JPH08316189A - Substrate cleaning method - Google Patents
Substrate cleaning methodInfo
- Publication number
- JPH08316189A JPH08316189A JP11427195A JP11427195A JPH08316189A JP H08316189 A JPH08316189 A JP H08316189A JP 11427195 A JP11427195 A JP 11427195A JP 11427195 A JP11427195 A JP 11427195A JP H08316189 A JPH08316189 A JP H08316189A
- Authority
- JP
- Japan
- Prior art keywords
- cleaning
- substrate
- vapor
- pressure
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004140 cleaning Methods 0.000 title claims abstract description 71
- 239000000758 substrate Substances 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000005530 etching Methods 0.000 claims abstract description 47
- 239000002904 solvent Substances 0.000 claims abstract description 18
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 52
- 229910000040 hydrogen fluoride Inorganic materials 0.000 claims description 50
- 239000007789 gas Substances 0.000 claims description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 5
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 5
- 239000012159 carrier gas Substances 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 2
- 239000003085 diluting agent Substances 0.000 claims description 2
- 150000004820 halides Chemical class 0.000 claims description 2
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims description 2
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 claims description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims 2
- 238000003672 processing method Methods 0.000 claims 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims 1
- 229910052786 argon Inorganic materials 0.000 claims 1
- 238000001816 cooling Methods 0.000 claims 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims 1
- 239000003960 organic solvent Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 abstract description 24
- 239000002245 particle Substances 0.000 abstract description 15
- 230000000694 effects Effects 0.000 abstract description 6
- 239000011148 porous material Substances 0.000 abstract description 5
- 239000002356 single layer Substances 0.000 abstract description 5
- 238000009833 condensation Methods 0.000 abstract description 4
- 230000005494 condensation Effects 0.000 abstract description 4
- 239000006200 vaporizer Substances 0.000 description 29
- 229920006395 saturated elastomer Polymers 0.000 description 13
- 238000010586 diagram Methods 0.000 description 9
- 238000001179 sorption measurement Methods 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000002052 molecular layer Substances 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000000572 ellipsometry Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000006557 surface reaction Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Cleaning By Liquid Or Steam (AREA)
- Drying Of Semiconductors (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
(57)【要約】
【構成】洗浄処理用ガス及び溶媒蒸気を基板30に供給
して基板30表面の洗浄処理を行う方法において、洗浄
処理用ガス及び溶媒蒸気の基板30表面上への凝縮層数
を制御して得られた単分子層の凝縮層を用いて、基板3
0の洗浄処理を行う。
【効果】パーティクルの発生が少なく、微細孔内部での
エッチング特性が良好となり、また、エッチングの制御
性も良好となる。
(57) [Summary] [Method] In a method of supplying cleaning gas and solvent vapor to a substrate 30 to clean the surface of the substrate 30, a condensation layer of the cleaning gas and solvent vapor on the surface of the substrate 30. The substrate 3 is formed by using a monolayer condensed layer obtained by controlling the number.
A cleaning process of 0 is performed. [Effect] The generation of particles is small, the etching characteristics inside the fine pores are good, and the controllability of the etching is also good.
Description
【0001】[0001]
【産業上の利用分野】本発明は基板の洗浄処理方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate cleaning method.
【0002】[0002]
【従来の技術】半導体プロセスにおける洗浄技術は、従
来はウェット洗浄技術が主流であったが、洗浄液中のパ
ーティクルが基板に付着する、基板上にウォーターマー
クと呼ばれる生成物が形成される、また微細部の洗浄に
は不適である等の問題があった。このため、近年ベーパ
洗浄技術が大気圧もしくは減圧下で検討されている。2. Description of the Related Art Conventionally, as a cleaning technique in a semiconductor process, a wet cleaning technique has been mainly used. However, particles in a cleaning liquid adhere to a substrate, a product called a watermark is formed on the substrate, and a fine particle is formed. There was a problem that it was not suitable for cleaning the part. Therefore, in recent years, vapor cleaning technology has been studied under atmospheric pressure or reduced pressure.
【0003】大気圧によるベーパ洗浄は、例えば特開昭
62−173720号公報に開示された技術によれば、シリコン
基板が収容された容器内へフッ化水素(HF)水溶液の
蒸気を供給して基板表面のシリコン自然酸化膜を除去
し、その後に、水蒸気(H2O)で基板表面からフッ化水
素を洗い落してから乾燥させる方法がある。また、特表
昭62−502930号公報に開示された技術によれば、基板表
面に無水フッ化水素ガスを水蒸気と共に供給し、基板上
から酸化膜を除去する方法がある。減圧によるベーパ洗
浄は、例えば、特表平4−502981 号公報に開示された技
術によれば、基板表面にフッ化水素ガスを水蒸気と共に
供給し、比較的高圧(例えば4.7×104Pa)で洗浄
処理を行う方法が報告されている。これらの方法では、
いずれも基板表面にHF/H2O の2分子吸着層以上の
多層凝縮層を形成して、この凝縮層と酸化膜との化学反
応によりエッチングが進む。Vapor cleaning under atmospheric pressure is disclosed in, for example, Japanese Patent Laid-Open No.
According to the technique disclosed in Japanese Laid-Open Patent Publication No. 62-173720, vapor of hydrogen fluoride (HF) aqueous solution is supplied into a container accommodating a silicon substrate to remove the silicon natural oxide film on the substrate surface, and thereafter, There is a method in which hydrogen fluoride is washed off from the substrate surface with water vapor (H 2 O) and then dried. Further, according to the technique disclosed in Japanese Patent Publication No. 62-502930, there is a method of supplying anhydrous hydrogen fluoride gas to the surface of the substrate together with water vapor to remove the oxide film from the substrate. For example, according to the technique disclosed in Japanese Patent Publication No. 4-502981, the vapor cleaning by depressurization is performed by supplying hydrogen fluoride gas together with water vapor to the surface of the substrate and relatively high pressure (for example, 4.7 × 10 4 Pa). ) Has been reported. With these methods,
In both cases, a multilayer condensed layer of two or more HF / H 2 O molecular adsorption layers is formed on the substrate surface, and etching proceeds due to the chemical reaction between the condensed layers and the oxide film.
【0004】[0004]
【発明が解決しようとする課題】特開昭62−173720号公
報,特表昭62−502930号公報、及び特表平4−502981 号
公報に開示された技術によれば、洗浄処理時に基板表面
上でHF/H2O の多分子吸着層の凝縮層が生じてい
る。このために、基板からシリコン酸化膜がエッチング
除去される場合、エッチング反応の副生成物が基板表面
から離脱せずにパーティクルとして残留しやすい問題が
ある。また、微細孔内部に凝縮層の洗浄処理液が供給さ
れないため、微細孔内部でのエッチング特性が不十分で
あるという問題がある。さらに、エッチング速度が溶媒
蒸気分圧に強く依存するためにエッチングの制御が困難
である。According to the techniques disclosed in Japanese Patent Laid-Open No. 62-173720, Japanese Patent Laid-Open No. 62-502930, and Japanese Patent Laid-Open No. 4-502981, the surface of the substrate is cleaned during the cleaning process. Above, a condensed layer of the HF / H 2 O multimolecular adsorption layer is formed. Therefore, when the silicon oxide film is removed by etching from the substrate, there is a problem that by-products of the etching reaction tend to remain as particles without being separated from the substrate surface. Further, since the cleaning treatment liquid for the condensed layer is not supplied inside the fine holes, there is a problem that the etching characteristics inside the fine holes are insufficient. Furthermore, it is difficult to control etching because the etching rate strongly depends on the partial pressure of the solvent vapor.
【0005】本発明の目的は、パーティクル発生が少な
く、微細孔内部でのエッチング特性が良好となり、ま
た、エッチングの制御性も良好となる基板の洗浄方法を
提供することにある。An object of the present invention is to provide a method for cleaning a substrate, in which generation of particles is small, etching characteristics inside fine pores are good, and etching controllability is also good.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に、本発明の基板の洗浄方法は、洗浄処理用ガス及び溶
媒蒸気の基板表面上への凝縮層数を制御して得られる、
単分子層の凝縮層を用いたエッチングを行うことを特徴
とする。この単分子層の凝縮層を形成させるため、洗浄
処理用ガス分圧を固定し、基板表面のシリコン酸化膜の
エッチング速度が溶媒蒸気分圧に依存せずに一定となる
ように、洗浄処理用ガス及び溶媒蒸気を基板に供給す
る。In order to achieve the above object, the substrate cleaning method of the present invention is obtained by controlling the number of condensed layers of cleaning gas and solvent vapor on the substrate surface.
It is characterized in that etching is performed using a monolayer condensed layer. In order to form this monolayer condensed layer, the cleaning gas partial pressure is fixed so that the etching rate of the silicon oxide film on the substrate surface is constant and does not depend on the solvent vapor partial pressure. Gas and solvent vapors are supplied to the substrate.
【0007】[0007]
【作用】洗浄処理用ガス及び溶媒蒸気を単分子層の凝縮
層で基板表面に吸着させると、エッチングは表面反応で
進む。このため、図2に示すように、エッチング反応の
副生成物の基板表面からの離脱が容易となり、残渣が少
なくなる。また、微細孔部内の表面にも凝縮することな
く蒸気が供給されてエッチングが行われるため、微細孔
内部でのエッチング特性が良好となる。さらに、エッチ
ング速度が溶媒蒸気分圧に依存しない圧力域でエッチン
グが行われるため、エッチングの制御性も良好となる。When the cleaning gas and solvent vapor are adsorbed on the surface of the substrate by the condensed layer of the monomolecular layer, the etching proceeds by the surface reaction. Therefore, as shown in FIG. 2, the by-products of the etching reaction are easily separated from the substrate surface, and the residue is reduced. Further, since the vapor is supplied to the surface in the fine pores without being condensed to perform the etching, the etching characteristics inside the fine pores are improved. Furthermore, since the etching is performed in the pressure range where the etching rate does not depend on the partial pressure of the solvent vapor, the controllability of the etching becomes good.
【0008】[0008]
(実施例1)以下、本発明の実施例について説明する。
図3は、本発明を実施するための装置の1例を示す概念
図である。洗浄室10は、耐薬品性及び汚染防止のため
炭化珪素で形成されている。洗浄室10の上部にはガス
導入口11,下部には排気口12が設けられている。ガ
ス導入口11はテフロン管20によりフッ化水素水溶液
(共沸水溶液)もしくは純水の気化器21及びマスフロ
ーコントローラ22と接続され、マスフローコントロー
ラ22には窒素等の不活性ガスが導入されるようになっ
ている。洗浄室10の内部には、ガスの流入方向と垂直
になるようにシリコン基板30が配置され、シリコン基
板30の温度は基板支持台(図示せず)内に循環水を通
すことにより制御される。Example 1 An example of the present invention will be described below.
FIG. 3 is a conceptual diagram showing an example of an apparatus for carrying out the present invention. Cleaning chamber 10 is made of silicon carbide for chemical resistance and prevention of contamination. A gas inlet 11 is provided at the upper part of the cleaning chamber 10, and an exhaust port 12 is provided at the lower part. The gas inlet 11 is connected to a hydrogen fluoride aqueous solution (azeotropic aqueous solution) or pure water vaporizer 21 and a mass flow controller 22 by a Teflon tube 20, and an inert gas such as nitrogen is introduced into the mass flow controller 22. Has become. A silicon substrate 30 is arranged in the cleaning chamber 10 so as to be perpendicular to the gas inflow direction, and the temperature of the silicon substrate 30 is controlled by passing circulating water through a substrate support (not shown). .
【0009】このように構成された装置を用いて、洗浄
室内圧力を減圧下で基板の洗浄処理を行った。フッ化水
素(HF)及び水蒸気(H2O )の圧力は洗浄室内圧力
及び気化器温度を調整することにより、任意に設定でき
る。本実施例では、基板にシリコン熱酸化膜を用い、ま
た基板温度は室温(23℃)とした。Using the apparatus thus constructed, the substrate cleaning process was performed under a reduced pressure in the cleaning chamber. The pressures of hydrogen fluoride (HF) and water vapor (H 2 O) can be arbitrarily set by adjusting the pressure in the cleaning chamber and the vaporizer temperature. In this example, a silicon thermal oxide film was used for the substrate, and the substrate temperature was room temperature (23 ° C.).
【0010】図4にエッチング速度のH2O 分圧依存性
の代表例を示した。ここで、酸化膜厚はエリプソメトリ
により測定した。図に示すように、H2O 分圧の増加に
伴って、エッチング速度が増加した後一定になり、さら
に減少した。このように、エッチング速度のH2O 分圧
依存性の違いにより三領域(以下、図示するように領域
1,領域2,領域3と記す)が存在することが分かっ
た。また、領域1と領域2の境界は約33℃の飽和蒸気
圧に一致し、領域2と領域3の境界は室温(約23℃)
の飽和蒸気圧に一致した。FIG. 4 shows a typical example of H 2 O partial pressure dependence of etching rate. Here, the oxide film thickness was measured by ellipsometry. As shown in the figure, as the partial pressure of H 2 O increased, the etching rate increased, then became constant, and then decreased. As described above, it was found that there are three regions (hereinafter, referred to as region 1, region 2, and region 3 as shown in the drawing) due to the difference in the H 2 O partial pressure dependency of the etching rate. In addition, the boundary between regions 1 and 2 matches the saturated vapor pressure of about 33 ° C, and the boundary between regions 2 and 3 is room temperature (about 23 ° C).
It was in agreement with the saturated vapor pressure of.
【0011】図5に考えられるエッチング機構を示し
た。領域1は多分子層の凝縮領域で、H2O 分圧増加の
場合のエッチング速度減少は凝縮層(水膜)中HF濃度
の減少に起因している。また、領域2は単分子吸着層の
飽和領域、領域3は単分子吸着層の不飽和領域(まだ層
状の凝縮層が形成されていない領域)で、いずれも表面
反応でエッチングが起こる。基板温度が室温の場合、領
域2と領域3の境界、即ち、単分子層吸着の飽和領域と
不飽和領域の境界は、室温(約23℃)の飽和蒸気圧に
一致するが、これは凝縮(飽和型単分子層吸着も含む)
が起こるためには基板に飽和蒸気圧以上の蒸気が供給さ
れる必要があるからである。なお、ここで言う単分子吸
着層とは、凝縮量を表面積で割った値がほぼ一分子層に
相当する状態に対応する。FIG. 5 shows a possible etching mechanism. Region 1 is a condensed region of the polymolecular layer, and the decrease in the etching rate when the H 2 O partial pressure is increased is due to the decrease in the HF concentration in the condensed layer (water film). Further, the region 2 is a saturated region of the monomolecular adsorption layer, and the region 3 is an unsaturated region of the monomolecular adsorption layer (a region in which the layered condensed layer is not yet formed), both of which cause etching due to surface reaction. When the substrate temperature is room temperature, the boundary between the region 2 and the region 3, that is, the boundary between the saturated region and the unsaturated region of monolayer adsorption coincides with the saturated vapor pressure at room temperature (about 23 ° C.), which is condensed. (Including saturated monolayer adsorption)
This is because the substrate needs to be supplied with vapor having a saturated vapor pressure or higher in order to cause the phenomenon. The monomolecular adsorption layer referred to here corresponds to a state in which the value obtained by dividing the amount of condensation by the surface area corresponds to approximately one molecular layer.
【0012】図1に基板温度が室温の場合のエッチング
の三領域を調べた実験結果をまとめた。三領域の境界と
なる代表的な実験値を図中の丸印(○)により示した。
図の境界線はそれぞれ室温(約23℃)及び約33℃の
飽和蒸気圧に相当する圧力の等温線である。FIG. 1 summarizes the experimental results of examining three regions of etching when the substrate temperature is room temperature. The representative experimental values that serve as the boundaries of the three regions are indicated by circles (○) in the figure.
The boundaries of the figure are isotherms of pressures corresponding to saturated vapor pressures of room temperature (about 23 ° C.) and about 33 ° C., respectively.
【0013】多分子層の凝縮層領域(領域1),本発明
の飽和型単分子吸着層領域(領域2)において、洗浄処理
(シリコン熱酸化膜50nmエッチング)前後のシリコ
ン基板上のパーティクル(0.3μm 以上)の個数を調
べた。この結果、領域1でのパーティクル発生数は数百
ないし数千のレベルであったが、本発明の領域2でのパ
ーティクル発生数は十個以下であった。In the condensed layer region (region 1) of the multi-molecular layer and the saturated monomolecular adsorption layer region (region 2) of the present invention, particles (0 The number of particles of 0.3 μm or more) was examined. As a result, the number of particles generated in the area 1 was at the level of several hundreds to several thousands, but the number of particles generated in the area 2 of the present invention was 10 or less.
【0014】また、直径0.2〜0.5μm,深さ2μm
のコンタクトホールをシリコン熱酸化膜にドライエッチ
ング技術を用いて形成した。本発明の領域2の条件下で
はホール底部においても均一にエッチングされ微細部で
のエッチング形状が均一であるのに対し、従来の凝縮条
件(領域1)下ではホール底面に近い程エッチングされ
にくく、不均一なエッチング形状となった。The diameter is 0.2 to 0.5 μm and the depth is 2 μm.
Contact holes were formed in the silicon thermal oxide film by using a dry etching technique. Under the condition of the region 2 of the present invention, even the bottom of the hole is uniformly etched and the etching shape in the fine portion is uniform, whereas under the conventional condensation condition (region 1), the closer to the bottom of the hole, the harder it is to etch. The etching shape was uneven.
【0015】このように、本発明の実施例1によれば、
図1の斜線部で示された実験条件下でシリコン酸化膜の
エッチングを行ったところ、パーティクルをほとんど発
生させることなく酸化膜のエッチングを行うことができ
た。また、微細部でのエッチング特性も良好であった。As described above, according to the first embodiment of the present invention,
When the silicon oxide film was etched under the experimental conditions shown by the shaded area in FIG. 1, the oxide film could be etched with almost no particles generated. Further, the etching characteristics in the fine portion were also good.
【0016】また、実施例1の効果は、洗浄処理用ガス
がフッ化水素蒸気で溶媒蒸気がイソプロピルアルコール
の混合蒸気であることを特徴とする基板の洗浄処理方法
にも有効であった。The effect of Example 1 was also effective in the substrate cleaning method characterized in that the cleaning gas was hydrogen fluoride vapor and the solvent vapor was a mixed vapor of isopropyl alcohol.
【0017】さらに、実施例1の効果は、洗浄処理用ガ
スが塩化水素,三塩化ホウ素などのハロゲン化物である
ことを特徴とする基板の洗浄処理方法にも有効であっ
た。Further, the effect of Example 1 was also effective in the method of cleaning a substrate, characterized in that the cleaning gas was a halide such as hydrogen chloride or boron trichloride.
【0018】(実施例2)図3に示すように構成された
装置を用いて、洗浄室内圧力を大気圧下で基板の洗浄処
理を行った。HF及びH2O の圧力は導入する希釈ガス
としての窒素量を調整することにより、任意に設定し
た。また、基板温度を室温(23℃)に設定した。(Embodiment 2) Using the apparatus configured as shown in FIG. 3, the cleaning treatment of the substrate was carried out under the pressure of the cleaning chamber under the atmospheric pressure. The pressures of HF and H 2 O were arbitrarily set by adjusting the amount of nitrogen as a diluent gas to be introduced. The substrate temperature was set to room temperature (23 ° C).
【0019】洗浄処理用ガスのHF分圧が一定の場合、
溶媒蒸気のH2O 分圧の増減に依存せずに基板表面のシ
リコン酸化膜のエッチング速度が一定となるように、本
発明の領域を求めると、図1の斜線部分に示す領域とな
る。When the HF partial pressure of the cleaning gas is constant,
When the region of the present invention is determined so that the etching rate of the silicon oxide film on the substrate surface is constant without depending on the increase or decrease of the H 2 O partial pressure of the solvent vapor, the region shown by the hatched portion in FIG. 1 is obtained.
【0020】多分子層の凝縮層領域(領域1),本発明
の飽和型単分子吸着層領域(領域2)において、洗浄処理
(シリコン熱酸化膜50nmエッチング)前後のシリコ
ン基板上のパーティクル(0.3μm 以上)の個数を調
べた。この結果、領域1でのパーティクル発生数は数百
ないし数千のレベルであったが、本発明の領域2でのパ
ーティクル発生数は十個以下であった。In the condensation layer region (region 1) of the multi-molecular layer and the saturated monomolecular adsorption layer region (region 2) of the present invention, particles (0 The number of particles of 0.3 μm or more) was examined. As a result, the number of particles generated in the area 1 was at the level of several hundreds to several thousands, but the number of particles generated in the area 2 of the present invention was 10 or less.
【0021】実施例2の効果は、基板温度を上昇させ、
例えば30℃に制御した場合でも基板温度が室温の場合
と同様の効果が得られた。なお、領域2と領域3の境界
線が約30℃、領域1と領域2の境界線が約40℃の飽
和蒸気圧に相当する圧力の等温線となった。The effect of the second embodiment is to raise the substrate temperature,
For example, even when the temperature was controlled to 30 ° C., the same effect as when the substrate temperature was room temperature was obtained. The boundary line between the region 2 and the region 3 was about 30 ° C., and the boundary line between the region 1 and the region 2 was an isotherm of a pressure corresponding to a saturated vapor pressure of about 40 ° C.
【0022】このように、実施例2によれば、洗浄室内
圧力を大気圧下でパーティクルをほとんど発生させるこ
となく酸化膜のエッチングを行うことができた。As described above, according to the second embodiment, the oxide film could be etched under the pressure of the cleaning chamber at atmospheric pressure with almost no particles generated.
【0023】(実施例3)本実施例では、図3に示すよ
うに構成された装置を用いた場合の、洗浄室内のH2O
分圧及びHF分圧の設定例を示す。これらの分圧は、洗
浄室内圧力及び気化器温度を調整することにより設定で
きる。すなわち、 1)H2O 気化器から発生するH2O蒸気の流速の計算
式 図6(a)に、H2O気化器におけるH2O蒸気発生の概
念図を示した。流速x(slm)のキャリアガスN2がH2
O 気化器(気化器温度;T(℃),気化器内圧力;y
(Pa))に導入され、流速a(slm)のH2O蒸気が発
生するものとする。気化器から飽和蒸気が発生すると仮
定すると、流速と圧力には以下に示す関係式が成り立
つ。(Embodiment 3) In the present embodiment, H 2 O in the cleaning chamber when the apparatus configured as shown in FIG. 3 is used.
An example of setting the partial pressure and the HF partial pressure is shown. These partial pressures can be set by adjusting the pressure in the cleaning chamber and the vaporizer temperature. That is, 1) in H 2 O vaporization formula for the flow velocity of H 2 O vapor generated from the device Figure 6 (a), showing a conceptual diagram of a H 2 O vapor generated in H 2 O carburetor. Carrier gas N2 with flow velocity x (slm) is H 2
O 2 vaporizer (vaporizer temperature; T (° C), vaporizer internal pressure; y
(Pa)), and H 2 O vapor having a flow rate a (slm) is generated. Assuming that saturated vapor is generated from the vaporizer, the following relational expression holds for the flow velocity and pressure.
【0024】[0024]
【数1】 a/x=P′H2O/(y−P′H2O) …(数1) P′H2O:T(℃)における水蒸気圧 従って、H2O気化器から発生するH2O蒸気の流速は次
式で示される。A / x = P′H 2 O / (y−P′H 2 O) (Equation 1) P′H 2 O: Water vapor pressure at T (° C.) Therefore, it is generated from the H 2 O vaporizer. The flow rate of H 2 O vapor is shown by the following equation.
【0025】[0025]
【数2】 a=(x×P′H2O)/(y−P′H2O) …(数2) 2)HF気化器から発生するHF/H2O蒸気の流速の
計算式 図6(b)に、HF気化器におけるHF/H2O 蒸気発
生の概念図を示した。流速x′(slm)のキャリアガスN
2がHF気化器(気化器温度;T′(℃),気化器内圧
力;y′(Pa))に導入され、流速a′(slm)のHF
/H2O 蒸気が発生するものとする。気化器から飽和蒸
気が発生すると仮定すると、流速と圧力には以下に示す
関係式が成り立つ。[Number 2] a = (x × P'H 2 O ) / (y-P'H 2 O) ... ( Equation 2) 2) calculated representation of the flow rate of HF / H 2 O vapor generated from HF vaporizer 6 (b) shows a conceptual diagram of HF / H 2 O vapor generation in the HF vaporizer. Carrier gas N with flow velocity x '(slm)
2 was introduced into the HF vaporizer (vaporizer temperature; T '(° C), vaporizer internal pressure; y' (Pa)), and HF of flow rate a '(slm)
/ H 2 O vapor shall be generated. Assuming that saturated vapor is generated from the vaporizer, the following relational expression holds for the flow velocity and pressure.
【0026】[0026]
【数3】 a′/x′=P″HF・H2O/(y′−P″HF・H2O)…(数3) P″HF・H2O:T′(℃)におけるHF/H2O蒸気
圧(Ind.Eng.Chem.,Vol.41,pp.1504−1508,(1949).) 従って、HF気化器から発生するHF/H2O 蒸気の流
速は次式で示される。[Number 3] a '/ x' = P " HF · H 2 O / (y'-P" HF · H 2 O) ... ( number 3) P "HF · H 2 O: T 'HF in (℃) / H 2 O vapor pressure (Ind. Eng. Chem., Vol. 41, pp. 1504-1508, (1949).) Therefore, the flow rate of HF / H 2 O vapor generated from the HF vaporizer is shown by the following equation. Be done.
【0027】[0027]
【数4】 a′=(x′×P″HF・H2O)/(y′−P″HF・H2O)…(数4) HF水溶液には共沸水溶液(38.4wt%HF;36.
0mol%HF)を用いているので、HF気化器から発生
するHF蒸気及びH2O蒸気の流速は、A ′ = (x ′ × P ″ HF · H 2 O) / (y′−P ″ HF · H 2 O) (Equation 4) The HF aqueous solution contains an azeotropic aqueous solution (38.4 wt% HF). 36.
Since 0 mol% HF) is used, the flow rates of HF vapor and H 2 O vapor generated from the HF vaporizer are
【0028】[0028]
【数5】 HFの流速=0.36×a′ …(数5)## EQU00005 ## HF flow velocity = 0.36.times.a '... (Equation 5)
【0029】[0029]
【数6】 H2Oの流速=0.64×a′ …(数6) となる。[6] of H 2 O flow rate = 0.64 × a '... a (6).
【0030】3)洗浄室内のH2O分圧及びHF分圧の
計算式 図6(a)及び図6(b)で示すように、気化器からH
F蒸気及びH2O 蒸気が発生して洗浄室内に導入される
とすると、各ガスの流速比は、3) Calculation formulas for H 2 O partial pressure and HF partial pressure in the cleaning chamber As shown in FIGS. 6 (a) and 6 (b), H
If F vapor and H 2 O vapor are generated and introduced into the cleaning chamber, the flow velocity ratio of each gas is
【0031】[0031]
【数7】 (N2の流速):(H2Oの流速):(HFの流速) =(x+x′):(a+0.64a′):(0.36a′) …(数7) となり、モル分率Xは(N 2 flow rate): (H 2 O flow rate): (HF flow rate) = (x + x ′): (a + 0.64a ′): (0.36a ′) (Equation 7) The mole fraction X is
【0032】[0032]
【数8】 XH2O=(a+0.64a′)/(x+x′+a+a′) …(数8)XH 2 O = (a + 0.64a ′) / (x + x ′ + a + a ′) (Equation 8)
【0033】[0033]
【数9】 XHF=(0.36a′)/(x+x′+a+a′) …(数9) となる。従って、洗浄室内圧力をPTとすると、H2O
分圧(PH2O)及びHF分圧(PHF)は次式で示さ
れる。XHF = (0.36a ') / (x + x' + a + a ') (Equation 9) Therefore, assuming that the pressure in the cleaning chamber is PT, H 2 O
The partial pressure (PH 2 O) and the HF partial pressure (PHF) are shown by the following equations.
【0034】[0034]
【数10】 PH2O=PT×XH2O ={PT×(a+0.64a′)}/(x+x′+a+a′) =[PT×{(x×P′H2O)/(y−P′H2O) +0.64(x′×P″HF・H2O)/(y′−P″HF・H2O)}] /{x+x′+(x×P′H2O)/(y−P′H2O) +(x′×P″HF・H2O)/(y′−P″HF・H2O)} …(数10)PH 2 O = PT × XH 2 O = {PT × (a + 0.64a ′)} / (x + x ′ + a + a ′) = [PT × {(xxP′H 2 O) / (y−P ′ H 2 O) +0.64 (x ′ × P ″ HF · H 2 O) / (y′−P ″ HF · H 2 O)}] / {x + x ′ + (xx × P′H 2 O) / (Y−P′H 2 O) + (x ′ × P ″ HF · H 2 O) / (y′−P ″ HF · H 2 O)} (Equation 10)
【0035】[0035]
【数11】 PHF=PT×XHF =(PT×0.36a′)/(x+x′+a+a′) ={PT×0.36(x′×P″HF・H2O) /(y′−P″HF・H2O)}/{x+x′+(x×P′H2O) /(y−P′H2O)+(x′×P″HF・H2O) /(y′−P″HF・H2O)} …(数11) 4)気化器温度調整による洗浄室内分圧の設定例 数10及び数11に基づいて、HF気化器温度を固定し
H2O 気化器温度を変化させて求めた、洗浄室内のH2
O分圧を図7(a)に示した。また、H2O気化器温度
を固定しHF気化器温度を変化させて求めた、洗浄室内
のHF分圧を図7(b)に示した。なお、洗浄室内圧力
(PT)及び気化器内圧力(y及びy′)の圧力測定に
はMKS(株)社製バラトロン(商品名)を用いた。PHF = PT × XHF = (PT × 0.36a ′) / (x + x ′ + a + a ′) = {PT × 0.36 (x ′ × P ″ HF · H 2 O) / (y′−P ″ HF · H 2 O)} / {x + x ′ + (x × P′H 2 O) / (y−P′H 2 O) + (x ′ × P ″ HF · H 2 O) / (y′− P ″ HF · H 2 O)} (Equation 11) 4) Setting example of partial pressure in cleaning chamber by adjusting vaporizer temperature Based on Equations 10 and 11, the HF vaporizer temperature is fixed and the H 2 O vaporizer temperature is set. H 2 in the cleaning chamber obtained by changing
The O partial pressure is shown in FIG. Further, the HF partial pressure in the cleaning chamber, which was obtained by fixing the H 2 O vaporizer temperature and changing the HF vaporizer temperature, is shown in FIG. 7 (b). A Baratron (trade name) manufactured by MKS Co., Ltd. was used for measuring the pressure in the cleaning chamber (PT) and the pressure in the vaporizer (y and y ').
【0036】以上のように実施例3によれば、洗浄室内
のH2O分圧及びHF分圧を、洗浄室内圧力及び気化器
温度を調整することにより設定できる。As described above, according to the third embodiment, the H 2 O partial pressure and the HF partial pressure in the cleaning chamber can be set by adjusting the pressure in the cleaning chamber and the vaporizer temperature.
【0037】(実施例4)実施例4では、図3に示すよ
うに構成された装置を用いて、エッチング膜厚の時間依
存性を評価した例を示す。基板にはシリコン熱酸化膜を
用い、膜厚測定にはエリプソメトリを用いた。また、基
板温度は室温とした。(Embodiment 4) In Embodiment 4, an example in which the time dependency of the etching film thickness is evaluated by using the apparatus configured as shown in FIG. A silicon thermal oxide film was used for the substrate, and ellipsometry was used for film thickness measurement. The substrate temperature was room temperature.
【0038】図8(a)に、洗浄室内圧力が4.7×1
04Paにおけるエッチング膜厚の時間依存性を示し
た。エッチング速度は、H2O 気化器温度が30℃から
40℃までの場合には一定となり、45℃から60℃ま
で上昇させた場合には減少した。一方、図8(b)に
1.6×104Paにおけるエッチング膜厚の時間依存性
を示したが、エッチング速度はH2O 気化器温度が40
℃から55℃までの上昇に伴って増加した。In FIG. 8A, the pressure in the cleaning chamber is 4.7 × 1.
The time dependence of the etching film thickness at 0 4 Pa is shown. The etching rate was constant when the H 2 O vaporizer temperature was 30 ° C to 40 ° C, and decreased when the temperature was raised from 45 ° C to 60 ° C. On the other hand, FIG. 8 (b) shows the time dependence of the etching film thickness at 1.6 × 10 4 Pa. The etching rate is 40% at H 2 O vaporizer temperature.
It increased with the increase from ℃ to 55 ℃.
【0039】このように実施例4によれば、洗浄室内圧
力及び気化器温度を調整することにより、エッチング速
度のH2O 分圧依存性の違いによる三領域を設定するこ
とができ、従って、本発明のエッチング速度一定領域を
実現することができる。また、エッチング速度がH2O
分圧に依存しない圧力域でエッチングが行われるため、
エッチングの制御性も良好となる。As described above, according to the fourth embodiment, by adjusting the pressure in the cleaning chamber and the vaporizer temperature, it is possible to set three regions depending on the difference in the H 2 O partial pressure dependency of the etching rate. The constant etching rate region of the present invention can be realized. In addition, the etching rate is H 2 O
Since etching is performed in the pressure range that does not depend on the partial pressure,
The controllability of etching is also improved.
【0040】[0040]
【発明の効果】洗浄処理用ガス及び溶媒蒸気を基板に供
給する際、基板上で洗浄処理用ガス及び溶媒蒸気が単分
子層で吸着していることを特徴とした基板の洗浄処理を
行う本発明によれば、パーティクル発生が少なく、微細
孔内部でのエッチング特性が良好となり、また、エッチ
ングの制御性も良好となる。EFFECT OF THE INVENTION When supplying the cleaning processing gas and the solvent vapor to the substrate, the cleaning processing of the substrate is characterized in that the cleaning processing gas and the solvent vapor are adsorbed by the monomolecular layer on the substrate. According to the invention, generation of particles is small, etching characteristics inside fine pores are good, and etching controllability is also good.
【図1】本発明の洗浄処理条件の圧力領域を示す説明
図。FIG. 1 is an explanatory view showing a pressure region of a cleaning treatment condition of the present invention.
【図2】本発明の作用を示す説明図。FIG. 2 is an explanatory view showing the operation of the present invention.
【図3】本発明の実施例1のベーパ洗浄装置のブロック
図。FIG. 3 is a block diagram of the vapor cleaning apparatus according to the first embodiment of the present invention.
【図4】本発明の実施例1のエッチング速度のH2O 分
圧依存性を示す特性図。FIG. 4 is a characteristic diagram showing the H 2 O partial pressure dependence of the etching rate in Example 1 of the present invention.
【図5】本発明の実施例1のエッチング機構を示す説明
図。FIG. 5 is an explanatory diagram showing an etching mechanism according to the first embodiment of the present invention.
【図6】本発明の実施例3の気化器の説明図。FIG. 6 is an explanatory diagram of a vaporizer according to a third embodiment of the present invention.
【図7】本発明の実施例4の気化器温度と洗浄室内の分
圧との関係を示す特性図。FIG. 7 is a characteristic diagram showing the relationship between the vaporizer temperature and the partial pressure in the cleaning chamber according to the fourth embodiment of the present invention.
【図8】本発明の実施例4のエッチング時間とエッチン
グ量の関係を示す特性図。FIG. 8 is a characteristic diagram showing the relationship between the etching time and the etching amount in Example 4 of the present invention.
10…洗浄室、11…ガス導入口、12…排気口、20
…テフロン管、21…気化器、22…マスフローコント
ローラ、30…シリコン基板。10 ... Washing room, 11 ... Gas inlet, 12 ... Exhaust, 20
... Teflon tube, 21 ... Vaporizer, 22 ... Mass flow controller, 30 ... Silicon substrate.
Claims (12)
する際、前記基板上で洗浄処理用ガス及び溶媒蒸気が実
質的に単分子層で吸着していることを特徴とする基板の
洗浄処理方法。1. When cleaning gas and solvent vapor are supplied to a substrate, the cleaning gas and solvent vapor are adsorbed on the substrate substantially as a monomolecular layer. Processing method.
分圧が一定の場合、前記基板の表面のシリコン酸化膜の
エッチング速度が溶媒蒸気分圧に依存せずに一定となる
基板の洗浄処理方法。2. The substrate cleaning method according to claim 1, wherein, when the partial pressure of the cleaning gas is constant, the etching rate of the silicon oxide film on the surface of the substrate is constant independent of the solvent vapor partial pressure. Processing method.
フッ化水素蒸気で溶媒蒸気が水蒸気である基板の洗浄処
理方法。3. The method of cleaning a substrate according to claim 1, wherein the cleaning gas is hydrogen fluoride vapor and the solvent vapor is water vapor.
フッ化水素蒸気で溶媒蒸気がアルコール等の揮発性有機
溶媒である基板の洗浄処理方法。4. The method for cleaning a substrate according to claim 1, wherein the cleaning gas is hydrogen fluoride vapor and the solvent vapor is a volatile organic solvent such as alcohol.
塩化水素,三塩化ホウ素などのハロゲン化物である基板
の洗浄処理方法。5. The method for cleaning a substrate according to claim 1, wherein the cleaning gas is a halide such as hydrogen chloride or boron trichloride.
び前記溶媒蒸気のキャリアガスもしくは希釈ガスとして
用いる不活性ガスが窒素、もしくはアルゴンである基板
の洗浄処理方法。6. The method for cleaning a substrate according to claim 1, wherein the inert gas used as a carrier gas or a diluent gas for the cleaning gas and the solvent vapor is nitrogen or argon.
温度に制御する基板の洗浄処理方法。7. The method of cleaning a substrate according to claim 1, wherein the temperature of the substrate is controlled to a constant temperature.
等により室温付近の温度に一定に制御する基板の洗浄処
理方法。8. The method of cleaning a substrate according to claim 7, wherein the temperature of the substrate is controlled to a temperature near room temperature by water cooling or the like.
理を減圧下(大気圧以下)で行う基板の洗浄処理方法。9. The method of cleaning a substrate according to claim 1, wherein the cleaning process of the substrate surface is performed under reduced pressure (atmospheric pressure or less).
圧と水蒸気の圧力が図1に示す圧力範囲である基板の洗
浄処理方法。10. The method for cleaning a substrate according to claim 9, wherein the hydrogen fluoride vapor pressure and the water vapor pressure are within the pressure range shown in FIG.
浄処理を大気圧下で行う基板の洗浄処理方法。11. The method for cleaning a substrate according to claim 1, wherein the surface of the substrate is cleaned under atmospheric pressure.
気圧と水蒸気の圧力が図1に示す圧力範囲である基板の
洗浄処理方法。12. The method for cleaning a substrate according to claim 11, wherein the hydrogen fluoride vapor pressure and the water vapor pressure are within the pressure range shown in FIG.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11427195A JPH08316189A (en) | 1995-05-12 | 1995-05-12 | Substrate cleaning method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11427195A JPH08316189A (en) | 1995-05-12 | 1995-05-12 | Substrate cleaning method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08316189A true JPH08316189A (en) | 1996-11-29 |
Family
ID=14633642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11427195A Pending JPH08316189A (en) | 1995-05-12 | 1995-05-12 | Substrate cleaning method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08316189A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000046838A3 (en) * | 1999-02-05 | 2001-02-15 | Massachusetts Inst Technology | Hf vapor phase wafer cleaning and oxide etching |
US6740247B1 (en) | 1999-02-05 | 2004-05-25 | Massachusetts Institute Of Technology | HF vapor phase wafer cleaning and oxide etching |
JP2021500756A (en) * | 2017-10-23 | 2021-01-07 | ラム・リサーチ・アーゲーLam Research Ag | Systems and methods to prevent stiction of high aspect ratio structures and / or systems and methods to repair high aspect ratio structures |
-
1995
- 1995-05-12 JP JP11427195A patent/JPH08316189A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000046838A3 (en) * | 1999-02-05 | 2001-02-15 | Massachusetts Inst Technology | Hf vapor phase wafer cleaning and oxide etching |
US6740247B1 (en) | 1999-02-05 | 2004-05-25 | Massachusetts Institute Of Technology | HF vapor phase wafer cleaning and oxide etching |
JP2021500756A (en) * | 2017-10-23 | 2021-01-07 | ラム・リサーチ・アーゲーLam Research Ag | Systems and methods to prevent stiction of high aspect ratio structures and / or systems and methods to repair high aspect ratio structures |
US11854792B2 (en) | 2017-10-23 | 2023-12-26 | Lam Research Ag | Systems and methods for preventing stiction of high aspect ratio structures and/or repairing high aspect ratio structures |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100256453B1 (en) | Selective deposition of tungsten on semiconductor wafers | |
US5294568A (en) | Method of selective etching native oxide | |
KR100332402B1 (en) | Semiconductor treatment method using HF and carboxylic acid mixture | |
JP5314247B2 (en) | Substrate processing method, plasma chamber and semiconductor device | |
EP1351283A1 (en) | Method and apparatus for treating article to be treated | |
JPH06181188A (en) | Method and system for etching | |
JP2009278142A (en) | Method for containing critical width dimension growth of feature to be etched | |
JPS6048902B2 (en) | How to etch silicon dioxide | |
JP7072075B2 (en) | Systems and methods for forming voids | |
JP6896522B2 (en) | Etching method and materials for plasma etching | |
JPWO2002050883A1 (en) | Cleaning and etching methods | |
TWI415177B (en) | A substrate processing method and a substrate processing apparatus | |
JP4039385B2 (en) | Removal method of chemical oxide film | |
JP3133054B2 (en) | Substrate cleaning processing method and cleaning processing apparatus | |
JPH05206404A (en) | Method for formation of trench structure in substrate | |
JPH08316189A (en) | Substrate cleaning method | |
JPH0641631B2 (en) | Chemical vapor deposition method and chemical vapor deposition apparatus for tantalum oxide film | |
JP3037915B2 (en) | Method for manufacturing semiconductor device | |
JPH0312454B2 (en) | ||
JP3331957B2 (en) | Surface treatment method for structure to be treated | |
JP3401585B2 (en) | Substrate cleaning method | |
JPH08213357A (en) | Substrate cleaning method | |
JP3979003B2 (en) | Deposition equipment | |
JP2874241B2 (en) | Dry cleaning method for semiconductor device | |
JPH04296021A (en) | Surface treatment method for semiconductor substrate |