JPH0832592B2 - Composite material - Google Patents
Composite materialInfo
- Publication number
- JPH0832592B2 JPH0832592B2 JP2234837A JP23483790A JPH0832592B2 JP H0832592 B2 JPH0832592 B2 JP H0832592B2 JP 2234837 A JP2234837 A JP 2234837A JP 23483790 A JP23483790 A JP 23483790A JP H0832592 B2 JPH0832592 B2 JP H0832592B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- silicon carbide
- composite material
- vapor deposition
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002131 composite material Substances 0.000 title claims description 16
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 28
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 23
- 239000013078 crystal Substances 0.000 claims description 12
- 238000005229 chemical vapour deposition Methods 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 11
- 238000002441 X-ray diffraction Methods 0.000 claims description 3
- 238000005498 polishing Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910003902 SiCl 4 Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
- Optical Elements Other Than Lenses (AREA)
- Ceramic Products (AREA)
Description
本発明は、高精度の平滑表面を要求されるSOR光用レ
ーザ反射鏡,X線レーザ反射鏡等の構成材として好適に使
用される複合材であって、特に、基体の表面に炭化珪素
の化学蒸着膜を被覆形成してなる複合材に関するもので
ある。The present invention is a composite material that is preferably used as a constituent material for a SOR light laser reflecting mirror, an X-ray laser reflecting mirror, etc., which requires a highly accurate smooth surface, and in particular, a silicon carbide The present invention relates to a composite material formed by coating a chemical vapor deposition film.
一般に、レーザ反射鏡としては、銅等からなる基材を
鏡面研磨し、その上に金を蒸着させたもの、基材上に使
用波長から算出,設計した膜厚の多層膜をコーティング
して、干渉効果を利用するようにしたもの等が良く知ら
れている。しかし、かかるレーザ反射鏡は、比較的エネ
ルギ密度が小さく且つ長波長の領域(例えば、可視光
線,赤外線)で使用する場合はともかく、短波長域の高
密度エネルギ光(例えば、真空紫外線,軟X線)を扱う
場合には鏡面の剥離,歪,熱損等を招来し易く、その対
応が極めて困難なものであった。 そこで、近時、かかる不都合を生じないレーザ反射鏡
として、炭化珪素又はカーボンの焼結体の表面に炭化珪
素を化学蒸着してなる複合材を使用したものが有望視さ
れている。すなわち、このレーザ反射鏡は、皮膜(CVD-
SiC)の表面を平滑に研磨して製作されるものである
が、CVD-SiCが耐熱性,熱伝導性,堅牢性等の物理的性
質に優れ且つ短波長域で高反射率を示すといった光学的
性質に優れるものであることから、短波長域の高密度エ
ネルギ光を扱う場合にも、上記した不都合を生じること
がないのである。 そして、上記複合材がレーザ反射鏡の構成材として好
適に使用されるためには、その表面を緻密な平滑面とで
きることが必要であることから、CVD-SiCの膜質は高純
度,無欠陥(無孔)を目標として努力がなされており、
またCVD-SiCの結晶の粗大柱状化は粒界に欠陥を生じ易
く且つ表面も粗くなり易いことから、結晶の微細化を求
める傾向にある。Generally, as a laser reflecting mirror, a base material made of copper or the like is mirror-polished, and gold is vapor-deposited on the base material, and the base material is coated with a multilayer film having a thickness calculated and calculated from the used wavelength. Those that make use of the interference effect are well known. However, such a laser reflecting mirror has a relatively low energy density and is used in a long-wavelength region (for example, visible light or infrared light), regardless of high-density energy light in a short wavelength region (for example, vacuum ultraviolet light, soft X-ray). When dealing with a wire, peeling of the mirror surface, distortion, heat loss, etc. are likely to occur, and it is extremely difficult to deal with it. Therefore, in recent years, as a laser reflecting mirror which does not cause such an inconvenience, one using a composite material formed by chemical vapor deposition of silicon carbide on the surface of silicon carbide or a sintered body of carbon is regarded as promising. That is, this laser reflecting mirror has a film (CVD-
Although it is manufactured by polishing the surface of (SiC) smoothly, CVD-SiC has excellent physical properties such as heat resistance, thermal conductivity, and robustness, and exhibits high reflectance in the short wavelength region. Since it has excellent dynamic properties, the above-mentioned inconvenience does not occur even when handling high-density energy light in the short wavelength region. In order for the above composite material to be suitably used as a constituent material of a laser reflecting mirror, it is necessary that its surface can be a dense smooth surface. Therefore, the film quality of CVD-SiC is high purity and defect-free ( Efforts are being made with the goal of
In addition, coarse columnarization of CVD-SiC crystals tends to cause defects in grain boundaries and also tends to roughen the surface, so that there is a tendency to demand finer crystals.
しかしながら、従来の複合材にあっては、CVD-SiCに
おける結晶の配向性が充分でなく、異なる結晶面が混在
しているため、SOR光用レーザ反射鏡等において要求さ
れているような超平滑面(一般に、表面粗度RMS10Å以
下)を得ることが困難であった。 すなわち、結晶面の方位の差によって硬さが異なり、
研磨のされ易さつまり研磨速度が異なることから、結晶
の配向性が充分でないと、上記した如き超平滑面を得る
には、極めて長時間の研磨労力と高度且つ特殊な研磨技
術を必要とし、製作経済上問題があった。 しかも、かかる研磨作業を行った場合にも、なお結晶
方位の異なる粒界部において段差の発生を避け難く、超
平滑面に研磨することが実質的に困難であった。 本発明は、かかる点に鑑みてなされたもので、表面を
容易に且つ高精度に研磨し得て、レーザ反射鏡等の構成
材として好適に使用することができる複合材を提供する
ことを目的とするものである。However, in the conventional composite material, the crystal orientation in CVD-SiC is not sufficient and different crystal planes are mixed, so the ultra-smoothness required in SOR laser reflectors etc. It was difficult to obtain a surface (generally, a surface roughness RMS of 10 Å or less). That is, the hardness differs depending on the difference in the orientation of the crystal plane,
Since the easiness of polishing, that is, the polishing rate is different, if the crystal orientation is not sufficient, to obtain a super-smooth surface as described above, extremely long polishing labor and high-level and special polishing technology are required, There was a problem in production economy. Moreover, even when such a polishing operation is performed, it is difficult to avoid the occurrence of a step at the grain boundary portions having different crystal orientations, and it is substantially difficult to polish to a super smooth surface. The present invention has been made in view of the above points, and an object thereof is to provide a composite material capable of easily and highly accurately polishing the surface and suitably used as a constituent material of a laser reflecting mirror or the like. It is what
この課題を解決した本発明の複合材は、密度80%以上
の炭化珪素焼結体の表面に炭化珪素の化学蒸着膜である
下地膜を形成してなる基体と、この基体の下地膜表面に
化学蒸着により形成した炭化珪素の皮膜と、からなるも
のである。この複合材にあっては、皮膜の膜厚を50〜50
0μmとしてある。さらに、この皮膜の結晶面において
は、ミラー指数表示における(111)面の、(220)面及
びその他の面に対するX線回折強度比を1000以上として
ある。 すなわち、この複合材は基体の表面に高純度のβ型炭
化珪素を化学蒸着して得られるが、その蒸着を行う上に
おいて、ミラー指数表示における(220)面及びその他
の面が(111)面に配向せしめられるように、蒸着条件
を調整したものである。このとき、(111)面の、(22
0)面及びその他の面に対するX線回折強度比が、米国A
STM規格に基づく粉末X線回折値に比較して、そのピー
ク強度において1000以上となるようにする。また、化学
蒸着膜の膜厚は、研磨代を見込んで、50〜500μmとな
るようにしておく。 また、基体としては、炭化珪素の焼結体を使用するこ
とが好ましいが、CVD-SiC本来の特性を最大限有効に発
揮させるためには、特に上記した如き膜厚50〜500μm
の高配向膜を良好に形成しておくためには、高配向膜と
の密着性に加えて、化学蒸着時に基体からの不純物の溶
出がないことが条件とされ、基体を高純度のものとして
おく必要がある。そこで、本発明では、計算密度80%以
上の緻密なα型炭化珪素又はβ型炭化珪素の焼結体を使
用している。 ところで、特定の結晶面に強く配向させるためには、
皮膜の蒸着条件を厳密に管理する必要があることは勿論
であるが、その他に、皮膜の形成面つまり基体の表面形
態も重要な条件となる。すなわち、基本がカーボンの焼
結体の如く空孔が多数存在するようなものであるときに
は、結晶面の配向には限度があり、上記した高配向膜の
形成は望むべくもないことは勿論であるが、上記した如
く基体を緻密な炭化珪素焼結体とし、被蒸着面を平滑に
研磨するのみでは、高配向膜の形成は困難であり、再現
性に乏しい。 したがって、本発明では、上記した如く、基体を密度
80%以上の炭化珪素焼結体で構成し、更にこの焼結体の
表面に炭化珪素の化学蒸着膜である下地膜を形成して、
この下地膜の表面に上記高配向膜を形成するようにして
いるのである。なお、基体の表面粗度はRMS500Å以下に
調えておくことが好ましい。The composite material of the present invention, which has solved this problem, has a base formed by forming a base film which is a chemical vapor deposition film of silicon carbide on the surface of a silicon carbide sintered body having a density of 80% or more, and a base film surface of the base. And a silicon carbide film formed by chemical vapor deposition. In this composite material, the film thickness of the film is 50-50
It is set to 0 μm. Further, in the crystal plane of this film, the X-ray diffraction intensity ratio of the (111) plane in the Miller index display to the (220) plane and other planes is 1000 or more. That is, this composite material can be obtained by chemically vapor-depositing high-purity β-type silicon carbide on the surface of a substrate, and in performing the vapor deposition, the (220) plane and other planes in the Miller index display are (111) planes. The vapor deposition conditions were adjusted so as to be oriented in the direction. At this time, (22) of (111) plane
X-ray diffraction intensity ratio for the
Compared to the powder X-ray diffraction value based on the STM standard, the peak intensity should be 1000 or more. The thickness of the chemical vapor deposition film is set to 50 to 500 μm in consideration of the polishing allowance. Further, it is preferable to use a sintered body of silicon carbide as the substrate, but in order to maximize the original characteristics of CVD-SiC, the film thickness of 50 to 500 μm as described above is particularly preferable.
In order to satisfactorily form the highly-aligned film of, the condition is that, in addition to the adhesion to the highly-aligned film, there is no elution of impurities from the substrate during chemical vapor deposition. I need to put it. Therefore, in the present invention, a dense α-type silicon carbide or β-type silicon carbide sintered body having a calculated density of 80% or more is used. By the way, in order to strongly orient to a specific crystal plane,
Needless to say, it is necessary to strictly control the vapor deposition conditions of the coating, but in addition, the surface on which the coating is formed, that is, the surface morphology of the substrate, is also an important condition. That is, when the number of pores is basically the same as that of a sintered body of carbon, there is a limit to the orientation of crystal planes, and it is needless to say that the formation of the above highly oriented film is not desirable. However, it is difficult to form the highly oriented film and the reproducibility is poor only by using the dense silicon carbide sintered body as the base and polishing the surface to be vapor-deposited smoothly as described above. Therefore, in the present invention, as described above,
It is composed of 80% or more of silicon carbide sintered body, and a base film which is a chemical vapor deposition film of silicon carbide is further formed on the surface of this sintered body,
The highly oriented film is formed on the surface of the base film. The surface roughness of the substrate is preferably adjusted to RMS 500Å or less.
以下、本発明の構成を第1図に示す実施例に基づいて
具体的に説明する。 この実施例の複合材は、第1図に示す如く、基体1の
表面1′bにβ型炭化珪素の皮膜2を形成してなる。 基体1は、α型炭化珪素の焼結体1aの表面をRMS1000
Åに研磨した上、その研磨表面1′aにβ型炭化珪素を
化学蒸着して約200μmの下地膜1bを被覆形成し、更に
下地膜1bの表面を約50μmの厚さに亘って研削すること
によってRMS50Åの平滑面1′bに調えたものである。
下地膜1bの形成は、50mmHgの減圧CVD法(反応ガスとし
てSiCl4,CCl4,H2を使用し、成膜速度は100μm/hrとし
た)により行った。 皮膜2は、基体1の研磨表面1′bに純粋のβ型炭化
珪素を約100μmの厚さに亘って化学蒸着させたもので
ある。皮膜2の形成は、30mmHgの減圧CVD法(反応ガス
としてSiCl4,CCl4,H2を使用し、成膜速度は50μm/hrと
した)により行い、皮膜2における結晶面を(111)面
に配向せしめた。 そして、上記複合材の表面2をピッチ盤によりタイヤ
モンド微細粉を使用して研磨したところ、チッピング,
スクラッチを生ずることなく、RMS3Å以下の超平滑面を
容易に得ることができた。Hereinafter, the configuration of the present invention will be specifically described based on the embodiment shown in FIG. As shown in FIG. 1, the composite material of this embodiment has a surface 1'b of a substrate 1 on which a β-type silicon carbide film 2 is formed. The substrate 1 is formed by applying the RMS1000 surface to the surface of the α-type silicon carbide sintered body 1a.
After polishing to Å, the polishing surface 1'a is chemically vapor-deposited with β-type silicon carbide to form a base film 1b having a thickness of about 200 μm, and the surface of the base film 1b is ground to a thickness of about 50 μm. By doing so, the smooth surface 1'b of RMS50Å was prepared.
The base film 1b was formed by a 50 mmHg low-pressure CVD method (SiCl 4 , CCl 4 , H 2 was used as a reaction gas, and the film formation rate was 100 μm / hr). The coating 2 is formed by chemical vapor deposition of pure β-type silicon carbide on the polished surface 1′b of the substrate 1 to a thickness of about 100 μm. The film 2 was formed by a 30 mmHg low pressure CVD method (SiCl 4 , CCl 4 , H 2 was used as a reaction gas, and the film formation rate was 50 μm / hr), and the crystal plane of the film 2 was the (111) plane. It was oriented to. Then, when the surface 2 of the composite material was polished by a pitch machine using fine powder of tire mond, chipping,
It was possible to easily obtain a super smooth surface of RMS3Å or less without causing scratches.
以上の説明から容易に理解されるように、本発明の複合
材は、炭化珪素の化学蒸着膜である皮膜を(111)面に
強く配向する高配向膜としたことから、結晶方位の差に
よる段差やチッピング等を生じることなく、超平滑面に
表面研磨することができ、しかも表面研磨を極めて容易
に行うことができるものである。したがって、本発明に
よれば、高密度エネルギ光用反射鏡の構成材等として極
めて実用性に富む複合材を提供することができる。As can be easily understood from the above description, the composite material of the present invention has a highly oriented film, which is a chemical vapor deposition film of silicon carbide, that strongly orients in the (111) plane. The surface can be polished to an ultra-smooth surface without causing steps or chipping, and the surface can be extremely easily polished. Therefore, according to the present invention, it is possible to provide a composite material that is extremely practical as a constituent material of a reflecting mirror for high-density energy light.
第1図は本発明に係る複合材の一実施例を示す断面図で
ある。 1……基体、1a……炭化珪素焼結体、1b……下地膜、
1′b……基体の表面、2……皮膜。FIG. 1 is a sectional view showing an embodiment of the composite material according to the present invention. 1 ... Substrate, 1a ... Sintered silicon carbide, 1b ... Base film,
1'b ... substrate surface, 2 ... film.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G02B 1/02 5/08 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location G02B 1/02 5/08 A
Claims (1)
化珪素の化学蒸着膜である下地膜を形成してなる基体
と、この基体の下地膜表面に化学蒸着により形成した炭
化珪素の皮膜と、からなる複合材であって、この皮膜の
膜厚が50〜500μmであり、且つ該皮膜の結晶面におい
て、ミラー指数表示における(111)面の、(220)面及
びその他の面に対するX線回折強度比が1000以上となっ
ていることを特徴とする複合材。1. A substrate having a base film which is a chemical vapor deposition film of silicon carbide formed on the surface of a silicon carbide sintered body having a density of 80% or more, and silicon carbide formed by chemical vapor deposition on the surface of the base film of the base. And a film having a film thickness of 50 to 500 μm, and in the crystal plane of the film, the (111) face, the (220) face and other faces in the Miller index display. The composite material is characterized in that the X-ray diffraction intensity ratio is 1000 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2234837A JPH0832592B2 (en) | 1990-09-05 | 1990-09-05 | Composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2234837A JPH0832592B2 (en) | 1990-09-05 | 1990-09-05 | Composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04114971A JPH04114971A (en) | 1992-04-15 |
JPH0832592B2 true JPH0832592B2 (en) | 1996-03-29 |
Family
ID=16977149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2234837A Expired - Fee Related JPH0832592B2 (en) | 1990-09-05 | 1990-09-05 | Composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0832592B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3154053B2 (en) * | 1997-07-02 | 2001-04-09 | 日本ピラー工業株式会社 | SiC composite and method for producing the same |
JP4043003B2 (en) * | 1998-02-09 | 2008-02-06 | 東海カーボン株式会社 | SiC molded body and manufacturing method thereof |
JP3857446B2 (en) * | 1998-12-01 | 2006-12-13 | 東海カーボン株式会社 | SiC molded body |
JP2001203190A (en) * | 2000-01-20 | 2001-07-27 | Ibiden Co Ltd | Component for semiconductor manufacturing machine and the machine |
JP4702712B2 (en) * | 2001-07-27 | 2011-06-15 | 東海カーボン株式会社 | Tubular SiC molded body and method for producing the same |
WO2014148149A1 (en) * | 2013-03-22 | 2014-09-25 | イビデン株式会社 | Mirror and method for manufacturing same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0692634B2 (en) * | 1987-02-26 | 1994-11-16 | 三井造船株式会社 | mirror |
-
1990
- 1990-09-05 JP JP2234837A patent/JPH0832592B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04114971A (en) | 1992-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4142006A (en) | Method of making a high power laser mirror | |
US4214818A (en) | Hot pressed SiC-high power laser mirror | |
JPH0832591B2 (en) | Composite material | |
JPH03505611A (en) | infrared transparent material | |
JP2918860B2 (en) | Specular | |
JPH0832592B2 (en) | Composite material | |
CN113529050B (en) | Plasma etching method for polishing diamond film and product thereof | |
JP2738629B2 (en) | Composite members | |
JP3220315B2 (en) | Covering member | |
JPH08290968A (en) | Composite material | |
JPS63210276A (en) | Member having sic film | |
JPS63283858A (en) | Hard complex powder polishing material | |
JP3252926B2 (en) | Diamond coated body and method for producing the same | |
JP3857742B2 (en) | Glass mold for optical element molding | |
JPH04358068A (en) | Member coated with sic by cvd | |
US4339471A (en) | Method of coating substrates with an abrasive layer | |
Windischmann | 75-mm diameter diamond x-ray membrane | |
JPH06262525A (en) | Grinding wheel and its manufacture | |
JPH0393695A (en) | Polycrystal diamond and production thereof | |
JPH05270820A (en) | Alumina powder, sintered compact using the same and its production | |
JP2696936B2 (en) | Short wavelength mirror | |
JP3735627B2 (en) | Method for manufacturing reflector member | |
JPH0817693A (en) | Hard material coated wafer and method of manufacturing the same | |
JPS5999401A (en) | Silicon carbide mirror | |
JPH0224005A (en) | Diamond coated tool and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |