JP3857446B2 - SiC molded body - Google Patents
SiC molded body Download PDFInfo
- Publication number
- JP3857446B2 JP3857446B2 JP34148698A JP34148698A JP3857446B2 JP 3857446 B2 JP3857446 B2 JP 3857446B2 JP 34148698 A JP34148698 A JP 34148698A JP 34148698 A JP34148698 A JP 34148698A JP 3857446 B2 JP3857446 B2 JP 3857446B2
- Authority
- JP
- Japan
- Prior art keywords
- cvd
- sic
- molded body
- sic molded
- base material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、高純度で耐熱性や強度特性に優れ、特に光不透過性に優れ、例えば半導体製造用装置の熱処理装置用遮蔽体、均熱リング等の各種耐熱部材、あるいは半導体製造用装置の拡散炉装置、エッチング装置、CVD装置などに用いられるダミーウエハやサセプター等の各種部材として好適に用いることのできるSiC成形体に関する。
【0002】
【従来の技術】
SiCは耐熱性、耐蝕性、強度特性等の材質特性が優れており、各種工業用の部材として有用されている。特に、CVD法(化学的気相蒸着法)を利用して作製したSiC成形体(CVD−SiC成形体)は、緻密で高純度であるため半導体製造用の各種部材をはじめ高純度が要求される用途分野において好適に用いられている。CVD法によるSiC成形体は原料ガスを気相反応させて基材面上にSiCの結晶粒を析出させ、結晶粒の成長により被膜を形成したのち基材を除去することにより作製されるもので、材質的に緻密、高純度で組織の均質性が高いという特徴がある。
【0003】
このCVD−SiC成形体は純度の高い程、光の透過性が高いことが知られており、半導体製造装置や熱処理装置などの部材として使用する場合に用途分野によっては光透過性が問題となることがある。例えば、半導体の製造プロセスには急速熱アニーリング(rapid thermal annealing)、急速熱クリーニング(rapid thermal cleaning)、急速熱化学気相堆積(rapid thermal chemical vapor deposition)、急速熱酸化(rapid thermal oxidation)、急速熱窒化(rapid thermal nitridation)などの急速に熱処理する工程(RTPと呼ばれる)がある。
【0004】
このRTPではウエハ基板の精確な温度管理が必要となるが、パイロメーターにより測温する場合にはウエハ基板の処理面とは反対の面に黒体キャビティを形成するときにウエハ基板を支持する部材などの光の透過があると外乱光となって精確な温度管理が困難となる問題がある。そのため、特開平6−341905号公報では加熱要素からもれた光が、反射キャビティに入るのを防止するために、隔壁やウエハを支持するガードリングがウエハに沿って配置されて、加熱要素からもれた光を吸収する黒色または灰色を有し、このガードリングはシリコンから作られることが提案されており、また特開平8−255800号公報ではウエハ基板を支持する支持リングをシリコンや酸化珪素とし、支持リングを保持するシリンダはパイロメーターの周波数の範囲で不透明となるようシリコンをコートした石英製とすることが提案されている。
【0005】
しかしながら、特開平6−341905号公報や特開平8−255800号公報に開示されているシリコンやシリコンをコートしたものでは繰り返し使用するための酸洗浄に対する耐蝕性に劣るため、コートしたシリコンの厚みが次第に減少して光不透過性が低下する問題点がある。
【0006】
また、プラズマエッチング処理においてウエハのエッチング条件を安定化させるために用いるダミーウエハやCVD処理においてウエハの条件を安定化させるために用いられるダミーウエハには光透過性が小さいことが要求される。すなわち、ウエハは搬送用ロボットで支持ボートに装着されるが、ウエハの認識はレーザー光を照射することにより行われるので、ウエハの光透過性が高いとロボットがウエハの位置を的確に認識することができず、反応装置内の所定の位置にウエハを装着することが困難となる問題点がある。
【0007】
【発明が解決しようとする課題】
