[go: up one dir, main page]

JPH08322815A - Mri equipment - Google Patents

Mri equipment

Info

Publication number
JPH08322815A
JPH08322815A JP7134168A JP13416895A JPH08322815A JP H08322815 A JPH08322815 A JP H08322815A JP 7134168 A JP7134168 A JP 7134168A JP 13416895 A JP13416895 A JP 13416895A JP H08322815 A JPH08322815 A JP H08322815A
Authority
JP
Japan
Prior art keywords
cooling
temperature
magnetic field
cooling device
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7134168A
Other languages
Japanese (ja)
Inventor
Akinobu Maekawa
晃伸 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP7134168A priority Critical patent/JPH08322815A/en
Publication of JPH08322815A publication Critical patent/JPH08322815A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE: To improve the cooling efficiency of a heat generation part in equipment and to suppress unnecessary power consumption at the time of cooling. CONSTITUTION: A cooling device control part 6 is equipped with a CPU and a memory, etc., receives the electric signals of respective temperature detection parts A to E and turns a cooling device ON and OFF by the temperatures of the respective parts. For instance, when the temperature of the temperature detection part A exceeds a prescribed temperature, the cooling device A is turned ON, cooling air is sent through a duct A to a testee space and cooling is performed. Since it is similar for the other temperature detection parts B to E and the respective cooling devices are operated by instructions from the cooling device control part 6 at the time of exceeding the temperature prescribed beforehand, the cooling efficiency is improved and the unnecessary power consumption at the time of cooling is suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、医療診断用のMRI装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an MRI apparatus for medical diagnosis.

【0002】[0002]

【従来の技術】一般にMRI装置(磁気共鳴イメージン
グ装置)は図4に示すように診察用ベッド44上の天板
42に載せた被検者45をガントリ41の中央部に形成
されたガントリ穴43に送り込み、磁気共鳴を利用して
人体内の断層像を写し出し診断する装置である。
2. Description of the Related Art Generally, as shown in FIG. 4, an MRI apparatus (magnetic resonance imaging apparatus) has a gantry hole 43 formed in a central portion of a gantry 41 with a subject 45 placed on a top plate 42 on an examination bed 44. It is a device that sends a tomographic image to the inside of the human body and makes a diagnosis by using magnetic resonance.

【0003】このガントリ41の中には、ガントリ穴4
3に挿入された被検者の体軸方向に均一な磁場を発生さ
せるために、超電導マグネット等で構成される円筒状の
静磁場用マグネットと、被検者内の3次元位置情報を得
るために傾斜磁場を発生させる傾斜コイルが設けられて
おり、送受信アンテナからの高周波パルスによって体内
の各スピンの励起を行い、このアンテナで体内からの電
磁波を受信するようにしている。
In this gantry 41, there are gantry holes 4
In order to generate a uniform magnetic field in the body axis direction of the subject inserted in 3, the cylindrical static magnetic field magnet composed of a superconducting magnet or the like and to obtain three-dimensional position information in the subject A gradient coil for generating a gradient magnetic field is provided in the device, and each spin in the body is excited by a high frequency pulse from a transmitting / receiving antenna, and this antenna receives an electromagnetic wave from the body.

【0004】傾斜コイルは鞍形状をしており、その磁場
の大きさを直線的に変化させるために傾斜磁場電源から
電流を与えるようにしている。
The gradient coil has a saddle shape, and an electric current is applied from a gradient magnetic field power source to linearly change the magnitude of the magnetic field.

【0005】この傾斜コイルには大電流が流されるので
発熱量も多く、これを冷却するために例えば図5のよう
に冷媒(空気等)を用いて冷却を行っている。
Since a large current is passed through the gradient coil, a large amount of heat is generated. To cool the gradient coil, cooling is performed using a refrigerant (air or the like) as shown in FIG. 5, for example.

【0006】図5は図4のA−A断面を上から見た図で
あり、51は静磁場を発生させる円筒状の静磁場マグネ
ット、52は傾斜磁場を発生させる傾斜コイル、53は
ガントリカバー、54は円筒状の巻き枠である傾斜コイ
ルボビン、55は通気ダクトであり、傾斜コイル52は
傾斜コイルボビン54に巻回されて支持されている。装
置の外部から通気ダクト55へ冷却用の空気が送り込ま
れ、図の矢印に沿って空気が移動する。冷却空気は傾斜
コイル52を冷却した後、装置外部へ排気される。
FIG. 5 is a view of the AA cross section of FIG. 4 seen from above, 51 is a cylindrical static magnetic field magnet for generating a static magnetic field, 52 is a gradient coil for generating a gradient magnetic field, and 53 is a gantry cover. , 54 is a gradient coil bobbin which is a cylindrical winding frame, 55 is a ventilation duct, and the gradient coil 52 is wound around and supported by the gradient coil bobbin 54. Air for cooling is sent from the outside of the device to the ventilation duct 55, and the air moves along the arrow in the figure. After cooling the gradient coil 52, the cooling air is exhausted to the outside of the device.

【0007】ところで、傾斜コイルだけに限らず、静磁
場用マグネット、送受信アンテナに与える高周波パルス
を発生させる高周波回路やこの回路のための高周波電
源、傾斜磁場用電源、操作コンソール等についても熱が
生じるので、これらすべての発熱源を一つの冷却装置で
冷却したり、個々の発熱源についてそれぞれ適当な冷却
手段を設けて冷却を行っている。
By the way, heat is generated not only in the gradient coil but also in the static magnetic field magnet, the high frequency circuit for generating high frequency pulses to be applied to the transmitting and receiving antennas, the high frequency power supply for this circuit, the gradient magnetic field power supply, the operation console and the like. Therefore, all of these heat sources are cooled by one cooling device, or an appropriate cooling means is provided for each heat source for cooling.

【0008】[0008]

【発明が解決しようとする課題】しかし、発熱源のすべ
てを一つの冷却装置で冷却する場合には、一つの冷却装
置では、その冷却能力に限界があるので、完全に冷却す
ることができないばかりか、特定の発熱源に対しては冷
却効果がなかなか上がらず、一方、他の発熱源に対して
は冷却効果が上がりすぎて温度が下がり過ぎてしまうと
いうことがあり、冷却効率にも問題があった。
However, when all of the heat sources are cooled by a single cooling device, the cooling capacity of the single cooling device is limited, so that it cannot be completely cooled. On the other hand, the cooling effect does not easily increase for a specific heat source, while the cooling effect for other heat sources may increase too much and the temperature may drop too much, causing a problem in cooling efficiency. there were.

【0009】また、個々の発熱源について適当な冷却手
段を設けている場合には、冷却が継続して行われるの
で、各冷却手段の発熱源に対する冷却能力を高くした場
合には、各冷却手段の総消費電力が非常に大きくなって
いた。
Further, when an appropriate cooling means is provided for each heat source, cooling is continuously performed. Therefore, when the cooling capacity of each cooling means for the heat source is increased, each cooling means is used. The total power consumption was very high.

【0010】本発明は、上記課題を解決するために創案
されたもので、冷却効率を高め、冷却時の必要以上の消
費電力を抑えることができるようにしたMRI装置を提
供するものである。
The present invention was devised to solve the above problems, and provides an MRI apparatus capable of improving cooling efficiency and suppressing unnecessary power consumption during cooling.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明のMRI装置は、静磁場マグネットと、この
内側に配置された傾斜コイルと、これら全体を覆う磁気
シールドと、磁気シールド外に配置された制御機器部と
コンソール部と冷却能力、冷却方式の異なる複数の冷却
装置と、これら冷却装置の制御部を備えるとともに、装
置内の各発熱源に別個に温度測定部を設け、前記各温度
測定部からの測定信号に基づいて冷却装置の制御部が前
記複数の冷却装置を組み合わせて使用することを特徴と
している。
In order to achieve the above object, the MRI apparatus of the present invention comprises a static magnetic field magnet, a gradient coil arranged inside the static magnetic field magnet, a magnetic shield covering the whole of them, and a magnetic shield outside. In addition to having a control device section and a console section, cooling capacity, and a plurality of cooling devices having different cooling methods, and a control section for these cooling devices, each heat source inside the apparatus is provided with a temperature measuring section, It is characterized in that the control unit of the cooling device uses the plurality of cooling devices in combination based on the measurement signal from each temperature measurement unit.

【0012】[0012]

【作用】装置が作動すると、装置内の各発熱源に設けら
れた温度測定部からの温度測定信号が冷却装置の制御部
に伝達される。この信号に基づいて冷却装置の制御部は
冷却能力、冷却方式の異なる複数の冷却装置の最適な組
み合わせを判断してオン・オフ等を行うので、冷却効率
や消費電力の効率は非常に良くなる。
When the device operates, the temperature measurement signal from the temperature measuring part provided in each heat source in the device is transmitted to the control part of the cooling device. Based on this signal, the control unit of the cooling device determines the optimum combination of the cooling devices having different cooling capacities and cooling methods and performs on / off operation, so that the cooling efficiency and the power consumption efficiency are very good. .

【0013】[0013]

【実施例】本発明の一実施例を、以下、図面に基づいて
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0014】図1は本発明によるMRI装置の構成の全
体図を示している。
FIG. 1 shows an overall configuration of the MRI apparatus according to the present invention.

【0015】1は円筒形状を有し、被検者の体軸方向に
均一な静磁場を発生させるための静磁場マグネット、2
は励起されたスピンの3次元位置情報を得るために傾斜
磁場を発生させる傾斜磁場コイル、3は被検者を静磁場
マグネット1に送り込むベッド、4は磁気を遮断する磁
気シールド、5は送風機等の冷却機構と冷却方式を選択
する制御部6と冷却装置A〜Cを備えた冷却システム、
7は励起波形を発生させる高周波回路および高周波電
源、傾斜磁場電源等からなる制御機器部、7は表示装置
や入力装置を備えた操作コンソール部である。
Reference numeral 1 denotes a static magnetic field magnet having a cylindrical shape for generating a uniform static magnetic field in the body axis direction of the subject.
Is a gradient coil for generating a gradient magnetic field to obtain three-dimensional position information of the excited spins, 3 is a bed for feeding the subject to the static magnetic field magnet 1, 4 is a magnetic shield for blocking the magnetism, 5 is a blower, etc. A cooling system including a control unit 6 for selecting a cooling mechanism and a cooling method of the above and cooling devices A to C,
Reference numeral 7 is a control device section including a high-frequency circuit for generating an excitation waveform, a high-frequency power source, a gradient magnetic field power source, and the like, and 7 is an operation console section provided with a display device and an input device.

【0016】ベッド3には温度検出部Aが、傾斜磁場コ
イル2には温度検出部Bが、静磁場マグネット1には温
度検出部Cが、制御機器部7には温度検出部Dが、操作
コンソール部8には温度検出部Eが設けられている。
The bed 3 has a temperature detecting section A, the gradient magnetic field coil 2 has a temperature detecting section B, the static magnetic field magnet 1 has a temperature detecting section C, and the control device section 7 has a temperature detecting section D. The console section 8 is provided with a temperature detecting section E.

【0017】これらの各温度検出部A〜Eは温度センサ
等から構成されるもので、温度センサ等が設置された場
所の温度を冷却装置制御部6へ送信するようになってい
る。また、冷却装置制御部6は温度検出部A〜Eの温度
測定信号に基づいて、冷却装置A〜Eを駆動するように
各冷却装置と接続されている。
Each of these temperature detectors A to E is composed of a temperature sensor or the like, and transmits the temperature of the place where the temperature sensor or the like is installed to the cooling device controller 6. Further, the cooling device control unit 6 is connected to each cooling device so as to drive the cooling devices A to E based on the temperature measurement signals of the temperature detection units A to E.

【0018】冷却装置A〜Eは各々冷却能力や冷却方式
が異なり、例えば、静磁場マグネットが超電導コイルの
場合には、冷却装置Cは液体ヘリウム等の冷媒をダクト
Cを介して静磁場マグネット1に送り込むように構成さ
れ、冷却装置Bは冷却空気をダクトBを介して傾斜磁場
コイル2に送るように、冷却装置Aは冷却空気をダクト
Aを介してベッド3上に載せられた被検者周辺の空間に
送るように構成されている。
The cooling devices A to E have different cooling capacities and cooling systems. For example, when the static magnetic field magnet is a superconducting coil, the cooling device C uses a coolant such as liquid helium through the duct C to generate the static magnetic field magnet 1. The cooling device B sends the cooling air to the gradient magnetic field coil 2 via the duct B, and the cooling device A sends the cooling air to the bed 3 via the duct A. It is configured to send to the surrounding space.

【0019】これら、冷却装置A〜Cは駆動していると
きには、電磁ノイズを発生させるので、被検者からの検
出信号に影響を与えないために磁気シールド4の外部に
設置されている。
Since the cooling devices A to C generate electromagnetic noise when they are driven, they are installed outside the magnetic shield 4 so as not to affect the detection signal from the subject.

【0020】一方、制御機器部7や操作コンソール部8
は、電磁ノイズの影響をそれ程受けないので、冷却装置
D、Eはそれぞれ制御機器部7と操作コンソール部8の
内部に組み込まれて使用されるようになっており、例え
ば、直接熱源に風を吹き付ける送風ファン等が用いられ
る。
On the other hand, the control device section 7 and the operation console section 8
Is not so affected by electromagnetic noise, the cooling devices D and E are used by being incorporated in the control device section 7 and the operation console section 8, respectively. A blower fan or the like for blowing is used.

【0021】冷却装置制御部6は、CPUやメモリ等が
搭載されており、各温度検出部A〜Eの電気信号を受け
取り、各部の温度によって、冷却装置をオン・オフでき
るようになっている。例えば、温度検出部Aの温度を被
検者の最も快適な温度t0 〜t1 を維持しようとすれ
ば、冷却装置制御部6にあらかじめ閾値t0 、t1 を設
定しておき、温度検出部Aからの信号がt1 を越えたと
きに冷却装置Aをオンして冷却空気をダクトAを介して
被検者空間へ送り込んで冷却し、温度検出部Aからの信
号がt0 以下になったときに冷却装置Aをオフして送風
を遮断する。
The cooling device control unit 6 is equipped with a CPU, a memory, etc., receives electric signals from the temperature detecting units A to E, and can turn on / off the cooling device according to the temperature of each unit. . For example, in order to maintain the temperature of the temperature detection unit A at the most comfortable temperature t 0 to t 1 of the subject, the cooling device control unit 6 is set with the thresholds t 0 and t 1 in advance and the temperature detection is performed. When the signal from the section A exceeds t 1 , the cooling device A is turned on to send the cooling air to the space of the subject through the duct A to cool it, and the signal from the temperature detecting section A becomes less than t 0 . When this happens, turn off cooling device A to shut off the air flow.

【0022】他の温度検出部B〜Eについても同様にし
てあらかじめ所定の温度範囲の閾値を冷却装置制御部6
に記憶させておけば、所定の温度範囲に制御できるの
で、冷却効率を高めることができ、冷却時の必要以上の
消費電力を抑えることができる。
Similarly, for the other temperature detectors B to E, the cooling device controller 6 sets a threshold value in a predetermined temperature range in advance.
If stored in memory, the temperature can be controlled within a predetermined temperature range, so that the cooling efficiency can be increased and unnecessary power consumption during cooling can be suppressed.

【0023】図2、図3はこの方式をさらにガントリ部
について適用したものを示す。
2 and 3 show a further application of this method to the gantry section.

【0024】静磁場マグネット1の内側には傾斜磁場コ
イルボビン9に巻き回された傾斜磁場コイル2が配置さ
れ、さらにこの内側に被検者11に高周波パルスを与
え、被検者の励起スピンの情報を得るために鞍形状のR
Fコイル10が配置され、被検者11がこの中に送り込
まれる。
A gradient magnetic field coil 2 wound around a gradient magnetic field coil bobbin 9 is arranged inside the static magnetic field magnet 1, and a high frequency pulse is given to the subject 11 inside the gradient magnetic field coil 2 to obtain information on excited spins of the subject. Saddle-shaped R to obtain
The F coil 10 is arranged and the subject 11 is fed into this.

【0025】冷却空気等を吹き付ける送風路F〜Lを図
のように、静磁場マグネット1と傾斜磁場コイル2との
間、傾斜磁場コイルボビン9と傾斜磁場コイル2との間
隙、傾斜磁場コイルボビン9とRFコイル10との間、
被検者11の周囲にそれぞれ設け、図示はしていないが
この送風路F〜Lには各々温度検出部F〜Lが設けられ
ている。
As shown in the drawing, the air ducts F to L for blowing cooling air are provided between the static magnetic field magnet 1 and the gradient magnetic field coil 2, the gap between the gradient magnetic field coil bobbin 9 and the gradient magnetic field coil 2, and the gradient magnetic field coil bobbin 9. Between the RF coil 10,
Although not shown, the air passages F to L are respectively provided around the subject 11 and temperature detectors F to L are provided respectively.

【0026】そして、磁気シールド外に設けられた冷却
装置F〜Lからの冷風がダクト等を介して各送風路F〜
Lに流れ込むようになっている。
Then, the cool air from the cooling devices F to L provided outside the magnetic shield is blown through the ducts or the like into the air ducts F to L.
It is designed to flow into L.

【0027】磁気シールド外の冷却装置制御部6には各
冷却装置F〜Lを駆動させるための信号を出力させるた
めに、サーモスイッチが備えられており、この各サーモ
スイッチが働く温度として、それぞれT1 〜T7 までの
値が設定されている。
The cooling device control section 6 outside the magnetic shield is provided with thermoswitches for outputting signals for driving the cooling devices F to L. Values from T1 to T7 are set.

【0028】したがって、図3に示すように各送風路に
設置した温度検出部F〜Lからの各温度信号が冷却装置
制御部6に伝達されると各信号が対応する設定温度T1
〜T7 と比較され、例えば、温度検出部Gからの信号が
T2 を越えている場合には冷却装置制御部6からオン信
号が出力され、冷却装置Gが駆動し送風路Gへ冷風が送
られ、T2 以下になるとオフ信号が出力され送風が遮断
される。
Therefore, as shown in FIG. 3, when the temperature signals from the temperature detectors F to L installed in the respective air ducts are transmitted to the cooling device controller 6, the respective signals correspond to the set temperature T1.
~ T7, for example, when the signal from the temperature detection unit G exceeds T2, an ON signal is output from the cooling device control unit 6, the cooling device G is driven, and cool air is sent to the air passage G. , T2 or less, an off signal is output and the ventilation is shut off.

【0029】他の冷却装置についても同様な働きをす
る。
The other cooling devices have similar functions.

【0030】以上のように、各発熱部に対して段階的に
冷却を行うことができ、冷却効率が向上し、消費電力を
抑えることができる。
As described above, each heat generating portion can be cooled stepwise, the cooling efficiency is improved, and the power consumption can be suppressed.

【0031】また、送風に伴う騒音問題に対応するた
め、患者近くの送風路に対しては、撮像のためのスキャ
ン開始時に冷却装置へオン信号を送るような構造にして
おくことによって、スキャン中のみ送風し、通常は送風
音が聞こえないようにしても良い。
Further, in order to deal with the noise problem associated with the air flow, the air flow path near the patient is structured so that an ON signal is sent to the cooling device at the start of the scan for imaging, so that the air flow during the scan can be reduced. Only the air may be blown, and the sound of the air blow may not normally be heard.

【0032】さらに、磁気シールド内において、画像に
対するノイズの影響が強く温度センサを設置しにくい部
分は、スキャンパラメータ等により温度上昇を予測する
ことによって、冷却装置を制御するようにしても良い。
Further, in the magnetic shield, the cooling device may be controlled by predicting the temperature rise by the scan parameter or the like in the portion where the influence of noise on the image is strong and the temperature sensor is difficult to install.

【0033】[0033]

【発明の効果】以上説明したように、本発明のMRI装
置によれば、装置内の各発熱源に設けられた温度測定部
からの温度測定信号に基づいて冷却装置の制御部が冷却
能力、冷却方式の異なる複数の冷却装置の最適な組み合
わせを判断してオン・オフ等を行うので、冷却効率や消
費電力の効率は高めることができる。
As described above, according to the MRI apparatus of the present invention, the control unit of the cooling device has the cooling capability based on the temperature measurement signal from the temperature measurement unit provided in each heat source in the device. Since the optimum combination of the plurality of cooling devices having different cooling systems is determined to perform the on / off operation, the cooling efficiency and the power consumption efficiency can be improved.

【0034】また、被検者に対する騒音を軽減すること
ができる。
Further, it is possible to reduce noise on the subject.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のMRI装置の構成を示す模
式図である。
FIG. 1 is a schematic diagram showing a configuration of an MRI apparatus according to an embodiment of the present invention.

【図2】本発明のMRI装置のガントリ部の構成を示す
図である。
FIG. 2 is a diagram showing a configuration of a gantry unit of the MRI apparatus of the present invention.

【図3】図2における冷却のフローチャートを示す。FIG. 3 shows a flowchart of cooling in FIG.

【図4】MRI装置の概観を示す図である。FIG. 4 is a diagram showing an overview of an MRI apparatus.

【図5】従来のMRI装置の構成を示す図である。FIG. 5 is a diagram showing a configuration of a conventional MRI apparatus.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 静磁場マグネットと、この内側に配置さ
れた傾斜コイルと、これら全体を覆う磁気シールドと、
磁気シールド外に配置された制御機器部とコンソール部
と冷却能力、冷却方式の異なる複数の冷却装置と、これ
ら冷却装置の制御部を備えた装置において、 装置内の各発熱源に別個に温度測定部を設け、前記各温
度測定部からの測定信号に基づいて冷却装置の制御部が
前記複数の冷却装置を組み合わせて使用することを特徴
とするMRI装置。
1. A static magnetic field magnet, a gradient coil arranged inside the static magnetic field magnet, and a magnetic shield covering the whole of them.
In a device equipped with a control device, a console, and multiple cooling devices with different cooling capacities and cooling methods that are located outside the magnetic shield, and a device that has a control unit for these cooling devices, measure the temperature separately for each heat source inside the device. An MRI apparatus characterized in that a control unit of the cooling device uses a plurality of cooling devices in combination based on a measurement signal from each of the temperature measuring units.
JP7134168A 1995-05-31 1995-05-31 Mri equipment Pending JPH08322815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7134168A JPH08322815A (en) 1995-05-31 1995-05-31 Mri equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7134168A JPH08322815A (en) 1995-05-31 1995-05-31 Mri equipment

Publications (1)

Publication Number Publication Date
JPH08322815A true JPH08322815A (en) 1996-12-10

Family

ID=15122045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7134168A Pending JPH08322815A (en) 1995-05-31 1995-05-31 Mri equipment

Country Status (1)

Country Link
JP (1) JPH08322815A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008012296A (en) * 2006-06-30 2008-01-24 General Electric Co <Ge> Apparatus and method for providing forced airflow to surface of gradient coil
JP2008149144A (en) * 2006-12-18 2008-07-03 General Electric Co <Ge> System, method, and apparatus for controlling temperature of mri magnet warm bore
GB2449537A (en) * 2007-05-11 2008-11-26 Gen Electric Monitoring Internal Temperature of a Gradient Coil
JP2011143160A (en) * 2010-01-18 2011-07-28 Toshiba Corp Magnetic resonance imaging diagnostic apparatus
JP2011156113A (en) * 2010-01-29 2011-08-18 Toshiba Corp Magnetic resonance imaging apparatus
US8035385B2 (en) 2007-11-22 2011-10-11 Kabushiki Kaisha Toshiba MRI system and RF coil with enhanced cooling in vicinty of included circuit elements
JP2012108110A (en) * 2010-11-15 2012-06-07 Toshiba Corp Medical imaging system
WO2012127450A1 (en) 2011-03-24 2012-09-27 Koninklijke Philips Electronics N.V. Reduction of peak electrical power consumption in magnetic resonance imaging systems
US8362774B2 (en) 2007-11-22 2013-01-29 Kabushiki Kaisha Toshiba Cooling MRI components/electronic circuit elements/bed through gas flow paths formed between cylindrical RF coil unit base and cylindrical bore tube
US8487618B2 (en) 2008-11-28 2013-07-16 Kabushiki Kaisha Toshiba High frequency coil unit and magnetic resonance diagnostic apparatus having a self-contained cooling airflow chassis
JP2013541357A (en) * 2010-08-25 2013-11-14 コーニンクレッカ フィリップス エヌ ヴェ RF shield for MRI with conductive coating as shielding material
JP2014228423A (en) * 2013-05-23 2014-12-08 株式会社東芝 Nuclear medicine imaging device and gantry
CN104252942A (en) * 2013-06-28 2014-12-31 株式会社东芝 Superconducting magnet apparatus

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008012296A (en) * 2006-06-30 2008-01-24 General Electric Co <Ge> Apparatus and method for providing forced airflow to surface of gradient coil
JP2008149144A (en) * 2006-12-18 2008-07-03 General Electric Co <Ge> System, method, and apparatus for controlling temperature of mri magnet warm bore
GB2449537A (en) * 2007-05-11 2008-11-26 Gen Electric Monitoring Internal Temperature of a Gradient Coil
US7511501B2 (en) 2007-05-11 2009-03-31 General Electric Company Systems and apparatus for monitoring internal temperature of a gradient coil
GB2449537B (en) * 2007-05-11 2012-04-04 Gen Electric Systems and apparatus for monitoring internal temperature of a gradient coil
US8362774B2 (en) 2007-11-22 2013-01-29 Kabushiki Kaisha Toshiba Cooling MRI components/electronic circuit elements/bed through gas flow paths formed between cylindrical RF coil unit base and cylindrical bore tube
US8035385B2 (en) 2007-11-22 2011-10-11 Kabushiki Kaisha Toshiba MRI system and RF coil with enhanced cooling in vicinty of included circuit elements
US8487618B2 (en) 2008-11-28 2013-07-16 Kabushiki Kaisha Toshiba High frequency coil unit and magnetic resonance diagnostic apparatus having a self-contained cooling airflow chassis
JP2011143160A (en) * 2010-01-18 2011-07-28 Toshiba Corp Magnetic resonance imaging diagnostic apparatus
JP2011156113A (en) * 2010-01-29 2011-08-18 Toshiba Corp Magnetic resonance imaging apparatus
JP2013541357A (en) * 2010-08-25 2013-11-14 コーニンクレッカ フィリップス エヌ ヴェ RF shield for MRI with conductive coating as shielding material
US9417301B2 (en) 2010-08-25 2016-08-16 Koninklijke Philips N.V. RF shield for MRI comprising conductive coating as shielding material
JP2012108110A (en) * 2010-11-15 2012-06-07 Toshiba Corp Medical imaging system
WO2012127450A1 (en) 2011-03-24 2012-09-27 Koninklijke Philips Electronics N.V. Reduction of peak electrical power consumption in magnetic resonance imaging systems
CN103443642A (en) * 2011-03-24 2013-12-11 皇家飞利浦有限公司 Reduction of peak electrical power consumption in magnetic resonance imaging systems
US9594132B2 (en) 2011-03-24 2017-03-14 Koninklijke Philips N.V. Reduction of peak electrical power consumption in magnetic resonance imaging systems
JP2014228423A (en) * 2013-05-23 2014-12-08 株式会社東芝 Nuclear medicine imaging device and gantry
CN104252942A (en) * 2013-06-28 2014-12-31 株式会社东芝 Superconducting magnet apparatus

Similar Documents

Publication Publication Date Title
JPH08322815A (en) Mri equipment
US9753106B2 (en) Wireless radio frequency coil for magnetic resonance imaging, method of controlling the coil, and magnetic resonance imaging apparatus using the coil
US6909283B2 (en) Method and system to regulate cooling of a medical imaging device
JP2002224084A (en) Magnetic resonance scanner including liquid cooling type rf coil and its method
US20090209842A1 (en) Mri gradient coil assembly with reduced acoustic noise
JP2009142646A (en) Magnetic resonance imaging system and rf coil
JP2009119261A (en) System, method and apparatus for controlling drift of a main magnetic field in mri system
US6853855B2 (en) Magnetic resonance tomography apparatus with improved spatial and time stabilization of the homogeneity of the magnetic basic field
US6882153B2 (en) Gradient coil apparatus for magnetic resonance imaging
KR102026008B1 (en) Stator-less electric motor for a magnetic resonance imaging system and methods thereof
JP6971659B2 (en) Magnetic resonance imaging device and SAR calculation method
JP3679675B2 (en) Signal acquisition device and image photographing device
JPH10225446A (en) Magnetic resonance inspecting device
JP2002017705A (en) Magnetic resonance imaging device
JPH08182662A (en) Mri device
JP2009005759A (en) Magnetic resonance imaging system
JP2570044B2 (en) Superconducting magnet assembly for MRI and MRI diagnostic device
JPH10234700A (en) Magnetic resonant imaging system
JPH0473050A (en) Silencer for gradient magnetic field coils
JPH10513087A (en) Nuclear spin tomography X-ray apparatus equipped with a combination device consisting of a high-frequency antenna and a gradient coil
JP2004275770A (en) Mri with pulsed readout magnet
JPH0866380A (en) Magnetic resonance imaging device
JP2005124855A (en) Magnetic resonance imaging apparatus
JPH04357936A (en) Magnetic resonance imaging device
JP2830755B2 (en) Magnetic resonance tomography equipment