JPH08309152A - Purification method for exhaust gas - Google Patents
Purification method for exhaust gasInfo
- Publication number
- JPH08309152A JPH08309152A JP7120998A JP12099895A JPH08309152A JP H08309152 A JPH08309152 A JP H08309152A JP 7120998 A JP7120998 A JP 7120998A JP 12099895 A JP12099895 A JP 12099895A JP H08309152 A JPH08309152 A JP H08309152A
- Authority
- JP
- Japan
- Prior art keywords
- ammonia
- catalyst layer
- catalyst
- exhaust gas
- denitration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 23
- 238000000746 purification Methods 0.000 title claims description 5
- 239000003054 catalyst Substances 0.000 claims abstract description 93
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims abstract description 78
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 68
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 35
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 28
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 25
- 239000007789 gas Substances 0.000 claims abstract description 24
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052751 metal Inorganic materials 0.000 claims abstract description 7
- 239000002184 metal Substances 0.000 claims abstract description 7
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 16
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 14
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 229910052720 vanadium Inorganic materials 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- 238000002441 X-ray diffraction Methods 0.000 claims description 4
- 239000003638 chemical reducing agent Substances 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 229910001413 alkali metal ion Inorganic materials 0.000 claims description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 3
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 3
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 229910021472 group 8 element Inorganic materials 0.000 claims description 3
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 239000010955 niobium Substances 0.000 claims description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 3
- 230000000737 periodic effect Effects 0.000 claims description 3
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- 238000007084 catalytic combustion reaction Methods 0.000 abstract description 2
- 229910044991 metal oxide Inorganic materials 0.000 abstract 1
- 150000004706 metal oxides Chemical class 0.000 abstract 1
- 150000002739 metals Chemical class 0.000 abstract 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 11
- 239000000243 solution Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000000758 substrate Substances 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 101100476210 Caenorhabditis elegans rnt-1 gene Proteins 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 229910052878 cordierite Inorganic materials 0.000 description 3
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010531 catalytic reduction reaction Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 229910021555 Chromium Chloride Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910021550 Vanadium Chloride Inorganic materials 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- FAPDDOBMIUGHIN-UHFFFAOYSA-K antimony trichloride Chemical compound Cl[Sb](Cl)Cl FAPDDOBMIUGHIN-UHFFFAOYSA-K 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- QSWDMMVNRMROPK-UHFFFAOYSA-K chromium(3+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cr+3] QSWDMMVNRMROPK-UHFFFAOYSA-K 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 1
- YHBDIEWMOMLKOO-UHFFFAOYSA-I pentachloroniobium Chemical compound Cl[Nb](Cl)(Cl)(Cl)Cl YHBDIEWMOMLKOO-UHFFFAOYSA-I 0.000 description 1
- RPESBQCJGHJMTK-UHFFFAOYSA-I pentachlorovanadium Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[V+5] RPESBQCJGHJMTK-UHFFFAOYSA-I 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- OSBSFAARYOCBHB-UHFFFAOYSA-N tetrapropylammonium Chemical compound CCC[N+](CCC)(CCC)CCC OSBSFAARYOCBHB-UHFFFAOYSA-N 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、排ガス中の窒素酸化物
(NOx)、一酸化炭素(CO)を高い効率にて除去す
ることのできる排ガスの浄化方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying exhaust gas capable of removing nitrogen oxides (NOx) and carbon monoxide (CO) in exhaust gas with high efficiency.
【0002】[0002]
【従来の技術】燃焼排ガスに含まれるNOxを除去する
方法としては、NH3 を還元剤とした選択的接触還元法
が火力発電所を中心に広く実用化されている。触媒とし
ては、バナジウム、タングステン、モリブデンを活性成
分とした酸化チタン系の触媒が主に用いられている。2. Description of the Related Art As a method for removing NOx contained in combustion exhaust gas, a selective catalytic reduction method using NH 3 as a reducing agent has been widely put to practical use mainly in thermal power plants. As the catalyst, a titanium oxide-based catalyst containing vanadium, tungsten, and molybdenum as active components is mainly used.
【0003】[0003]
【発明が解決しようとする課題】NOx排出規制は近年
益々厳しくなる傾向にあり、とくに大都市部では排出総
量規制が実施されており、都市部に隣接した発電所では
電力需要の増大に伴う発電設備の増設にあたって、より
高効率な脱硝が要求されている。さらに、発電所から排
出される一酸化炭素の排出規制も厳しくなっている。従
来の脱硝法はNH 3 を還元剤とした接触還元法であり、
4NO+4NH3 +O2 →4N2 +6H2Oの反応式に
よってNOxが触媒上でN2 に分解される。この反応式
から考えると、理論的にはNOxと等モルのNH3 を添
加すればNOxが100%除去できることになる。しか
し、実際には、排ガス中でNH3 とNOxを完全に均一
混合することは不可能であり、高効率な脱硝を行うため
にはNH3 をNOxより過剰に添加する必要がある。そ
のため未反応NH3 がかなりな割合で排出される欠点が
あった。In recent years, NOx emission regulations have been adopted.
It tends to become more and more severe, especially in large cities.
The amount of electricity is regulated, and at power plants adjacent to urban areas
More expansion of power generation equipment as power demand increases
Highly efficient denitration is required. In addition, the
The emission control of carbon monoxide emitted is also becoming strict. Obedience
The traditional denitration method is NH 3Is a catalytic reduction method using
4NO + 4NH3+ O2→ 4N2+ 6H2O reaction formula
Therefore, NOx is N on the catalyst.2Is decomposed into. This reaction formula
From a theoretical point of view, theoretically, NH is equimolar to NOx.3With
If added, 100% of NOx can be removed. Only
However, in reality, NH in the exhaust gas3And NOx are completely uniform
It is impossible to mix, and to perform highly efficient denitration
NH3Needs to be added in excess of NOx. So
Unreacted due to NH3Is discharged in a considerable proportion
there were.
【0004】これまで、本発明者らは未反応NH3 の排
出を防ぐため、アンモニア分解触媒を開発し(特願平5
−127126、特願平6−70486等)、さらに、
後方に仕上げ脱硝触媒を設置し、高効率脱硝を行うプロ
セスを提案した(特願平6−176494)。しかし、
排ガス中に一酸化炭素が共存する場合にアンモニア分解
触媒のNH3 分解率、窒素選択率に変化が生じる不具合
が生じた。To date, the present inventors have developed an ammonia decomposition catalyst to prevent the emission of unreacted NH 3 (Japanese Patent Application No.
-127126, Japanese Patent Application No. 6-70486, etc.)
We proposed a process to install high-efficiency denitration by installing a finishing denitration catalyst in the rear (Japanese Patent Application No. 6-176494). But,
When carbon monoxide coexists in the exhaust gas, the NH 3 decomposition rate and the nitrogen selectivity of the ammonia decomposition catalyst change.
【0005】本発明は上記技術水準に鑑み、従来技術の
欠点を解消し、未反応NH3 の大気への排出を極力抑制
して高効率な脱硝を行うことができ、さらに、一酸化炭
素も除去できる排ガスの浄化方法を提供しようとするも
のである。In view of the above-mentioned state of the art, the present invention solves the drawbacks of the prior art and enables highly efficient denitration by suppressing the discharge of unreacted NH 3 to the atmosphere as much as possible, and further carbon monoxide It is intended to provide a method of purifying exhaust gas that can be removed.
【0006】[0006]
【課題を解決するための手段】本発明は、(1)窒素酸
化物、一酸化炭素を含有する排ガスを触媒を充填した反
応器に導いて、アンモニアを還元剤として接触的に窒素
酸化物を除去する方法において、アンモニア添加装置の
上段側に一酸化炭素除去触媒層を、アンモニア添加装置
の下段側には上流側から第1脱硝触媒層を、その後流に
アンモニアを窒素及び窒素酸化物に酸化分解する機能を
有するアンモニア分解触媒層を、さらにその後流に第2
脱硝触媒層を設置し、アンモニア添加装置から添加され
るアンモニアを入口排ガス中の窒素酸化物の反応当量以
上に添加することを特徴とする排ガスの浄化方法、
(2)アンモニア分解触媒が脱水された状態で、(1.
0±0.6)R2 O・〔aM2 O3 ・bAl2 O3 〕・
cMeO・ySiO2 (R:アルカリ金属イオン及び/
又は水素イオン、M:周期律表のVIII族元素、希土類元
素、チタン、バナジウム、クロム、ニオブ、アンチモン
及びガリウムからなる群から選ばれる1種以上の元素、
Me:アルカリ土類金属元素、a+b=1、a≧0、b
≧0、c≧0、y/c>12、y>12)の化学式を有
し、かつ下記表1に示されるX線回折パターンを有する
結晶性シリケートを担体とし、活性金属として白金及び
/又はパラジウムを含有する触媒であることを特徴とす
る上記(1)記載の排ガスの浄化方法、及び(3)一酸
化炭素除去触媒が多孔質耐熱性担体に、活性金属として
Pt及び/又はPdを0.001〜10wt%担持した
触媒であることを特徴とする上記(1)又は(2)記載
の排ガスの浄化方法である。According to the present invention, (1) an exhaust gas containing nitrogen oxides and carbon monoxide is introduced into a reactor filled with a catalyst to catalytically remove nitrogen oxides using ammonia as a reducing agent. In the removal method, the carbon monoxide removal catalyst layer is on the upper side of the ammonia addition device, the first denitration catalyst layer is on the lower side of the ammonia addition device from the upstream side, and ammonia is oxidized to nitrogen and nitrogen oxides in the subsequent flow. An ammonia decomposing catalyst layer having a function of decomposing is further provided in the subsequent stream to the second
A denitration catalyst layer is installed, and ammonia added from an ammonia addition device is added to the exhaust gas at a reaction equivalent amount or more of nitrogen oxides in the exhaust gas at the inlet, a method for purifying exhaust gas,
(2) When the ammonia decomposition catalyst is dehydrated, (1.
0 ± 0.6) R 2 O ・ [aM 2 O 3・ bAl 2 O 3 ] ・
cMeO.ySiO 2 (R: alkali metal ion and /
Or hydrogen ion, M: at least one element selected from the group consisting of Group VIII elements of the Periodic Table, rare earth elements, titanium, vanadium, chromium, niobium, antimony and gallium,
Me: alkaline earth metal element, a + b = 1, a ≧ 0, b
≧ 0, c ≧ 0, y / c> 12, y> 12) and a crystalline silicate having an X-ray diffraction pattern shown in Table 1 below as a carrier, and platinum and / or an active metal. The method for purifying exhaust gas according to the above (1), which is a catalyst containing palladium, and (3) the carbon monoxide removing catalyst has Pt and / or Pd as an active metal of 0 in the porous heat-resistant carrier. The exhaust gas purifying method as described in (1) or (2) above, wherein the catalyst is supported by 0.001 to 10 wt%.
【0007】[0007]
【表1】 VS:非常に強い S:強い M:中級 W:弱い (X線源:Cu)[Table 1] VS: Very strong S: Strong M: Intermediate W: Weak (X-ray source: Cu)
【0008】[0008]
【作用】以下、本発明の一態様を図1によって説明し、
その作用を明らかにする。NH 3 添加装置2の上段側に
一酸化炭素除去触媒層1を設置し、触媒燃焼により一酸
化炭素を燃焼除去する。NH3 添加装置2の下段側には
第1脱硝触媒層3を、その後流にNH3 分解触媒層4
を、さらに、その後流に第2脱硝触媒層5を設置し、第
1脱硝触媒層3の上流にNOxに対して反応等量以上の
NH3 をNH3 添加装置2より添加して、第1脱硝触媒
層3で80%以上の脱硝を行い、第1脱硝触媒層3から
流出する未反応NH3 をNH3 分解触媒層4によって分
解させて下流の第2脱硝触媒層入口のNOx、NH3 濃
度を調整して、第2脱硝触媒層5出口でのNOxを0.
1ppm以下、NH3 を5ppm以下レベルにする。上
流及び下流の第1及び第2脱硝触媒層3,5にはV,
W,Moなどを活性成分としたTiO2 系の従来実用化
されている触媒を用いることができる。Hereinafter, one embodiment of the present invention will be described with reference to FIG.
The action is clarified. NH 3On the upper side of the addition device 2
A carbon monoxide removal catalyst layer 1 is installed, and monoacid is generated by catalytic combustion
Combustion and removal of carbon dioxide. NH3On the lower side of the adding device 2,
The first denitration catalyst layer 3 is fed with NH3Decomposition catalyst layer 4
Further, the second denitration catalyst layer 5 is installed in the subsequent flow,
1 upstream of the denitration catalyst layer 3 the reaction equivalent amount or more for NOx
NH3To NH3The first denitration catalyst added by the addition device 2
80% or more of denitration is performed in layer 3 and the first denitration catalyst layer 3
Unreacted NH flowing out3To NH3By the decomposition catalyst layer 4
NOx, NH at the downstream second NOx removal catalyst layer inlet3Dark
The NOx at the outlet of the second denitration catalyst layer 5 is adjusted to 0.
1ppm or less, NH3To a level of 5 ppm or less. Up
V and V are applied to the first and second denitration catalyst layers 3 and 5 in the flow and the downstream.
TiO with W and Mo as active ingredients2Conventional application of system
Any known catalyst can be used.
【0009】本発明方法では一酸化炭素を触媒により燃
焼除去するため、NH3 分解触媒の性能に変化をもたら
すことはなく、さらに、有害な一酸化炭素の排出も抑制
できることになる。In the method of the present invention, since carbon monoxide is burned and removed by a catalyst, the performance of the NH 3 decomposition catalyst is not changed, and furthermore, harmful carbon monoxide emission can be suppressed.
【0010】上記本発明の態様において、NH3 分解触
媒層に使用される触媒としては下記に定義する窒素選択
率%が60%以上のものであることが好ましい。In the above embodiment of the present invention, the catalyst used in the NH 3 decomposition catalyst layer preferably has a nitrogen selectivity% as defined below of 60% or more.
【0011】[0011]
【数1】 窒素選択率(%)=〔1−{アンモニア分解触媒出口NOx(ppm) −アンモニア分解触媒入口NOx(ppm)}/ {アンモニア分解触媒入口NH3 (ppm) −アンモニア分解触媒出口NH3 (ppm)}〕 すなわち、上記で定義するアンモニア分解触媒の窒素選
択率が小さいと、NH 3 分解触媒層出口でNH3 >NO
xにコントロールしうるプラントの運転範囲が狭くな
り、幅広い処理ガス量、温度条件でコントロールするこ
とが必要となるため、窒素選択率は少なくとも60%以
上であることが好ましい。## EQU1 ## Nitrogen selectivity (%) = [1- {ammonia decomposition catalyst outlet NOx (ppm) -ammonia decomposition catalyst inlet NOx (ppm)} / {ammonia decomposition catalyst inlet NH3(Ppm) -Ammonia decomposition catalyst outlet NH3(Ppm)} That is, the nitrogen selection of the ammonia decomposition catalyst defined above.
If the selection rate is small, NH 3NH at the outlet of the decomposition catalyst layer3> NO
The operating range of the plant that can be controlled to x is narrow
Control over a wide range of processing gas amounts and temperature conditions.
Therefore, the nitrogen selectivity should be at least 60% or less.
The above is preferable.
【0012】上記の窒素選択率を有するNH3 分解触媒
としては、脱水された状態で、(1.0±0.6)R2
O・〔aM2 O3 ・bAl2 O3 〕・cMeO・ySi
O2(R:アルカリ金属イオン及び/又は水素イオン、
M:周期律表のVIII族元素、希土類元素、チタン、バナ
ジウム、クロム、ニオブ、アンチモン及びガリウムから
なる群から選ばれる1種以上の元素、Me:アルカリ土
類金属元素、a+b=1、a≧0、b≧0、c≧0、y
/c>12、y>12)の化学式を有し、かつ前記表1
に示されるX線回折パターンを有する結晶性シリケート
を担体とし、活性金属として白金及び/又はパラジウム
を含有する触媒が好ましい。The NH 3 decomposition catalyst having the above-mentioned nitrogen selectivity is (1.0 ± 0.6) R 2 in the dehydrated state.
O ・ [aM 2 O 3・ bAl 2 O 3 ] ・ cMeO ・ ySi
O 2 (R: alkali metal ion and / or hydrogen ion,
M: one or more elements selected from the group consisting of Group VIII elements of the Periodic Table, rare earth elements, titanium, vanadium, chromium, niobium, antimony and gallium, Me: alkaline earth metal element, a + b = 1, a ≧ 0, b ≧ 0, c ≧ 0, y
/ C> 12, y> 12), and the above Table 1
A catalyst having a crystalline silicate having an X-ray diffraction pattern shown in (3) as a carrier and containing platinum and / or palladium as an active metal is preferable.
【0013】またアンモニア添加装置に上段に設置する
一酸化炭素除去触媒は、アルミナ等の多孔質耐熱性担体
に活性金属として白金又はパラジウムを1種含有した触
媒が好ましい。多孔質耐熱性担体としてはγ−Al2 O
3 、TiO2 、SiO2 、ZrO2 、Fe2 O3 、Si
O2 ・Al2 O3 などを使用することができ、担持され
るPt及び/又はPdの量は0.001〜10wt%の
範囲が好ましい。The carbon monoxide removal catalyst installed in the upper stage of the ammonia addition device is preferably a catalyst containing one kind of platinum or palladium as an active metal in a porous heat-resistant carrier such as alumina. Γ-Al 2 O as a porous heat-resistant carrier
3 , TiO 2 , SiO 2 , ZrO 2 , Fe 2 O 3 , Si
O 2 · Al 2 O 3 or the like can be used, and the amount of Pt and / or Pd supported is preferably in the range of 0.001 to 10 wt%.
【0014】一酸化炭素除去触媒層で一酸化炭素を燃焼
除去した窒素酸化物を含んだ排ガスは過剰のNH3 をN
H3 添加装置で供給され、第1脱硝触媒層で脱硝されて
NOx:0〜10ppm、NH3 :10〜30ppmと
なり、この排ガスはNH3 分解触媒層でNH3 が低減さ
れてNOx、NH3 濃度が調整され、第2脱硝触媒層に
て排ガス中のNOx濃度:0.1ppm以下、NH3 濃
度:5ppm以下にすることができる。Exhaust gas containing nitrogen oxides, in which carbon monoxide has been burned and removed in the carbon monoxide removal catalyst layer, contains excess NH 3
It is supplied by the H 3 addition device and is denitrated in the first denitration catalyst layer to NOx: 0 to 10 ppm and NH 3 : 10 to 30 ppm. This exhaust gas is reduced in NH 3 in the NH 3 decomposition catalyst layer and NOx, NH 3 The concentration is adjusted so that the NOx concentration in the exhaust gas is 0.1 ppm or less and the NH 3 concentration is 5 ppm or less in the second denitration catalyst layer.
【0015】[0015]
【実施例】以下、実施例により本発明の方法をさらに具
体的に説明する。EXAMPLES The method of the present invention will be described in more detail below with reference to examples.
【0016】(例1) (脱硝触媒の調製):チタニア(TiO2 )担体に五酸
化バナジウム(V2 O5 )を4wt%、三酸化タングス
テン(WO3 )を8wt%担持させた粉末触媒を、3.
3mmピッチ、壁厚0.5mmの格子状ハニカム形状に
成型し、この触媒を脱硝触媒1とした。Example 1 (Preparation of denitration catalyst): A powder catalyst in which 4 wt% of vanadium pentoxide (V 2 O 5 ) and 8 wt% of tungsten trioxide (WO 3 ) were carried on a titania (TiO 2 ) carrier. 3.
This catalyst was formed into a lattice honeycomb shape having a pitch of 3 mm and a wall thickness of 0.5 mm, and this catalyst was used as a denitration catalyst 1.
【0017】(NH3 分解触媒の調製):水ガラス1号
(SiO2 :30%):5616gを水:5429gに
溶解し、この溶液を溶液Aとした。一方、水:4175
gに硫酸アルミニウム:718.9g、塩化第二鉄:1
10g、酢酸カルシウム:47.2g、塩化ナトリウ
ム:262g及び濃塩酸:2020gを混合して溶解
し、この溶液を溶液Bとした。溶液Aと溶液Bを一定割
合で供給し、沈殿を生成させ、十分攪拌してpH=8.
0のスラリを得た。このスラリを20リットルのオート
クレーブに仕込み、さらにテトラプロピルアンモニウム
ブロマイドを500g添加し、160℃にて72時間水
熱合成を行い、合成後水洗して乾燥させ、さらに500
℃、3時間焼成させ結晶性シリケート1を得た。この結
晶性シリケート1は酸化物のモル比で(結晶水を省く)
0.5Na2 O・0.5H2 O・〔0.8Al2 O3 ・
0.2Fe 2 O3 ・0.25CaO〕・25SiO2 の
組成式で表され、結晶構造はX線回折で前記表1にて表
示されるものであった。上記結晶性シリケート1を4N
のNH4 Cl水溶液40℃に3時間攪拌してNH4 イオ
ン交換を実施した。イオン交換後洗浄して100℃、2
4時間乾燥させた後、400℃、3時間焼成してH型の
結晶性シリケート1を得た。(NH3Preparation of decomposition catalyst): Water glass No. 1
(SiO2: 30%): 5616 g to water: 5429 g
It was dissolved and this solution was designated as solution A. On the other hand, water: 4175
Aluminum sulfate: 718.9 g, ferric chloride: 1
10 g, calcium acetate: 47.2 g, sodium chloride
Mu: 262g and concentrated hydrochloric acid: 2020g are mixed and dissolved
This solution was designated as solution B. Solution A and solution B are split
Are supplied together to form a precipitate, and the mixture is sufficiently stirred to pH = 8.
I got a zero slurry. 20 liter auto of this slurry
Charge into the clave, and then tetrapropylammonium
Add 500 g of bromide and water at 160 ° C for 72 hours
Thermal synthesis is performed, and after synthesis, it is washed with water and dried, and further 500
The crystalline silicate 1 was obtained by firing at ℃ for 3 hours. This result
Crystalline silicate 1 is the molar ratio of oxides (excluding water of crystallization)
0.5Na2O ・ 0.5H2O ・ [0.8Al2O3・
0.2Fe 2O3・ 0.25CaO] ・ 25SiO2of
It is represented by the composition formula, and the crystal structure is shown in Table 1 by X-ray diffraction.
It was what was shown. 4N of the above crystalline silicate 1
NHFourCl aqueous solution was stirred at 40 ° C. for 3 hours and NHFourIo
Exchange was performed. Washing after ion exchange at 100 ℃, 2
After drying for 4 hours, the H-type
A crystalline silicate 1 was obtained.
【0018】このH型結晶性シリケート1に、塩化白金
酸水溶液又は硝酸パラジウム水溶液を含浸し、蒸発乾固
後、500℃×3時間焼成し、粉末触媒を得た。得られ
た粉末:100gに対してバインダとしてアルミナゾ
ル:3g、シリカゾル:55g(SiO2 :20wt
%)及び水:200gを加え、スラリとし、コージェラ
イト用モノリス基材(30セル平方インチ当りの格子
状)にウォッシュコートして、基材表面積当り200g
/m2 のコート量に担持した。得られた触媒をNH3分
解触媒1〜4とした。その性状を下記表2に示す。The H-type crystalline silicate 1 was impregnated with an aqueous solution of chloroplatinic acid or an aqueous solution of palladium nitrate, evaporated to dryness, and then calcined at 500 ° C. for 3 hours to obtain a powder catalyst. Alumina sol as a binder: 3 g, silica sol: 55 g (SiO 2 : 20 wt) with respect to the obtained powder: 100 g
%) And water: 200 g to make a slurry, and wash-coat on a monolith substrate for cordierite (lattice shape per 30 cells square inch) to obtain 200 g per substrate surface area.
The coating amount was / m 2 . The obtained catalysts were designated as NH 3 decomposition catalysts 1 to 4. The properties are shown in Table 2 below.
【0019】[0019]
【表2】 [Table 2]
【0020】上記NH3 分解触媒の調製法において、塩
化第二鉄の代りに塩化コバルト:112g、塩化チタ
ン:105g、塩化バナジウム:10g、塩化クロム:
107g、塩化ニオブ:135g、塩化アンチモン:1
55g、塩化ガリウム:119gを用いる以外には上記
と同様な方法でH型結晶性シリケート2,3,4,5,
6,7及び8を調製し、これら各H型結晶性シリケート
に塩化白金酸水溶液を用いて、上記調製法と同様な操作
で各H型結晶性シリケートに白金を担持し、上記調製法
と同様に操作してコージェライト用モノリス基材にウォ
ッシュコートして基材表面積当り200g/m2 のコー
ト量に担持した。得られた触媒をNH3 分解触媒5〜1
1とした。その性状を下記表3に示す。In the above method for preparing the NH 3 decomposition catalyst, cobalt chloride: 112 g, titanium chloride: 105 g, vanadium chloride: 10 g, chromium chloride: instead of ferric chloride.
107 g, niobium chloride: 135 g, antimony chloride: 1
H-type crystalline silicate 2,3,4,5, by the same method as above except that 55 g and gallium chloride: 119 g are used.
6, 7, and 8 were prepared, and platinum was loaded on each H-type crystalline silicate by the same operation as the above-mentioned preparation method using an aqueous chloroplatinic acid solution for each of these H-type crystalline silicates. The monolith substrate for cordierite was wash-coated in the same manner as above to carry a coat amount of 200 g / m 2 per substrate surface area. The obtained catalyst is used as an NH 3 decomposition catalyst 5-1.
It was set to 1. The properties are shown in Table 3 below.
【0021】[0021]
【表3】 [Table 3]
【0022】(一酸化炭素除去触媒の調製)γ−アルミ
ナ(γ−Al2 O3 )担体に塩化白金酸水溶液をPtに
して3wt%含浸法にて担持させ、100℃で乾燥し、
500℃で5時間焼成した粉末触媒:100gに対し
て、バインダとしてシリカゾル:55g(SiO2 :2
0wt%)及び水:200gを加えてスラリとし、コー
ジェライト用モノリス基材(30セル平方インチ当りの
格子状)にウォッシュコートして、基材表面積あたり1
50g/m2 のコート量を担持した。この触媒を一酸化
炭素除去触媒1とした。(Preparation of carbon monoxide removal catalyst) A γ-alumina (γ-Al 2 O 3 ) carrier was supported by a 3 wt% impregnation method using chloroplatinic acid aqueous solution as Pt, and dried at 100 ° C.
To 100 g of powder catalyst calcined at 500 ° C. for 5 hours, 55 g of silica sol (SiO 2 : 2) as a binder
0 wt%) and water: 200 g to make a slurry, and wash coat it on a monolith substrate for cordierite (lattice shape per 30 cell square inch) to give 1 per substrate surface area.
A coated amount of 50 g / m 2 was carried. This catalyst was designated as carbon monoxide removal catalyst 1.
【0023】(脱硝反応試験)40mm×50mm×5
0mmLの前記一酸化炭素除去触媒1を1本、40mm
×50mm×400mmLの前記脱硝触媒1本、40m
m×50mm×150mmLの前記NH3 分解触媒1
本、及び前記脱硝触媒3本を直列に配置し、下記表4に
示す条件にてテストした。Run1〜11のテスト結果
を後記表5に示す。(Denitration reaction test) 40 mm × 50 mm × 5
One 0 mmL of the carbon monoxide removing catalyst 1, 40 mm
X 50 mm x 400 mmL of the above denitration catalyst, 40 m
m × 50 mm × 150 mmL of the NH 3 decomposition catalyst 1
And three denitration catalysts were placed in series and tested under the conditions shown in Table 4 below. The test results of Runs 1 to 11 are shown in Table 5 below.
【0024】[0024]
【表4】 [Table 4]
【0025】(比較例1)例1のRun1のシステムに
おいて一酸化炭素除去触媒を省略したシステム(=Ru
n12)の評価結果を表5に併せて示す。Comparative Example 1 A system (= Ru) in which the carbon monoxide removing catalyst was omitted from the Run 1 system of Example 1.
The evaluation results of n12) are also shown in Table 5.
【0026】表5に示す結果より、一酸化炭素除去触媒
を設置したRun1〜11での第2段脱硝触媒出口で
は、全てNOx<0.1ppm、NH3 <5ppmであ
るのに対して、一酸化炭素除去触媒を省略したRun1
2では、NH3 分解触媒の出口NH3 濃度は低減しNH
3 濃度がNOx濃度より低いため、第2段脱硝触媒出口
にてNOx>0.1ppmとなり目標を満たすことがで
きなかった。[0026] From the results shown in Table 5, in the second stage denitration catalyst outlet at Run1~11 which established the carbon monoxide removal catalyst, any NOx <0.1 ppm, whereas a NH 3 <5 ppm, one Run1 without carbon oxide removal catalyst
At 2, the NH 3 concentration at the outlet of the NH 3 decomposition catalyst decreases and NH 3
Since the 3 concentration was lower than the NOx concentration, NOx> 0.1 ppm at the outlet of the second stage denitration catalyst, and the target could not be satisfied.
【0027】[0027]
【表5】 [Table 5]
【0028】なお、一酸化炭素除去触媒の担体として、
γ−Al2 O3 に代えTiO2 、SiO2 、ZrO2 、
Fe2 O3 、SiO2 ・Al2 O3 を使用しても同様の
効果が得られた。As a carrier for the carbon monoxide removing catalyst,
Instead of γ-Al 2 O 3 , TiO 2 , SiO 2 , ZrO 2 ,
The same effect was obtained by using Fe 2 O 3 and SiO 2 .Al 2 O 3 .
【0029】[0029]
【発明の効果】本発明の排ガスの浄化方法によれば、還
元剤であるNH3 の排出を低いレベルに維持して、極め
て高い効率で窒素酸化物、一酸化窒素を除去できる。According to the method for purifying exhaust gas of the present invention, the emission of NH 3 as a reducing agent can be maintained at a low level, and nitrogen oxides and nitric oxide can be removed with extremely high efficiency.
【図1】本発明の排ガスの浄化方法の説明図。FIG. 1 is an explanatory view of an exhaust gas purification method of the present invention.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 29/068 ZAB B01D 53/36 ZAB ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01J 29/068 ZAB B01D 53/36 ZAB
Claims (3)
スを触媒を充填した反応器に導いて、アンモニアを還元
剤として接触的に窒素酸化物を除去する方法において、
アンモニア添加装置の上段側に一酸化炭素除去触媒層
を、アンモニア添加装置の下段側には上流側から第1脱
硝触媒層を、その後流にアンモニアを窒素及び窒素酸化
物に酸化分解する機能を有するアンモニア分解触媒層
を、さらにその後流に第2脱硝触媒層を設置し、アンモ
ニア添加装置から添加されるアンモニアを入口排ガス中
の窒素酸化物の反応当量以上に添加することを特徴とす
る排ガスの浄化方法。1. A method for catalytically removing nitrogen oxides by introducing an exhaust gas containing nitrogen oxides and carbon monoxide into a reactor filled with a catalyst and using ammonia as a reducing agent.
It has a function of decomposing a carbon monoxide removal catalyst layer on the upper side of the ammonia addition device, a first denitration catalyst layer on the lower side of the ammonia addition device from the upstream side, and oxidatively decomposing ammonia into nitrogen and nitrogen oxides in the subsequent flow. Purification of exhaust gas, characterized in that an ammonia decomposition catalyst layer and a second denitration catalyst layer are installed in the subsequent flow, and ammonia added from the ammonia addition device is added at a reaction equivalent amount or more of nitrogen oxides in the exhaust gas at the inlet. Method.
で、(1.0±0.6)R2 O・〔aM2 O3 ・bAl
2 O3 〕・cMeO・ySiO2 (R:アルカリ金属イ
オン及び/又は水素イオン、M:周期律表のVIII族元
素、希土類元素、チタン、バナジウム、クロム、ニオ
ブ、アンチモン及びガリウムからなる群から選ばれる1
種以上の元素、Me:アルカリ土類金属元素、a+b=
1、a≧0、b≧0、c≧0、y/c>12、y>1
2)の化学式を有し、かつ発明の詳細な説明の項に記載
の表1に示されるX線回折パターンを有する結晶性シリ
ケートを担体とし、活性金属として白金及び/又はパラ
ジウムを含有する触媒であることを特徴とする請求項1
記載の排ガスの浄化方法。2. The (1.0 ± 0.6) R 2 O. [aM 2 O 3 .bAl in the dehydrated state of the ammonia decomposition catalyst.
2 O 3 ] .cMeO.ySiO 2 (R: alkali metal ion and / or hydrogen ion, M: selected from the group consisting of Group VIII elements of the Periodic Table, rare earth elements, titanium, vanadium, chromium, niobium, antimony and gallium 1
More than one element, Me: alkaline earth metal element, a + b =
1, a ≧ 0, b ≧ 0, c ≧ 0, y / c> 12, y> 1
A catalyst containing, as a carrier, a crystalline silicate having the chemical formula of 2) and having the X-ray diffraction pattern shown in Table 1 described in the detailed description of the invention and containing platinum and / or palladium as an active metal. Claim 1 characterized by the above.
Exhaust gas purification method described.
に、活性金属としてPt及び/又はPdを0.001〜
10wt%担持した触媒であることを特徴とする請求項
1又は2記載の排ガスの浄化方法。3. A carbon monoxide-removing catalyst containing Pt and / or Pd as an active metal in an amount of 0.001 to 0.001 on a porous heat-resistant carrier.
The exhaust gas purification method according to claim 1 or 2, wherein the catalyst is 10 wt% supported.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12099895A JP3388941B2 (en) | 1995-05-19 | 1995-05-19 | Exhaust gas purification method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12099895A JP3388941B2 (en) | 1995-05-19 | 1995-05-19 | Exhaust gas purification method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08309152A true JPH08309152A (en) | 1996-11-26 |
JP3388941B2 JP3388941B2 (en) | 2003-03-24 |
Family
ID=14800256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12099895A Expired - Lifetime JP3388941B2 (en) | 1995-05-19 | 1995-05-19 | Exhaust gas purification method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3388941B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006006702A1 (en) * | 2004-07-15 | 2006-01-19 | Nikki-Universal Co., Ltd. | Catalyst for purifying exhaust gas containing organic nitrogen compound and method for purifying such exhaust gas |
JP2010179296A (en) * | 2009-02-04 | 2010-08-19 | Mitsubishi Heavy Ind Ltd | Exhaust gas treatment catalyst, method for treating exhaust gas, and exhaust gas treatment apparatus |
JP2013173147A (en) * | 2005-02-16 | 2013-09-05 | Basf Catalysts Llc | Ammonia oxidation catalyst for the coal fired utilities |
-
1995
- 1995-05-19 JP JP12099895A patent/JP3388941B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006006702A1 (en) * | 2004-07-15 | 2006-01-19 | Nikki-Universal Co., Ltd. | Catalyst for purifying exhaust gas containing organic nitrogen compound and method for purifying such exhaust gas |
JP5069467B2 (en) * | 2004-07-15 | 2012-11-07 | 日揮ユニバーサル株式会社 | Catalyst for purification of exhaust gas containing organic nitrogen compound, and purification method of the exhaust gas |
JP2013173147A (en) * | 2005-02-16 | 2013-09-05 | Basf Catalysts Llc | Ammonia oxidation catalyst for the coal fired utilities |
JP2010179296A (en) * | 2009-02-04 | 2010-08-19 | Mitsubishi Heavy Ind Ltd | Exhaust gas treatment catalyst, method for treating exhaust gas, and exhaust gas treatment apparatus |
US8910468B2 (en) | 2009-02-04 | 2014-12-16 | Mitsubishi Heavy Industries, Ltd. | Exhaust gas treatment catalyst, exhaust gas treatment method, and exhaust gas treatment apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP3388941B2 (en) | 2003-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0686423B1 (en) | Use of ammonia decomposition catalysts | |
EP0694329B1 (en) | Method of denitrating exhaust gases | |
US6479026B1 (en) | Method of denitrating exhaust gas | |
JP3276191B2 (en) | Nitrogen oxide purification method | |
JP3132959B2 (en) | Ammonia decomposition catalyst | |
JPH08215544A (en) | Method for removing nitrogen oxide of diesel engine | |
JP3132960B2 (en) | Ammonia decomposition catalyst | |
JP3495591B2 (en) | Method for reduction treatment of nitrogen oxides and SO3 in exhaust gas | |
JP3462580B2 (en) | Exhaust gas denitration method | |
JP3229136B2 (en) | Ammonia decomposition method | |
JPH08309152A (en) | Purification method for exhaust gas | |
JP3219613B2 (en) | Ammonia decomposition catalyst and method for decomposing and removing ammonia | |
JP3510908B2 (en) | Exhaust gas purification catalyst | |
JP3495548B2 (en) | Reduction method of sulfur trioxide | |
JP3332652B2 (en) | Ammonia decomposition removal method | |
JP3241216B2 (en) | Exhaust gas denitration treatment method | |
JP3229117B2 (en) | Ammonia decomposition method | |
JP3256660B2 (en) | Purification method of ammonia-containing exhaust gas | |
JP3495592B2 (en) | Method for reducing SO3 in exhaust gas | |
JP3495542B2 (en) | Sulfur trioxide reduction method | |
JP3254040B2 (en) | DeNOx treatment method | |
JPH08309188A (en) | Ammonia decomposition catalyst and ammonia decomposition method | |
JPH08266870A (en) | Denitrifying method | |
JP3322520B2 (en) | Exhaust gas denitration catalyst | |
JP3453172B2 (en) | DeNOx method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20020820 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20021203 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080117 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090117 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100117 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110117 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110117 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120117 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130117 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140117 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |