JP2006118902A - Defect height evaluation method by eddy current testing - Google Patents
Defect height evaluation method by eddy current testing Download PDFInfo
- Publication number
- JP2006118902A JP2006118902A JP2004305036A JP2004305036A JP2006118902A JP 2006118902 A JP2006118902 A JP 2006118902A JP 2004305036 A JP2004305036 A JP 2004305036A JP 2004305036 A JP2004305036 A JP 2004305036A JP 2006118902 A JP2006118902 A JP 2006118902A
- Authority
- JP
- Japan
- Prior art keywords
- defect
- height
- value
- eddy current
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000007547 defect Effects 0.000 title claims abstract description 130
- 238000011156 evaluation Methods 0.000 title claims abstract description 41
- 238000012360 testing method Methods 0.000 title claims description 20
- 238000001514 detection method Methods 0.000 claims abstract description 50
- 238000005259 measurement Methods 0.000 claims abstract description 20
- 230000035945 sensitivity Effects 0.000 claims description 11
- 230000035699 permeability Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 18
- 238000007689 inspection Methods 0.000 abstract description 17
- 239000000463 material Substances 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 4
- 230000035515 penetration Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 10
- 239000000523 sample Substances 0.000 description 7
- 102100025490 Slit homolog 1 protein Human genes 0.000 description 6
- 101710123186 Slit homolog 1 protein Proteins 0.000 description 6
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
【課題】
浸透深さ以上の板厚を有する材料の表面に形成した欠陥の高さ評価が困難であった。
【解決手段】
同一欠陥について2種類以上の異なる周波数条件で渦電流探傷測定したときの振幅データから、欠陥のき裂面の電気伝導度の影響が欠陥寸法の影響に比べて十分小さい数値を求め、その数値から欠陥高さを評価することで、浸透深さ以上の板厚を有する材料の表面に形成した欠陥の高さ評価が可能となった。
本発明によれば、渦電流探傷による欠陥高さ評価において、渦電流探傷測定結果から迅速に欠陥高さを評価でき、特殊な技量を伴わないことから、検査現場での欠陥高さ評価ツールとして効果がある。
また、欠陥評価手順が簡便であることから、評価ミスのポテンシャルが低く、検査の信頼性向上に効果がある。
また、一般的な渦電流探傷検査に用いられる装置以外の装置を必要としないことから、設備投資が不要であり、コストの面でも効果がある。
【選択図】図1【Task】
It was difficult to evaluate the height of defects formed on the surface of a material having a plate thickness greater than the penetration depth.
[Solution]
From the amplitude data when eddy current flaw measurement is performed on two or more different frequency conditions for the same defect, obtain a numerical value where the effect of the electrical conductivity of the crack surface of the defect is sufficiently smaller than the effect of the defect size. By evaluating the height of the defect, it was possible to evaluate the height of the defect formed on the surface of the material having a thickness greater than the penetration depth.
According to the present invention, in the defect height evaluation by eddy current flaw detection, the defect height can be quickly evaluated from the eddy current flaw measurement result, and no special skill is involved. effective.
In addition, since the defect evaluation procedure is simple, the potential for evaluation errors is low, which is effective in improving the reliability of inspection.
Moreover, since no device other than the device used for general eddy current flaw detection is required, capital investment is unnecessary, and there is an effect in terms of cost.
[Selection] Figure 1
Description
本発明は渦電流探傷による欠陥の高さ評価に関する技術である。 The present invention relates to a technique related to height evaluation of defects by eddy current flaw detection.
従来の渦電流探傷による欠陥の高さ評価は、主に加圧水型原子力発電プラントの伝熱管の検査に適用されている。 Conventional height evaluation of defects by eddy current flaw detection is mainly applied to the inspection of heat transfer tubes in pressurized water nuclear power plants.
伝熱管のように、渦電流探傷プローブから発生する磁束の表皮深さと同等又はそれ以下の板厚を有する材料では、渦電流探傷検査により欠陥の高さに応じた位相の変化が得られるため、位相の変化から欠陥高さを評価できる。ここで、表皮深さとは磁束が表面の1/e倍に減衰する深さであり、式[2]で表される。 In a material having a plate thickness equal to or less than the skin depth of the magnetic flux generated from the eddy current flaw detection probe, such as a heat transfer tube, the phase change corresponding to the height of the defect can be obtained by eddy current flaw inspection. Defect height can be evaluated from phase change. Here, the skin depth is a depth at which the magnetic flux is attenuated to 1 / e times the surface, and is expressed by Equation [2].
ところが、表皮深さ以上の板厚を有する材料では、欠陥の高さに応じた位相の有意な変化が得られないため、位相の変化から欠陥の高さを評価するのは困難であった。 However, in a material having a plate thickness equal to or greater than the skin depth, it is difficult to evaluate the height of the defect from the change in phase because a significant change in phase according to the height of the defect cannot be obtained.
渦電流探傷とは、主に表面欠陥を被検体表面に流れる渦電流の変化から検出する手法である。渦電流探傷で得られる欠陥に関する信号は位相角と振幅であり、従来技術では、位相角の変化から深さの高さ評価を行っている。ところが、浸透深さ以上の板厚を有する材料の表面に形成した欠陥に対しては、欠陥の高さに応じた位相の変化が得られないため、欠陥の高さ評価が困難であった。 Eddy current flaw detection is a technique that mainly detects surface defects from changes in eddy current flowing on the surface of a subject. Signals related to defects obtained by eddy current flaw detection are a phase angle and an amplitude. In the prior art, the depth height is evaluated from the change in the phase angle. However, for defects formed on the surface of a material having a plate thickness equal to or greater than the penetration depth, it is difficult to evaluate the height of the defects because a phase change corresponding to the height of the defects cannot be obtained.
本発明の目的は、上記従来技術の問題点に鑑み、振幅に着目して欠陥高さを評価する手法を提供することにある。 An object of the present invention is to provide a method for evaluating a defect height by paying attention to an amplitude in view of the problems of the above-described conventional technology.
上記目的を達成する本発明は、同一欠陥について2種類以上の異なる試験周波数条件での渦電流探傷測定により取得した複数の振幅、又はそれらより算出される同一次元で異なる2個の値1と値2との比を利用し、欠陥高さを評価することを特徴とする。また、渦電流探傷測定時の各試験周波数における探傷感度設定には、試験周波数のうち最も低い周波数条件における磁束の表皮深さ以上のEDMスリット又は疲労欠陥を用いる。
The present invention that achieves the above-described object is achieved by using a plurality of amplitudes obtained by eddy current flaw measurement under two or more different test frequency conditions for the same defect, or two
本発明によれば、渦電流探傷による欠陥高さ評価において、渦電流探傷測定結果から迅速に欠陥高さを評価でき、特殊な技量を伴わないことから、検査現場での欠陥高さ評価ツールとして効果がある。 According to the present invention, in the defect height evaluation by eddy current flaw detection, the defect height can be quickly evaluated from the eddy current flaw measurement result, and no special skill is involved. effective.
また、欠陥評価手順が簡便であることから、評価ミスのポテンシャルが低く、検査の信頼性向上に効果がある。 Further, since the defect evaluation procedure is simple, the potential for evaluation mistakes is low, which is effective in improving the reliability of inspection.
また、一般的な渦電流探傷検査に用いられる装置以外の装置を必要としないことから、設備投資が不要であり、コストの面でも効果がある。 Moreover, since no device other than the device used for general eddy current flaw detection is required, capital investment is unnecessary, and there is an effect in terms of cost.
本発明の実施の形態について図面を用いて説明する。 Embodiments of the present invention will be described with reference to the drawings.
図1は欠陥長さ20mm以上,欠陥高さ10mm以下の欠陥の高さ評価に、本発明を適用する場合の評価手順の説明図である。ここで、測定に用いる渦電流探傷プローブは、同一高さで、長さの異なるEDMスリットを測定したときの振幅値が長さ20mm以上で変化しないことを前提とする。 FIG. 1 is an explanatory diagram of an evaluation procedure when the present invention is applied to the height evaluation of a defect having a defect length of 20 mm or more and a defect height of 10 mm or less. Here, the eddy current flaw detection probe used for the measurement is premised on that the amplitude value when measuring EDM slits having the same height and different lengths does not change when the length is 20 mm or more.
プロセス1では、2種類以上の異なる周波数条件で、評価対象の欠陥高さ範囲の人工欠陥(例えば放電加工EDMスリット。以下、EDMスリットと呼称する。)を探傷し、振幅とEDMスリット高さの関係曲線を求める。ここで、渦電流探傷測定において、欠陥高さ評価可能範囲の最大高さ以上の欠陥高さを有するEDMスリット1を探傷した時の振幅値が、全ての周波数条件において同じになるように設定することがポイントである。但し、EDMスリット1探傷時の振幅値が全ての周波数条件において同等にならない場合は、
EDMスリット1探傷時の振幅値を規格化としてもよい。通常、高さ10mm以下の欠陥の高さ評価を行う場合は、高さ10mm以下の範囲で欠陥高さに応じた振幅変化が得られる渦電流探傷プローブを用いて、探傷感度を高さ10mmのEDMスリット探傷時の振幅5Vと設定する。しかし例えば、欠陥高さに応じた明瞭な振幅変化が得られる範囲が高さ5mm以下となる渦電流探傷プローブを用いる場合には、探傷感度を高さ5mmのEDMスリット探傷時の振幅5Vと設定する。
また、周波数条件は、渦電流探傷プローブの適用周波数の最大,最小及びその中間とするとよい。ここで、適用周波数とは、十分な感度で探傷できる周波数範囲のことである。
In
The amplitude value at the time of EDM slit 1 flaw detection may be normalized. Usually, when evaluating the height of a defect having a height of 10 mm or less, an eddy current flaw detection probe that can change the amplitude according to the defect height in a range of 10 mm or less is used, and the flaw detection sensitivity is 10 mm. The amplitude is set to 5 V at the time of EDM slit flaw detection. However, for example, in the case of using an eddy current flaw detection probe in which a clear amplitude change according to the defect height is 5 mm or less, the flaw detection sensitivity is set to 5 V amplitude at the time of EDM slit flaw detection with a height of 5 mm. To do.
The frequency condition may be the maximum, minimum and intermediate frequency of the eddy current testing probe. Here, the applied frequency is a frequency range in which flaw detection can be performed with sufficient sensitivity.
プロセス2では、プロセス1で得られた2種類以上の異なる周波数における振幅データから、EDMスリット毎に振幅の平均値と標準偏差を求め、平均・標準偏差比(以下、X値と呼称する。)と欠陥高さの関係曲線を作成する。
In
プロセス3では、プロセス1と同じ探傷条件で、高さ評価対象の欠陥を探傷し、X値を求め、プロセス2で作成した欠陥高さとX値の関係曲線に、その結果を当てはめ、欠陥高さを評価する。なお、説明図は、長さ20mm以上の欠陥を探傷したときにX=15が得られた時の高さ評価例であり、図にX=15を当てはめることで高さを約4mmと評価する。
In
図2は、同一高さで、長さの異なるEDMスリットを測定したときの振幅が長さ20mm以上で同等となる渦電流探傷プローブを用いて、長さ20mm以上,高さ10mm以下の欠陥について高さ評価を行うための、X値と欠陥高さの関係曲線を得るための試験片の例である。試験片には、高さ10mm以下の範囲におけるX値と欠陥高さの関係曲線が求められるように高さ1〜10mmのEDMスリットが付与されている。EDMスリットは渦電流探傷の出力が隣り合うEDMスリットの影響を受けない間隔を確保し、試験片の幅は渦電流探傷の出力が試験片幅の影響を受けない幅とすることが試験片設計のポイントである。また、EDMスリットの幅は、渦電流探傷の出力がEDMスリット幅の影響程度が無視できるほど小さいことが欠陥高さ評価精度向上の面で有効と考えられ、目安としてプローブのコイル内径の1/3以下とするとよい。 FIG. 2 shows a defect having a length of 20 mm or more and a height of 10 mm or less using an eddy current flaw detection probe having the same height and the same amplitude when measuring EDM slits of different lengths of 20 mm or more. It is an example of the test piece for obtaining the relationship curve of X value and defect height for performing height evaluation. The test piece is provided with an EDM slit having a height of 1 to 10 mm so that a relationship curve between the X value and the defect height in a range of 10 mm or less can be obtained. EDM slits ensure that the output of eddy current flaw detection is not affected by adjacent EDM slits, and the test piece design is such that the width of the test piece is such that the output of eddy current flaw detection is not affected by the test piece width. Is the point. In addition, it is considered that the width of the EDM slit is so small that the output of the eddy current flaw detection is negligible so that the influence of the EDM slit width can be ignored. It should be 3 or less.
図3は欠陥長さ20mm以下,欠陥高さ10mm以下の欠陥の高さ評価に、本発明を適用する場合の評価手順の説明図である。ここでは、同一高さで、長さの異なるEDMスリットを測定したときの振幅が長さ20mm以下で変化することを前提とする。 FIG. 3 is an explanatory diagram of an evaluation procedure when the present invention is applied to the height evaluation of a defect having a defect length of 20 mm or less and a defect height of 10 mm or less. Here, it is assumed that the amplitude when EDM slits having the same height and different lengths are measured changes with a length of 20 mm or less.
プロセス1では、2種類の異なる周波数で、高さ評価対象とする高さ範囲を含むEDMスリットを探傷し、振幅とスリット深さ,EDMスリット長さの関係を求める。ここで、渦電流探傷測定において、欠陥高さ評価可能範囲の最大高さ以上の欠陥高さを有するEDMスリット1を探傷した時の振幅値が、全ての周波数条件において同じになるように設定することがポイントである。但し、EDMスリット1探傷時の振幅値が全ての周波数条件において同等にならない場合は、EDMスリット1探傷時の振幅値を規格化としてもよい。
In
プロセス2では、2種類以上の異なる周波数における振幅から、EDMスリット毎に、X値,欠陥長さと欠陥高さの関係曲線を作成する。
In
プロセス3では、プロセス1と同じ探傷条件で、高さ評価対象の欠陥を探傷し、X値を求め、プロセス2で作成したX値,欠陥長さと欠陥高さの関係曲線に、その結果を当てはめ、欠陥高さを評価する。なお、説明図は、長さ7mmの欠陥探傷によりX値=10が得られたときの高さ評価例で、長さ7mmとX値10を関係曲線に当てはめ、欠陥高さ約3mmと評価する。なお、欠陥長さは渦電流探傷法による指示長さ,浸透探傷による指示長さを用いるとよい。
In
図4は、同一高さで、長さの異なるEDMスリットを測定したときの振幅が長さ20mm以上で変化しない渦電流探傷プローブで、長さ20mm以下,高さ10mm以下の欠陥について高さ評価を行うために、X値,欠陥長さと欠陥高さの関係曲線を求めるための試験片の例である。試験片には、高さ10mm以下の範囲におけるX値と高さの関係曲線が求められるように高さ1〜10mmのEDMスリットが付与されている。EDMスリットは渦電流探傷の出力が隣り合うスリットの影響を受けない間隔を確保し、試験片の幅は渦電流探傷の出力が試験片幅の影響を受けない幅とすることが試験片設計のポイントである。また、EDMスリットの幅は、渦電流探傷の出力がEDMスリット幅の影響程度が無視できるほど小さいことが欠陥高さ評価精度向上の面で有効と考えられ、目安としてプローブのコイル内径の1/3以下を推奨する。 Fig. 4 shows an eddy current flaw detection probe that does not change when the EDM slits with the same height and different lengths are measured. The height is evaluated for a defect with a length of 20 mm or less and a height of 10 mm or less. This is an example of a test piece for obtaining a relationship curve of an X value, a defect length, and a defect height. The test piece is provided with an EDM slit having a height of 1 to 10 mm so that a relationship curve between the X value and the height in a range of 10 mm or less can be obtained. EDM slits ensure that the output of eddy current flaw detection is not affected by adjacent slits, and the width of the test piece is such that the output of eddy current flaw detection is not affected by the width of the test piece. It is a point. In addition, it is considered that the width of the EDM slit is so small that the output of the eddy current flaw detection is negligible so that the influence of the EDM slit width can be ignored. 3 or less is recommended.
図5は、渦電流探傷法によるEDMスリットの測定結果から得られたX値と欠陥高さの関係曲線を用いて応力腐食割れ(以下、SCCと呼称する。)の欠陥高さ評価結果と超音波探傷で測定した欠陥高さとの比較を示す。この結果より、本発明による欠陥高さ評価結果と超音波探傷法による欠陥高さ測定値はばらつきの範囲で一致しており、渦電流探傷法によるEDMスリットの測定結果から得られたX値と欠陥高さの関係曲線を用いて、応力腐食割れ(以下、SCCと呼称する。)の欠陥高さを評価できることがわかる。 FIG. 5 shows the result of the evaluation of the height of the defect of stress corrosion cracking (hereinafter referred to as SCC) using the relationship curve between the X value and the height of the defect obtained from the measurement result of the EDM slit by the eddy current flaw detection method. The comparison with the defect height measured by the acoustic flaw detection is shown. From this result, the defect height evaluation result according to the present invention and the defect height measurement value by the ultrasonic flaw detection method agree within the range of variation, and the X value obtained from the measurement result of the EDM slit by the eddy current flaw detection method and It can be seen that the defect height of stress corrosion cracking (hereinafter referred to as SCC) can be evaluated using the relationship curve of the defect height.
EDMスリットの測定結果から得られたX値と欠陥高さの関係曲線から、応力腐食割れの欠陥高さが評価できた理由を以下に説明する。 The reason why the defect height of the stress corrosion cracking can be evaluated from the relationship curve between the X value obtained from the measurement result of the EDM slit and the defect height will be described below.
EDMスリットの欠陥面は完全に開口しているため、渦電流探傷で発生する渦電流が欠陥面を通過できず、電気的に絶縁された欠陥と見なすことができる。一方、SCCの欠陥面には部分的な連結が見られ、電気的に導通する部分が存在する。このような欠陥面の電気的導通性の違いにより、同一高さ,長さのEDMスリットとSCCの同一条件で渦電流探傷測定を行うと、EDMスリットの振幅がSCCの振幅と同等もしくは大きい傾向となる。しかし、EDMスリットを2種類以上の異なる周波数条件で測定した時の振幅の平均と標準偏差の比と欠陥高さの関係曲線から、SCCの欠陥高さを評価できることが経験的に分かってきた。振幅と欠陥面の電気伝導度の間には式[3]の関係が近似的に成り立ち、式[4]に示すように平均と標準偏差の比が欠陥面の電気伝導度にほとんど依存しない関数形となるため、同一高さ,長さのEDMスリットとSCCの平均と標準偏差の比が殆ど同じ値となったと推察する。また、欠陥面の電気伝導度にほとんど依存しない関数形としては、式[4]の平均と標準偏差の比の他に、振幅の平均値と最大値の比,振幅の平均値と最小値の比など、多数存在することがわかる。 Since the defect surface of the EDM slit is completely open, an eddy current generated by eddy current flaw detection cannot pass through the defect surface and can be regarded as an electrically insulated defect. On the other hand, a partial connection is observed on the defective surface of the SCC, and there is an electrically conductive portion. Due to the difference in electrical continuity of the defect surface, when eddy current flaw measurement is performed under the same conditions of the EDM slit and SCC having the same height and length, the amplitude of the EDM slit tends to be equal to or larger than the amplitude of the SCC. It becomes. However, it has been empirically found that the SCC defect height can be evaluated from the relationship curve between the ratio of the average amplitude and the standard deviation and the defect height when the EDM slit is measured under two or more different frequency conditions. The relationship of the equation [3] is approximately established between the amplitude and the electrical conductivity of the defect surface, and the function in which the ratio of the average and the standard deviation hardly depends on the electrical conductivity of the defect surface as shown in the equation [4]. It is assumed that the ratio between the average and standard deviation of EDM slits and SCCs of the same height and length is almost the same value. In addition to the ratio of the average and standard deviation in the equation [4], the function form that hardly depends on the electrical conductivity of the defect surface includes the ratio between the average value and the maximum value of the amplitude, the average value and the minimum value of the amplitude. It can be seen that there are many ratios.
以上の本実施形態では、高さの異なるEDMスリット又は疲労欠陥を用いて、板厚10mm以上の厚肉材に発生したSCCの高さ評価を可能とする関係曲線を作成するので、一般的な渦電流探傷検査に用いられる装置と関係曲線作成の試験片の他に、特別な設備や装置を必要としない。従って、安価で欠陥の高さ評価ができ、しかも特殊な技量がなくても欠陥の高さ評価が可能となる。 In the present embodiment described above, since the EDM slits or fatigue defects having different heights are used to create a relational curve that enables the evaluation of the height of SCC generated in a thick material having a plate thickness of 10 mm or more, In addition to the equipment used for eddy current inspection and the test piece for creating the relation curve, no special equipment or equipment is required. Therefore, the height of the defect can be evaluated at a low cost, and the height of the defect can be evaluated without a special skill.
本発明の実施例を、以下に説明する。 Examples of the present invention will be described below.
実施例1として、図6に本発明を用いた検査フロー図を示す。 As Example 1, an inspection flow diagram using the present invention is shown in FIG.
検査フロー図は、欠陥があっても許容寸法以下であれば検査合格とすることを前提とした場合の製品検査のフロー図である。
まず、渦電流測定により、製品の欠陥有無確認を行う。なお、測定では、微小な欠陥を検出するために、高さ1mm等の浅いEDMスリットで探傷感度を設定するとよい。
この検査で、欠陥が見つかった場合、渦電流探傷法により欠陥の間隔,方向等の分布と長さを測定する。なお、欠陥分布と欠陥長さ測定は、欠陥開口長さの両端を鮮明に捉える必要があることから、高さ1mm等の浅いEDMスリットで探傷感度を設定するとよい。
欠陥間隔は振幅ピーク間の距離から測定し、欠陥の方向はCスコープ像と呼ばれる欠陥の表面分布像から測定する。また、欠陥長さについては、被検体の健全性評価において、安全側評価を行う場合には、実際の長さよりも過大評価となる信号消失長さを、現実的評価を行う場合は実際の長さと同等の長さとなる6dBダウン法又は12dBダウン法による指示長さを用いるとよい。
The inspection flow diagram is a product inspection flow diagram based on the premise that the inspection passes if it is below the allowable dimension even if there is a defect.
First, the product is checked for defects by measuring eddy currents. In the measurement, in order to detect a minute defect, the flaw detection sensitivity may be set with a shallow EDM slit having a height of 1 mm or the like.
If a defect is found in this inspection, the distribution and length of the defect interval, direction, etc. are measured by an eddy current flaw detection method. In the defect distribution and the defect length measurement, since it is necessary to clearly grasp both ends of the defect opening length, the flaw detection sensitivity may be set by a shallow EDM slit having a height of 1 mm or the like.
The defect interval is measured from the distance between the amplitude peaks, and the defect direction is measured from the surface distribution image of the defect called a C scope image. In addition, regarding the defect length, when performing a safety evaluation in the soundness evaluation of the subject, the signal loss length that is overestimated than the actual length is used, and when performing a realistic evaluation, the actual length is used. It is preferable to use the indicated length by the 6 dB down method or the 12 dB down method, which is equivalent to the above.
次に、本発明により欠陥高さを評価する。評価対象欠陥を2種類以上の周波数で測定し、振幅の平均値と標準偏差を求める。それらの比を予め取得しておいた振幅の平均値と標準偏差の比と欠陥高さの関係曲線図に当てはめ、欠陥高さの評価を行う。なお、高さ評価のための渦電流探傷測定では、高さ評価対象範囲で周波数に応じた大きな振幅変化が得られる必要があるため、高さ評価対象範囲を10mm以下と仮定した場合、高さ10mm以上のEDMスリットを十分なSN比で検出できる感度で測定することが重要である。 Next, the defect height is evaluated according to the present invention. The defect to be evaluated is measured at two or more frequencies, and the average value and standard deviation of the amplitude are obtained. These ratios are applied to a curve diagram of the relationship between the ratio of the average value of the amplitude and the standard deviation acquired in advance and the defect height, and the defect height is evaluated. In eddy current flaw measurement for height evaluation, it is necessary to obtain a large amplitude change in accordance with the frequency in the height evaluation target range. Therefore, assuming that the height evaluation target range is 10 mm or less, the height It is important to measure EDM slits of 10 mm or more with a sensitivity that can be detected with a sufficient S / N ratio.
これらの検査より得られた、欠陥の長さ,高さは全て記録し、全ての欠陥が許容寸法以下であれば製品検査合格とみなす。 All the lengths and heights of defects obtained from these inspections are recorded, and if all the defects are less than the allowable dimensions, the product inspection is deemed acceptable.
Claims (6)
f:渦電流探傷測定する際の最も低い試験周波数 3. The flaw detection sensitivity at each frequency when measuring eddy current flaws under two different test frequency conditions is the same EDM slit having a height equal to or greater than the skin depth defined by the equation [1]. A defect height evaluation method, characterized in that the amplitude value is obtained when eddy current flaw detection is performed.
f: Lowest test frequency when measuring eddy current flaws
6. The defect height evaluation method according to claim 5, wherein when the flaw detection sensitivity is different at each frequency, the flaw detection sensitivity is standardized to make the flaw detection sensitivity the same.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004305036A JP2006118902A (en) | 2004-10-20 | 2004-10-20 | Defect height evaluation method by eddy current testing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004305036A JP2006118902A (en) | 2004-10-20 | 2004-10-20 | Defect height evaluation method by eddy current testing |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006118902A true JP2006118902A (en) | 2006-05-11 |
Family
ID=36536937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004305036A Pending JP2006118902A (en) | 2004-10-20 | 2004-10-20 | Defect height evaluation method by eddy current testing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006118902A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012068061A (en) * | 2010-09-21 | 2012-04-05 | Chugoku Electric Power Co Inc:The | Nondestructive inspection apparatus and nondestructive inspection method |
CN105004786A (en) * | 2015-08-17 | 2015-10-28 | 苏州热工研究院有限公司 | Assessment method for heat exchange tube wall sinking degree based on eddy current testing |
JP7559594B2 (en) | 2021-02-12 | 2024-10-02 | 株式会社プロテリアル | Quality evaluation method and manufacturing method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5811571B2 (en) * | 1977-05-13 | 1983-03-03 | 三菱重工業株式会社 | Eddy current flaw detection method |
JPH1164294A (en) * | 1997-08-26 | 1999-03-05 | Ishikawajima Harima Heavy Ind Co Ltd | Eddy current flaw detection sensor and flaw detection method using it |
-
2004
- 2004-10-20 JP JP2004305036A patent/JP2006118902A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5811571B2 (en) * | 1977-05-13 | 1983-03-03 | 三菱重工業株式会社 | Eddy current flaw detection method |
JPH1164294A (en) * | 1997-08-26 | 1999-03-05 | Ishikawajima Harima Heavy Ind Co Ltd | Eddy current flaw detection sensor and flaw detection method using it |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012068061A (en) * | 2010-09-21 | 2012-04-05 | Chugoku Electric Power Co Inc:The | Nondestructive inspection apparatus and nondestructive inspection method |
CN105004786A (en) * | 2015-08-17 | 2015-10-28 | 苏州热工研究院有限公司 | Assessment method for heat exchange tube wall sinking degree based on eddy current testing |
JP7559594B2 (en) | 2021-02-12 | 2024-10-02 | 株式会社プロテリアル | Quality evaluation method and manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2539086C (en) | Method and apparatus for eddy current detection of material discontinuities | |
Janovec et al. | Eddy current array inspection of riveted joints | |
CN102393419A (en) | Nondestructive detection method for early damage of ferromagnetic material | |
CN104439747B (en) | A kind of method detecting identification P92 steel weld metal microcrack | |
JP5535296B2 (en) | Test piece for eddy current testing, eddy current testing method using the same, and manufacturing method thereof | |
Yusa et al. | Probability of detection analyses of eddy current data for the detection of corrosion | |
JP2006118902A (en) | Defect height evaluation method by eddy current testing | |
Raude et al. | Stress corrosion cracking direct assessment of carbon steel pipeline using advanced eddy current array technology | |
Raude et al. | Advances in carbon steel weld inspection using tangential eddy current array | |
Al-Qadeeb | Tubing inspection using multiple NDT techniques | |
Watson et al. | Surface-breaking flaw detection in mild steel welds using quantum well hall effect sensor devices | |
CN108982651A (en) | Exchange leakage field sensor based on ferromagnetic butt plates welding seam crack detection and the method using its progress crack detection | |
Anandika et al. | Non-destructive measurement of artificial near-surface cracks for railhead inspection | |
Watson et al. | A Comparative Study of Electromagnetic NDE Methods and Quantum Well Hall Effect Sensor Imaging for Surface-Flaw Detection in Mild Steel Welds | |
JPS63101742A (en) | Defect inspection | |
Jax et al. | Acoustic emission inspections of nuclear components considering recent research programmes | |
JP5520061B2 (en) | Internal defect evaluation method by eddy current method | |
Li et al. | An electromagnetic Helmholtz-coil probe for arbitrary orientation crack detection on the surface of pipeline | |
JP2643000B2 (en) | High-temperature damage evaluation method for weld heat affected zone | |
Prabhakaran et al. | Time of flight diffraction: an alternate non-destructive testing procedure to replace traditional methods | |
Kania et al. | Investigation and Assessment of Low-Frequency ERW Seam Imperfections by EMAT and CMFL ILI | |
Smetana et al. | Pulsed Eddy Currents: A New Trend in Non-destructive Evaluation of Conductive Materials | |
JP2004239692A (en) | Ultrasonic flaw detection method and apparatus | |
Xie et al. | Detection of flaws in austenitic stainless steel plate using eddy current testing | |
KRAJČOVIČ et al. | Eddy current inspection of WWER steam generator tubes-sensitivity of bobbin probe technique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060425 |
|
A621 | Written request for application examination |
Effective date: 20070426 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090707 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100223 |
|
A02 | Decision of refusal |
Effective date: 20100914 Free format text: JAPANESE INTERMEDIATE CODE: A02 |