上記の問題点を排除するためにCVD−SiC成形体の性状と光特性との関係について研究した結果、光透過性の低いSiC成形体として本出願人はCVD法により得られるCVD−SiC成形体であって、その表面部あるいは内部に少なくとも1層の粒子性状の異なるSiC層を有し、300 〜2500nmの波長域における光透過率が0.4 %以下、2500nmを超える波長域における光透過率が2.5 %以下であることを特徴とするSiC成形体(特願平10−42906 号)やCVD法により得られるβ型結晶からなるCVD−SiC成形体であって、その表面部あるいは内部に厚さ2 〜20μm の可視光不透過性CVD−SiC層が少なくとも1層形成されてなり、300 〜2500nmの波長域における光透過率が0.4 %以下であることを特徴とするSiC成形体(特願平10−294959号)を開発、提案した。
【0008】
上記の発明は、CVD−SiC成形体の材質組織として光を散乱・反射させる層が存在すると光透過性を低くできることを見出した結果に基づくものであり、本発明者はこれらの知見を基に更に研究を進めた結果、CVD−SiC成形体中に結晶構造の乱れを形成すると、効果的に光透過率を低下させ得ることを見出した。本発明はこの知見に基づいて開発されたものであって、その目的は光不透過性に優れ、例えば半導体製造用装置の熱処理装置用遮蔽体、均熱リング等の各種耐熱部材、あるいは半導体製造用装置の拡散炉装置、エッチング装置、CVD装置などに用いられるダミーウエハやサセプター等の各種部材として好適に用いることのできるSiC成形体を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するための本発明によるSiC成形体は、CVD法により作製され、結晶面(111) に対する(200) 、(220) 、(311) 面のX線回折による回折ピークの強度比が100:45〜55:15〜25:35〜45の結晶性状を備えたCVD−SiC成形体を母材とし、その表面部あるいは内部に結晶面(111) に対する(200) 、(220) 、(311) 面のX線回折による回折ピークの強度比が100:1〜10:1〜5:1〜6の結晶性状を有するCVD−SiC層が少なくとも1層形成されてなり、CVD−SiC層の厚さがCVD−SiC成形体の厚さの10〜50%であることを構成上の特徴とする。
【0010】
【発明の実施の形態】
本発明のSiC成形体は、CVD法によって基材面にSiCを析出させ、析出したSiCの被膜を形成したのち基材を除去することにより作製されるCVD−SiC成形体を母材として、この母材の表面部あるいは内部に母材とは結晶性状の異なる、すなわち結晶構造の乱れたCVD−SiC層を少なくとも1層形成した組織性状からなるものである。
【0011】
CVD法によるSiC被膜の形成は1分子中にSi原子とC原子とを含む、例えばCH3 SiCl3 、(CH3 )3 SiCl、CH3 SiHCl2 などのハロゲン化有機珪素化合物を水素ガスなどのキャリアガスとともに加熱して還元熱分解させる方法、あるいはSiCl4 などの珪素化合物とCH4 などの炭素化合物とを加熱反応させる方法、などにより基材面上にSiCを析出させることにより行われる。
【0012】
基材面にSiC被膜が形成されるプロセスは、原料ガスが気相反応によりSiCを析出して基材面上にSiCの核が生成し、このSiC核が成長してアモルファス質SiCに変化し、更に微細な多結晶質SiC粒を経て柱状組織の結晶組織へと成長を続けてSiC被膜が形成されるものである。したがって、CVD−SiC成形体の強度特性、熱的特性、光特性などの性状は基材面上に析出して形成されたSiC被膜の結晶性状により異なったものとなる。
【0013】
例えば、CVD−SiC成形体の組織中に結晶構造の異なる層、すなわち結晶構造の乱れたSiC層が存在すると結晶組織が変化する界面において光特性が変化して複雑な光の屈折、散乱、反射などの現象が生じて光の一部が閉じ込められることとなり、光の透過能の減少、すなわち光不透過性の増大が図られることとなる。
【0014】
本発明のSiC成形体は、母材であるCVD−SiC成形体の結晶構造をX線回折による結晶面(111) に対する(200) 、(220) 、(311) 面の回折ピークの強度比を100:45〜55:15〜25:35〜45の結晶性状とし、結晶構造の異なるCVD−SiC層としてX線回折による結晶面(111) に対する(200) 、(220) 、(311) 面の回折ピークの強度比を100:1〜10:1〜5:1〜6の結晶性状に特定することにより光透過性の減少、すなわち光不透過性の増大を図るものである。なお、X線回折により求める回折ピーク値はCuのKαで測定した値である。
【0015】
この結晶性状の異なるCVD−SiC層は母材の表層部あるいは内部に少なくとも1層形成することにより光透過性を減少させることができるが、CVD−SiC層を2〜3層に分散させて形成すると光透過性をより減少させることができるので好ましい。また、形成するCVD−SiC層の厚さはSiC成形体の厚さの10〜50%の範囲に設定される。CVD−SiC層の厚さが10〜50%の範囲であると、光の屈折、散乱、反射などの光特性の変化がより効果的に起こるため光透過性を低下することができる。
【0016】
SiC成形体は、除去可能な基材面にCVD反応によってSiCを析出させてSiC被膜を被着形成したのち、基材を除去することにより作製される。除去可能な基材としては、炭素系材料、シリコンなどの金属系材料、石英などが用いられるが、加工性が良好で、空気中で熱処理することにより容易に燃焼除去可能な炭素系、特に黒鉛材が好適に用いられる。なお、黒鉛材は可及的に不純物が少ない高純度のものが好ましい。SiC被膜を形成後、基材を除去する方法は、切削除去、研磨除去、空気中で加熱する燃焼除去、あるいはこれらを適宜に組み合わせて行うことができる。
【0017】
CVD反応は、反応炉内に例えば黒鉛基材をセットして系内の空気を排気したのち加熱して所定の温度に保持し、次いで水素ガスを送入して常圧水素ガス雰囲気に置換した後、水素ガスをキャリアガスとしてCH3 SiCl3 、(CH3 )3 SiCl、CH3 SiHCl2 などのハロゲン化有機珪素化合物を原料ガスとして送入して還元熱分解させる方法、あるいはSiCl4 などの珪素化合物とCH4 などの炭素化合物とを送入して加熱反応させる方法、などにより黒鉛基材面上にSiC被膜を被着形成する。SiC被膜を形成したのち黒鉛基材を除去することにより母材となるCVD−SiC成形体が作製される。
【0018】
このSiC被膜を形成する過程において、CVD反応条件、例えばハロゲン化有機珪素化合物と水素ガス、あるいは珪素化合物と炭素化合物との混合比、送入量、反応温度、反応時間、反応炉内圧力などを適宜な値に設定制御することにより母材の表層部あるいは内部に結晶性状の異なるCVD−SiC層を少なくとも1層形成することができる。例えば、母材を作製するCVD反応条件で所定時間反応させて基材面に所望膜厚のSiC被膜を被着形成したのち、CVD反応条件を設定変更して所定時間CVD反応を行って結晶性状の異なるCVD−SiC層を形成し、次いで母材作製時のCVD反応条件に戻して所定時間SiC被膜を被着形成した後、基材を除去することにより母材内部に結晶性状の異なるCVD−SiC層が1層形成されたCVD−SiC成形体を得ることができる。
【0019】
【実施例】
以下、本発明の実施例を比較例と対比して具体的に説明する。
【0020】
実施例1
直径202mm、厚さ6mmの高純度等方性黒鉛材(灰分 10ppm以下)を基材として、この黒鉛基材をCVD反応装置のチャンバー内にセットして加熱した。チャンバー内を水素ガスで置換後、原料ガスにCH3 SiCl3 、キャリアガスに水素ガスを用い、混合ガス中のCH3 SiCl3 の濃度を7.5vol %に設定して190 l/minの流量でチャンバー内に送入し、1400℃の温度で14時間、次いで1300℃の温度で2時間、再び1400℃の温度で14時間CVD反応を行って黒鉛基材面にSiC被膜を被着した。次いで、横断方向に切断したのち空気中で加熱して黒鉛基材を燃焼除去し、更に表面を研磨加工して直径200mm、厚さ0.5mmのSiC成形体を作製した。このようにして、内部に結晶性状の異なるCVD−SiC層を1層形成したCVD−SiC成形体を作製した。
【0021】
実施例2〜8、比較例4〜5
CVD反応の反応温度及び時間を設定変更したほかは、実施例1と同じ方法によりSiC成形体を作製した。
【0022】
比較例1〜3
CVD反応の反応温度を一定とし、反応時間を設定変更したほかは、実施例1と同じ方法によりSiC成形体を作製した。
【0023】
このようにして作製したSiC成形体のCVD反応条件を対比して表1に示した。また島津製作所製自記分光光度計を用いて波長0.5、2及び10μm の光に対する光透過率の測定、及びX線回折により結晶面 (111) (200) (220) (311)面の回折強度の相対比率を測定した。なお、内部に形成したCVD−SiC層のX線回折は表面を研磨加工して内部のCVD−SiC層を露出させて測定した。得られた結果を表2に示した。
【0024】
【表1】
【0025】
【表2】
【0026】
表1、2の結果から、反応温度1400℃で形成したCVD−SiC成形体の母材の中央部に反応温度1300℃で形成したCVD−SiC層を1層形成し、その厚さがCVD−SiC成形体の20%である実施例1では光透過率は0.3%以下と低い値を示し、CVD−SiC層の厚さが50%である実施例2では光透過率は更に低下することが判る。なお、CVD−SiC層を形成する反応温度が1350℃とCVD−SiC成形体の形成温度である1400℃との差が小さい実施例3、4では結晶構造の乱れがやや少なくなるために実施例1、2に比べて光透過率の低下が少なくなる傾向が認められる。また、CVD−SiC層を2層形成した実施例5〜8では光透過率がより低下することが認められる。これに対して、CVD−SiC層を形成しない比較例1〜3では光透過率の低下は認められず、またCVD−SiC層の厚さが小さい比較例4、5では光透過率を充分に低下させることができないことが判る。
【0027】
【発明の効果】
以上のとおり、本発明のSiC成形体によれば母材であるCVD−SiC成形体の表面部あるいは内部に結晶構造が乱れた特定の結晶性状を有するCVD−SiC層が少なくとも1層形成され、またその厚さを特定することにより、光透過率を効果的に低下させることができる。したがって、光不透過性に優れ、遮蔽体やダミーウエハ等の半導体製造用の各種部材をはじめ熱処理装置用の各種耐熱部材等として好適に用いることが可能となる、[0001]
BACKGROUND OF THE INVENTION
The present invention is highly pure and excellent in heat resistance and strength characteristics, particularly in light impermeability. For example, a heat treatment apparatus shield for a semiconductor manufacturing apparatus, various heat resistant members such as a soaking ring, or a semiconductor manufacturing apparatus. The present invention relates to a SiC molded body that can be suitably used as various members such as a dummy wafer and a susceptor used in a diffusion furnace apparatus, an etching apparatus, a CVD apparatus, and the like.
[0002]
[Prior art]
SiC is excellent in material properties such as heat resistance, corrosion resistance and strength properties, and is useful as various industrial members. In particular, an SiC molded body (CVD-SiC molded body) produced by using a CVD method (chemical vapor deposition method) is dense and highly pure, so high purity is required including various members for semiconductor manufacturing. It is suitably used in certain application fields. A SiC molded body by the CVD method is prepared by causing a gas phase reaction of a raw material gas to deposit SiC crystal grains on the surface of the base material, forming a film by growing the crystal grains, and then removing the base material. The material is dense, highly pure, and highly homogeneous.
[0003]
It is known that the higher the purity of this CVD-SiC molded body, the higher the light transmittance. When used as a member of a semiconductor manufacturing apparatus or a heat treatment apparatus, the light transmission becomes a problem depending on the application field. Sometimes. For example, semiconductor manufacturing processes include rapid thermal annealing, rapid thermal cleaning, rapid thermal chemical vapor deposition, rapid thermal oxidation, rapid thermal oxidation, There is a rapid heat treatment process (called RTP) such as rapid thermal nitridation.
[0004]
This RTP requires precise temperature control of the wafer substrate, but when temperature is measured by a pyrometer, a member that supports the wafer substrate when forming a black body cavity on the surface opposite to the processing surface of the wafer substrate If there is light transmission such as, there is a problem that it becomes disturbance light and accurate temperature control becomes difficult. For this reason, in JP-A-6-341905, in order to prevent light leaking from the heating element from entering the reflection cavity, a guard ring for supporting the partition walls and the wafer is arranged along the wafer. It has been proposed that this guard ring is made of silicon, which has a black or gray color that absorbs leaked light, and Japanese Patent Application Laid-Open No. 8-255800 discloses a support ring for supporting a wafer substrate as silicon or silicon oxide. It is proposed that the cylinder holding the support ring is made of quartz coated with silicon so as to be opaque in the range of the frequency of the pyrometer.
[0005]
However, silicon and silicon-coated ones disclosed in JP-A-6-341905 and JP-A-8-255800 are inferior in corrosion resistance to acid cleaning for repeated use, and therefore the thickness of the coated silicon is small. There is a problem that the light impermeability is lowered gradually.
[0006]
Further, a dummy wafer used for stabilizing the etching conditions of the wafer in the plasma etching process and a dummy wafer used for stabilizing the conditions of the wafer in the CVD process are required to have low light transmittance. In other words, the wafer is mounted on the support boat by the transfer robot, but since the wafer is recognized by irradiating the laser beam, the robot accurately recognizes the position of the wafer if the wafer has high optical transparency. However, it is difficult to mount the wafer at a predetermined position in the reaction apparatus.
[0007]
[Problems to be solved by the invention]
As a result of studying the relationship between the properties and optical properties of a CVD-SiC molded body in order to eliminate the above-mentioned problems, the present applicant has obtained a CVD-SiC molded body obtained by the CVD method as an SiC molded body having low light transmittance. And having at least one SiC layer having different particle properties on the surface or inside thereof, the light transmittance in the wavelength region of 300 to 2500 nm is 0.4% or less, and the light transmittance in the wavelength region exceeding 2500 nm is 2.5%. % Or less, a SiC molded body (Japanese Patent Application No. 10-42906) or a CVD-SiC molded body made of a β-type crystal obtained by a CVD method, having a thickness of 2 on the surface or inside thereof. A SiC molded body characterized in that it has at least one visible-light-opaque CVD-SiC layer having a thickness of ˜20 μm, and has a light transmittance of 0.4% or less in a wavelength region of 300-2500 nm (Japanese Patent Application No. 10). -294959) Developed and proposed.
[0008]
The above invention is based on the results of finding that the light transmission can be lowered when a layer that scatters and reflects light is present as the material structure of the CVD-SiC molded body, and the present inventor is based on these findings. As a result of further research, it has been found that when the disorder of the crystal structure is formed in the CVD-SiC molded body, the light transmittance can be effectively reduced. The present invention has been developed based on this finding, and its purpose is excellent in light impermeability, for example, a heat-treating device shield for a semiconductor manufacturing apparatus, various heat-resistant members such as a soaking ring, or semiconductor manufacturing. An object of the present invention is to provide an SiC molded body that can be suitably used as various members such as a dummy wafer and a susceptor used in a diffusion furnace apparatus, an etching apparatus, a CVD apparatus, and the like.
[0009]
[Means for Solving the Problems]
The SiC molded body according to the present invention for achieving the above object is produced by a CVD method, and has an intensity ratio of diffraction peaks by X-ray diffraction of (200), (220), (311) planes with respect to a crystal plane (111). 100: 45 to 55:15 to 25:35 to 45: A CVD-SiC molded body having a crystal property is used as a base material, and (200), (220), ( 311) At least one CVD-SiC layer having a crystal property with a diffraction peak intensity ratio of 100: 1 to 10: 1 to 5: 1 to 6 formed by the surface X-ray diffraction is formed. The structural feature is that the thickness is 10 to 50% of the thickness of the CVD-SiC molded body.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The SiC molded body of the present invention is obtained by depositing SiC on the surface of a base material by a CVD method, forming a deposited SiC film, and then removing the base material as a base material. It consists of a textured structure in which at least one CVD-SiC layer having a crystallographic structure different from that of the matrix, that is, having a disordered crystal structure, is formed on the surface or inside of the matrix.
[0011]
The formation of the SiC film by the CVD method includes Si atoms and C atoms in one molecule. For example, a halogenated organosilicon compound such as CH 3 SiCl 3 , (CH 3 ) 3 SiCl, CH 3 SiHCl 2 is used as hydrogen gas or the like. It is carried out by precipitating SiC on the surface of the substrate by a method of reducing pyrolysis by heating with a carrier gas or a method of heating and reacting a silicon compound such as SiCl 4 and a carbon compound such as CH 4 .
[0012]
In the process of forming the SiC film on the substrate surface, the raw material gas deposits SiC by a gas phase reaction to generate SiC nuclei on the substrate surface, and the SiC nuclei grow to change to amorphous SiC. Further, the SiC film is formed by continuing to grow into a columnar structure through finer polycrystalline SiC grains. Therefore, properties such as strength properties, thermal properties, and optical properties of the CVD-SiC molded body vary depending on the crystal properties of the SiC coating formed by deposition on the substrate surface.
[0013]
For example, when a layer with a different crystal structure exists in the structure of a CVD-SiC molded body, that is, when an SiC layer with a disordered crystal structure exists, the optical characteristics change at the interface where the crystal structure changes, and complex light refraction, scattering, and reflection occur. As a result, a part of the light is confined, and the light transmission ability is reduced, that is, the light impermeability is increased.
[0014]
In the SiC molded body of the present invention, the intensity ratio of the diffraction peaks of the (200), (220), (311) planes with respect to the crystal plane (111) by X-ray diffraction of the crystal structure of the base CVD-SiC molded body is determined. 100: 45 to 55:15 to 25:35 to 45, and a CVD-SiC layer having a different crystal structure has a (200), (220), (311) plane with respect to the crystal plane (111) by X-ray diffraction. By specifying the intensity ratio of the diffraction peaks as a crystalline property of 100: 1 to 10: 1 to 5: 1 to 6, the light transmittance is reduced, that is, the light impermeability is increased. In addition, the diffraction peak value calculated | required by X-ray diffraction is the value measured by K (alpha) of Cu.
[0015]
The CVD-SiC layer having different crystal properties can be formed by dispersing at least one CVD-SiC layer in two or three layers by forming at least one layer on the surface layer or inside of the base material. Then, since light transmittance can be reduced more, it is preferable. Moreover, the thickness of the CVD-SiC layer to be formed is set to a range of 10 to 50% of the thickness of the SiC molded body. When the thickness of the CVD-SiC layer is in the range of 10 to 50%, changes in optical characteristics such as light refraction, scattering, and reflection occur more effectively, and thus light transmittance can be reduced.
[0016]
The SiC molded body is produced by depositing SiC on a removable substrate surface by a CVD reaction to form a SiC coating, and then removing the substrate. As the base material that can be removed, carbon-based materials, metal-based materials such as silicon, quartz, etc. are used, but carbon-based materials, particularly graphite, which have good processability and can be easily removed by combustion in air. A material is preferably used. The graphite material preferably has a high purity with as few impurities as possible. The method for removing the substrate after forming the SiC film can be performed by cutting and removing, polishing and removing by burning in the air, or a combination thereof.
[0017]
In the CVD reaction, for example, a graphite base material is set in a reaction furnace, the air in the system is exhausted, heated and maintained at a predetermined temperature, and then hydrogen gas is fed and replaced with an atmospheric hydrogen gas atmosphere. Thereafter, a method in which halogenated organosilicon compounds such as CH 3 SiCl 3 , (CH 3 ) 3 SiCl, and CH 3 SiHCl 2 are fed as a source gas using hydrogen gas as a carrier gas and subjected to reductive pyrolysis, or SiCl 4 or the like A SiC film is deposited on the surface of the graphite substrate by a method in which a silicon compound and a carbon compound such as CH 4 are fed and heated. After forming the SiC film, the graphite base material is removed to produce a CVD-SiC molded body as a base material.
[0018]
In the process of forming this SiC film, the CVD reaction conditions such as the halogenated organosilicon compound and hydrogen gas, or the mixing ratio of silicon compound and carbon compound, the amount of feed, the reaction temperature, the reaction time, the pressure in the reactor, etc. By controlling the setting to an appropriate value, at least one CVD-SiC layer having a different crystallinity can be formed on the surface layer portion or inside of the base material. For example, after reacting for a predetermined time under the CVD reaction conditions for producing the base material and depositing a SiC film having a desired film thickness on the substrate surface, the CVD reaction conditions are changed and the CVD reaction is performed for a predetermined time to obtain the crystalline properties. CVD-SiC layers having different crystallographic properties are formed in the base material by removing the base material after forming a SiC film by depositing a SiC film for a predetermined time after returning to the CVD reaction conditions at the time of preparing the base material. A CVD-SiC molded body in which one SiC layer is formed can be obtained.
[0019]
【Example】
Examples of the present invention will be specifically described below in comparison with comparative examples.
[0020]
Example 1
Using a high-purity isotropic graphite material having a diameter of 202 mm and a thickness of 6 mm (ash content of 10 ppm or less) as a base material, this graphite base material was set in a chamber of a CVD reactor and heated. After replacing the chamber with hydrogen gas, CH 3 SiCl 3 is used as the source gas, hydrogen gas is used as the carrier gas, the CH 3 SiCl 3 concentration in the mixed gas is set to 7.5 vol%, and the flow rate is 190 l / min Then, the SiC film was deposited on the surface of the graphite substrate by performing a CVD reaction at a temperature of 1400 ° C. for 14 hours, then at a temperature of 1300 ° C. for 2 hours, and again at a temperature of 1400 ° C. for 14 hours. Next, after cutting in the transverse direction, it was heated in air to burn and remove the graphite substrate, and the surface was further polished to produce a SiC molded body having a diameter of 200 mm and a thickness of 0.5 mm. In this way, a CVD-SiC molded body in which one CVD-SiC layer having different crystal properties was formed inside was produced.
[0021]
Examples 2-8, Comparative Examples 4-5
A SiC molded body was produced by the same method as in Example 1 except that the reaction temperature and time of the CVD reaction were changed.
[0022]
Comparative Examples 1-3
A SiC molded body was produced by the same method as in Example 1 except that the reaction temperature of the CVD reaction was kept constant and the reaction time was changed.
[0023]
Table 1 shows a comparison of the CVD reaction conditions of the SiC molded body thus produced. Also, the diffraction of crystal planes (111) (200) (220) (311) is measured by X-ray diffraction measurement of light transmittance of 0.5, 2 and 10 μm with a self-recording spectrophotometer manufactured by Shimadzu Corporation. The relative intensity ratio was measured. The X-ray diffraction of the CVD-SiC layer formed inside was measured by polishing the surface to expose the inner CVD-SiC layer. The obtained results are shown in Table 2.
[0024]
[Table 1]
[0025]
[Table 2]
[0026]
From the results of Tables 1 and 2, one CVD-SiC layer formed at a reaction temperature of 1300 ° C. was formed at the center of the base material of a CVD-SiC molded body formed at a reaction temperature of 1400 ° C., and the thickness was CVD- In Example 1, which is 20% of the SiC molded body, the light transmittance is as low as 0.3% or less, and in Example 2, where the thickness of the CVD-SiC layer is 50%, the light transmittance is further reduced. I understand that. In Examples 3 and 4 where the difference between the reaction temperature for forming the CVD-SiC layer is 1350 ° C. and the formation temperature of the CVD-SiC molded body is 1400 ° C., the disorder of the crystal structure is slightly reduced. There is a tendency that the decrease in light transmittance is less than that of 1 and 2. Moreover, in Examples 5-8 which formed two CVD-SiC layers, it is recognized that a light transmittance falls more. On the other hand, in Comparative Examples 1 to 3 in which the CVD-SiC layer is not formed, a decrease in light transmittance is not recognized, and in Comparative Examples 4 and 5 in which the thickness of the CVD-SiC layer is small, the light transmittance is sufficiently high. It turns out that it cannot be lowered.
[0027]
【The invention's effect】
As described above, according to the SiC molded body of the present invention, at least one CVD-SiC layer having a specific crystalline property in which the crystal structure is disordered is formed on the surface portion or inside of the CVD-SiC molded body that is the base material, Moreover, the light transmittance can be effectively reduced by specifying the thickness. Therefore, it is excellent in light impermeability, and can be suitably used as various heat-resistant members for heat treatment apparatuses including various members for semiconductor production such as shields and dummy wafers.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34148698A JP3857446B2 (en) | 1998-12-01 | 1998-12-01 | SiC molded body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34148698A JP3857446B2 (en) | 1998-12-01 | 1998-12-01 | SiC molded body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000169298A JP2000169298A (en) | 2000-06-20 |
JP3857446B2 true JP3857446B2 (en) | 2006-12-13 |
Family
ID=18346438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34148698A Expired - Fee Related JP3857446B2 (en) | 1998-12-01 | 1998-12-01 | SiC molded body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3857446B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4702712B2 (en) * | 2001-07-27 | 2011-06-15 | 東海カーボン株式会社 | Tubular SiC molded body and method for producing the same |
JP3881562B2 (en) * | 2002-02-22 | 2007-02-14 | 三井造船株式会社 | SiC monitor wafer manufacturing method |
KR101866869B1 (en) * | 2016-08-18 | 2018-06-14 | 주식회사 티씨케이 | Silicon carbide material and silicon carbide composite |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5999401A (en) * | 1982-11-29 | 1984-06-08 | Toshiba Ceramics Co Ltd | Silicon carbide mirror |
JPH0832591B2 (en) * | 1989-10-11 | 1996-03-29 | 日本ピラー工業株式会社 | Composite material |
JPH0832592B2 (en) * | 1990-09-05 | 1996-03-29 | 日本ピラー工業株式会社 | Composite material |
JPH08290968A (en) * | 1995-04-19 | 1996-11-05 | Nippon Steel Corp | Composite material |
JP3524679B2 (en) * | 1996-06-21 | 2004-05-10 | 東芝セラミックス株式会社 | High purity CVD-SiC semiconductor heat treatment member and method of manufacturing the same |
JP2918860B2 (en) * | 1997-01-20 | 1999-07-12 | 日本ピラー工業株式会社 | Specular |
JP3087030B2 (en) * | 1997-08-08 | 2000-09-11 | 日本ピラー工業株式会社 | SiC composite, method for producing the same, and single crystal SiC |
-
1998
- 1998-12-01 JP JP34148698A patent/JP3857446B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000169298A (en) | 2000-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4043003B2 (en) | SiC molded body and manufacturing method thereof | |
US5937316A (en) | SiC member and a method of fabricating the same | |
KR100592741B1 (en) | Silicon carbide fabrication | |
KR100775879B1 (en) | Sic-formed material and method for manufacturing same | |
JPH11199323A (en) | Dummy wafer | |
KR20220008393A (en) | Chemical vapor deposition silicon carbide bulk with enhanced etching properties | |
JP5640822B2 (en) | Nitride semiconductor manufacturing apparatus, nitride semiconductor manufacturing method, and nitride semiconductor crystal | |
RU2684128C1 (en) | Article with silicon carbide coating and method for manufacturing of article with silicon carbide coating | |
JP3857446B2 (en) | SiC molded body | |
JP3932154B2 (en) | SiC molded body and manufacturing method thereof | |
JP4702712B2 (en) | Tubular SiC molded body and method for producing the same | |
JP2011074436A (en) | Silicon carbide material | |
JP4404703B2 (en) | Light-impermeable SiC molded body and method for producing the same | |
JP3790029B2 (en) | SiC dummy wafer | |
JP2002003275A (en) | Light-impermeable SiC molded body and method for producing the same | |
JP2024140407A (en) | Polycrystalline SiC free-standing molded body | |
JP2003049270A (en) | SiC molded body and method for producing the same | |
JP2024066211A (en) | Polycrystalline SiC compact and method for producing same | |
JP2003068594A (en) | SiC dummy wafer and method of manufacturing the same | |
JP3942158B2 (en) | Method for producing cylindrical SiC molded body | |
JPH0146454B2 (en) | ||
JP2001302397A (en) | SiC compact | |
RU2286617C2 (en) | Method for producing part incorporating silicon substrate whose surface is covered with silicon carbide film | |
WO2021034214A1 (en) | Article with silicon carbide coating and method for producing article with silicon carbide coating | |
JP2001214267A (en) | Method for manufacturing high-purity silicon carbide tube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060124 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060912 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060914 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100922 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110922 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120922 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120922 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130922 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |