation technique | |
Efimov et al. | Eddy Current Nondestructive Testing of Large Diameter Pipes through Thick Protective Coatings | |
Ratkovac et al. | Detection and monitoring of the fatigue crack growth on welds–Application-oriented use of NDT methods | |
JP2006118902A (en) | Flaw height evaluation method by eddy current flaw detection method | |
JPH02263160A (en) | Method of evaluating remaining life of ferritic heat resisting steel | |
JPS63235861A (en) | Evaluation of remaining life of heat resistant steel | |
JPH08145864A (en) | Method for measuring creep life consumption rate of material of high-temperature device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |