JP3462580B2 - Exhaust gas denitration method - Google Patents
Exhaust gas denitration methodInfo
- Publication number
- JP3462580B2 JP3462580B2 JP17649494A JP17649494A JP3462580B2 JP 3462580 B2 JP3462580 B2 JP 3462580B2 JP 17649494 A JP17649494 A JP 17649494A JP 17649494 A JP17649494 A JP 17649494A JP 3462580 B2 JP3462580 B2 JP 3462580B2
- Authority
- JP
- Japan
- Prior art keywords
- ppm
- catalyst layer
- exhaust gas
- denitration
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は排ガス中の窒素酸化物
(NOx)を高い効率にて除去することのできる排ガス
の脱硝処理方法に関する。
【0002】
【従来の技術】燃焼排ガスに含まれるNOxを除去する
方法としては、NH3 を還元剤とした選択的接触還元法
が火力発電所を中心に広く実用化されている。触媒とし
ては、バナジウム、タングステン、モリブデンを活性成
分とした酸化チタン系の触媒が主に用いられている。
【0003】
【発明が解決しようとする課題】NOx排出規制は近年
益々厳しくなる傾向にあり、とくに大都市部では排出総
量規制が実施されており、都市部に隣接した発電所では
電力需要の増大に伴う発電設備の増設にあたって、より
高効率な脱硝が要求されている。
【0004】従来の脱硝法はNH3 を還元剤とした接触
還元法であり、次式によってNOxが触媒上でN2 に分
解される。
【化1】
4NO+4NH3 +O2 → 4N2 +6H2 O
の反応式から考えると、理論的にはNOxと等モルのN
H3 を添加すればNOxが100%除去できることにな
る。しかし、実際には、排ガス中でNH3 とNOxを完
全に均一混合することは不可能であり、高効率な脱硝を
行うためにはNH 3 をNOxより過剰に添加する必要が
ある。そのため未反応NH3 がかなりな割合で排出され
る欠点があった。
【0005】本発明は上記技術水準に鑑み、従来技術の
欠点を解消し、未反応NH3 の大気への排出を極力抑制
して高効率な脱硝を行うことのできる排ガスの脱硝方法
を提供しようとするものである。
【0006】
【課題を解決するための手段】本発明は次のとおりであ
る。
(1)窒素酸化物を含有する排ガスを触媒を充填した反
応器に導いて、アンモニアを還元剤として接触的に窒素
酸化物を除去する方法において、ガス流れ上流側に第1
脱硝触媒層を設置し、第1脱硝触媒層の入口に排ガス中
の窒素酸化物の反応当量以上のアンモニアを添加して、
第1脱硝触媒層出口ガス中のNOx濃度を0〜10pp
m、NH3 濃度を10〜30ppmの範囲に調整し、そ
の後流にアンモニアを窒素及び窒素酸化物に酸化分解す
る機能を有するアンモニア分解触媒層を設置し、アンモ
ニア分解触媒層出口の排ガス中のNH3 濃度とNOx濃
度の差を0<NH3 (ppm)−NOx(ppm)<3
(ppm)の範囲に調整し、さらにその後流に第2脱硝
触媒層を設置し、第2脱硝触媒層出口の排ガス中のNO
x濃度を0.1ppm以下、NH3 濃度を3ppm以下
に調整することからなり、上記アンモニア分解触媒が脱
水された状態で、(1.0±0.6)R 2 O・〔aM 2
O 3 ・bAl 2 O 3 〕・cMeO・ySiO 2 (R:ア
ルカリ金属イオン及び/又は水素イオン、M:周期律表
のVIII族元素、希土類元素、チタン、バナジウム、クロ
ム、ニオブ、アンチモン及びガリウムからなる群から選
ばれる1種以上の元素、Me:アルカリ土類金属元素、
a+b=1、a≧0、b≧0、c≧0、y/c>12、
y>12)の化学式を有し、かつ下記表1に示されるX
線回折パターンを有する結晶性シリケートを担体とし、
活性金属として白金、パラジウム、ルテニウム及びイリ
ジウムからなる群から選ばれる1種以上の金属を含有す
る触媒であることを特徴とする排ガスの脱硝方法。
【0007】
【表1】 VS:非常に強い (X線源:Cu)
S:強い
M:中級
W:弱い
である。
【0008】
【作用】以下、本発明の一態様を図1によって説明し、
その作用を明らかにする。排ガス流れの最上流に第1脱
硝触媒層を、その後流にNH3 分解触媒層を、さらにそ
の後流に第2脱硝触媒層を設置し、第1脱硝触媒層の上
流にNOxに対して反応等量以上のNH3 を添加して、
第1脱硝触媒層で90%以上の脱硝を行い、第1脱硝触
媒層から流出する未反応NH3 をNH3 分解触媒層によ
って分解させて下流の第2脱硝触媒層入口のNOx、N
H3 濃度を調整して、第2脱硝触媒層出口でのNOxを
0.1ppm以下、NH3 を3ppm以下レベルにす
る。上流及び下流の第1及び第2脱硝触媒層にはV,
W,Moなどを活性成分としたTiO2系の従来実用化
されている触媒を用いることができる。
【0009】上記本発明の態様において、NH3 分解触
媒層に使用される触媒としては下記に定義する窒素選択
率%が70%以上のものであることが望ましい。
【数1】
窒素選択率%=〔1−{アンモニア分解触媒出口NOx
(ppm)
−アンモニア分解触媒入口NOx (ppm)}/{
アンモニア分解触媒入口NH3 (ppm)
−アンモニア分解触媒出口NH3 (ppm)}〕×10
0
すなわち、上記で定義するアンモニア分解触媒の窒素選
択率が小さいと、NH3 分解触媒層出口で0<NH
3 (ppm)−NOx (ppm)<3(ppm)にコン
トロールしうるプラントの運転範囲が狭くなり、幅広い
処理ガス量、温度条件でコントロールすることが必要と
なるため、窒素選択率は少なくとも70%以上であるこ
とが好ましい。
【0010】上記の窒素選択率を有するNH3 分解触媒
としては、脱水された状態で、(1.0±0.6)R2
O・〔aM2 O3 ・bAl2 O3 〕・cMeO・ySi
O2(R:アルカリ金属イオン及び/又は水素イオン、
M:周期律表のVIII族元素、希土類元素、チタン、バナ
ジウム、クロム、ニオブ、アンチモン及びガリウムから
なる群から選ばれる1種以上の元素、Me:アルカリ土
類金属元素、a+b=1、a≧0、b≧0、c≧0、y
/c>12、y>12)の化学式を有し、かつ前記表1
に示されるX線回折パターンを有する結晶性シリケート
を担体とし、活性金属として白金、パラジウム、ルテニ
ウム及びイリジウムからなる群から選ばれる1種以上の
金属を含有する触媒が好ましい。
【0011】第1脱硝触媒層で過剰のNH3 を供給され
て脱硝された排ガスはNOx:0〜10ppm、N
H3 :10〜30ppmとなり、この排ガスは上記NH
3 分解触媒層ではNH3 が低減されてNH3 分解触媒層
出口ではNH3 濃度とNOx濃度の差を0<NH3 (p
pm)−NOx(ppm)<3(ppm)となるように
し、該組成の排ガスを第2脱硝触媒層で脱硝させ、その
第2脱硝触媒層出口からの排ガス中のNOx濃度:0.
1ppm以下、NH3 濃度:3ppm以下にすることが
できる。
【0012】これに対し、従来の脱硝触媒層のみで過剰
のNH3 を添加して排ガス中のNOxを脱硝して、排ガ
ス中のNOx濃度:0.1ppm以下を達成するように
すると、排ガス中に少なくとも10ppm以上のNH3
が含まれることが避けられない。
【0013】
【実施例】以下、実施例により本発明の方法をさらに具
体的に説明する。
【0014】(例1)
(脱硝触媒の調製):チタニア(TiO2 )担体に五酸
化バナジウム(V2 O5 )を4wt%、三酸化タングス
テン(WO3 )を8wt%担持せた粉末触媒を、3.3
mmピッチ、壁厚0.5mmの格子状ハニカム形状に成
型し、この触媒を脱硝触媒とした。
【0015】(NH3 分解触媒の調製)水ガラス1号
(SiO2 :30%):5616gを水:5429gに
溶解し、この溶液を溶液Aとした。一方、水:4175
gに硫酸アルミニウム:718.9g、塩化第二鉄:1
10g、酢酸カルシウム:47.2g、塩化ナトリウ
ム:262g及び濃塩酸:2020gを混合して溶解
し、この溶液を溶液Bとした。溶液Aと溶液Bを一定割
合で供給し、沈殿を生成させ、十分攪拌してpH=8.
0のスラリを得た。このスラリを20リットルのオート
クレーブに仕込み、さらにテトラプロピルアンモニウム
ブロマイドを500g添加し、160℃にて72時間水
熱合成を行い、合成後水洗して乾燥させ、さらに500
℃、3時間焼成させ結晶性シリケート1を得た。この結
晶性シリケート1は酸化物のモル比で(結晶水を省く)
下記の組成式で表され、結晶構造はX線回折で前記表1
にて表示されるものであった。
【化2】0.5Na2 O・0.5H2 O・〔0.8Al
2 O3 ・0.2Fe2 O3 ・0.25CaO〕・25S
iO2
上記結晶性シリケート1を4NのNH4 Cl水溶液40
℃に3時間攪拌してNH4 イオン交換を実施した。イオ
ン交換後洗浄して100℃、24時間乾燥させた後、4
00℃、3時間焼成してH型の結晶性シリケート1を得
た。
【0016】このH型結晶性シリケート1に、各々塩化
白金酸水溶液、硝酸パラジウム水溶液、塩化ルテニウム
水溶液、塩化イリジウム水溶液を含浸し、蒸発乾固後、
500℃×3時間焼成し、粉末触媒を得た。得られた粉
末:100gに対してバインダーとしてアルミナゾル:
3g、シリカゾル:55g(SiO2 :20wt%)及
び水:200gを加え、スラリとし、コージェライト用
モノリス基材(30セル平方インチ当りの格子状)にウ
ォッシュコートして、基材表面積当り200g/m2 の
コート量に担持した。得られた触媒をNH3 分解触媒1
〜5とした。その性状を下記表2に示す。
【0017】
【表2】
【0018】上記NH3 分解触媒の調製法において、塩
化第二鉄の代りに塩化コバルト:112g、塩化チタ
ン:105g、塩化バナジウム:10g、塩化クロム:
107g、塩化ニオブ:135g、塩化アンチモン:1
55g、塩化ガリウム:119gを用いる以外には上記
と同様な方法でH型結晶性シリケート2,3,4,5,
6,7及び8を調製し、これら各H型結晶性シリケート
に塩化白金酸水溶液を用いて、上記調製法と同様な操作
で各H型結晶性シリケートに白金を担持し、上記調製法
と同様に操作してコージェライト用モノリス基材にウォ
ッシュコートして基材表面積当り200g/m2 のコー
ト量に担持した。得られた触媒をNH3 分解触媒6〜1
1とした。その性状を下記表3に示す。
【0019】
【表3】【0020】(脱硝反応試験)40mm×50mm×4
00mmLの前記脱硝触媒3本、42mm×50mm×
500mmLの前記NH3 分解触媒1本及び前記脱硝触
媒2本を直列に配置し、下記の条件でテストした。
【0021】
【表4】
【0022】このテストの結果を表5に示す。従来の脱
硝方法に相当する上流側の第1脱硝触媒層出口ではNO
xは0.02〜0.03ppmと極めて高い脱硝率が達
成されているものゝNH3 が10〜20ppmと多量排
出されているに対し、本発明方法では下流側の第2脱硝
触媒層出口ではNOx:0.02〜0.1ppm、NH
3 <3ppm以下となっており、NOx,NH3 の双方
とも排出量が低いレベルを達成していることが確認され
た。
【0023】
【表5】【0024】
【発明の効果】本発明の脱硝方法によれば、還元剤であ
るNH3 の排出を低いレベルに維持して、極めて高い効
率のNOx除去を行うことができる。DETAILED DESCRIPTION OF THE INVENTION
[0001]
The present invention relates to nitrogen oxides in exhaust gas.
Exhaust gas that can remove (NOx) with high efficiency
A denitration method.
[0002]
2. Description of the Related Art Removal of NOx contained in flue gas
The method is NHThreeCatalytic reduction method using urea as reducing agent
Has been widely put to practical use mainly in thermal power plants. As a catalyst
Activated vanadium, tungsten, and molybdenum
A titanium oxide-based catalyst is mainly used.
[0003]
SUMMARY OF THE INVENTION In recent years, NOx emission regulations have been
It is becoming increasingly severe, especially in metropolitan areas.
Regulations are being implemented, and power plants adjacent to urban areas
When expanding power generation equipment in response to growing power demand,
High efficiency denitration is required.
A conventional denitration method is NHThreeContact with a reducing agent
In the reduction method, NOx is converted to NTwoMinute
Understood.
Embedded image
4NO + 4NHThree+ OTwo → 4NTwo+ 6HTwoO
From the reaction equation, theoretically, the equimolar amount of N
HThreeIf it is added, 100% of NOx can be removed.
You. However, in reality, NHThreeAnd NOx
It is impossible to mix them completely uniformly, and highly efficient denitration
NH to do ThreeNeed to be added in excess of NOx
is there. Unreacted NHThreeAre emitted at a significant rate
There were drawbacks.
[0005] In view of the state of the art, the present invention is based on the prior art.
Eliminate the disadvantages and unreacted NHThreeEmissions to the atmosphere as much as possible
Exhaust gas denitration method that can perform high-efficiency denitration
It is intended to provide.
[0006]
The present invention is as follows.
You.
(1) Exhaust gas containing nitrogen oxides
Reactor, using ammonia as a reducing agent and contacting nitrogen
In the method for removing an oxide, a first gas is provided upstream of a gas flow.
A denitration catalyst layer is installed, and exhaust gas is introduced at the entrance of the first denitration catalyst layer.
Addition of ammonia over the reaction equivalent of the nitrogen oxides,
NOx concentration in the outlet gas of the first denitration catalyst layer is set to 0 to 10 pp
m, NHThreeAdjust the concentration to the range of 10 to 30 ppm, and
Oxidatively decomposes ammonia into nitrogen and nitrogen oxides downstream of
Installed an ammonia decomposition catalyst layer
NH in exhaust gas at outlet of near cracking catalyst layerThreeConcentration and NOx concentration
0 <NHThree(Ppm) -NOx (ppm) <3
(Ppm) range, and a second denitration after that.
The catalyst layer is installed, and NO in the exhaust gas at the outlet of the second denitration catalyst layer
x concentration 0.1 ppm or less, NHThreeConcentration less than 3ppm
Adjust toAnd the ammonia decomposition catalyst is
(1.0 ± 0.6) R Two O ・ [aM Two
O Three ・ BAl Two O Three ] ・ CMeO ・ ySiO Two (R: A
Lucari metal ion and / or hydrogen ion, M: periodic table
Group VIII elements, rare earth elements, titanium, vanadium, black
, Niobium, antimony and gallium
At least one element, Me: alkaline earth metal element,
a + b = 1, a ≧ 0, b ≧ 0, c ≧ 0, y / c> 12,
y> 12) and having the formula shown in Table 1 below.
A crystalline silicate having a line diffraction pattern as a carrier,
Platinum, palladium, ruthenium and iridium as active metals
Contains one or more metals selected from the group consisting of indium
An exhaust gas denitration method characterized by being a catalyst.
[0007]
[Table 1] VS: Very strong (X-ray source: Cu)
S: Strong
M: Intermediate
W: weak
It is.
[0008]
Hereinafter, one embodiment of the present invention will be described with reference to FIG.
Clarify the effect. First desorption at the uppermost stream of exhaust gas flow
A nitrate catalyst layer is added to theThreeFurther cracking catalyst layer
A second denitration catalyst layer is installed downstream of the first denitration catalyst layer.
NH more than the reaction equivalent to NOxThreeAnd add
90% or more denitration is performed in the first denitration catalyst layer, and the first denitration catalyst
Unreacted NH flowing out of the medium layerThreeTo NHThreeDecomposition catalyst layer
NOx, N at the downstream second denitration catalyst layer inlet
HThreeAdjust the concentration to reduce NOx at the outlet of the second denitration catalyst layer.
0.1 ppm or less, NHThreeTo a level of 3 ppm or less
You. The upstream and downstream first and second denitration catalyst layers have V,
TiO containing W, Mo, etc. as active ingredientsTwoConventional practical use of the system
The known catalyst can be used.
In the above embodiment of the present invention, NHThreeDisassembly
As the catalyst used for the medium layer, select nitrogen as defined below
It is desirable that the rate% is 70% or more.
(Equation 1)
Nitrogen selectivity% = [1- {Ammonia decomposition catalyst outlet NOx
(Ppm)
-NO for ammonia decomposition catalyst inletx(Ppm)}/{
Ammonia decomposition catalyst inlet NHThree(Ppm)
-Ammonia decomposition catalyst outlet NHThree(Ppm)}] × 10
0
That is, the nitrogen selection of the ammonia decomposition catalyst as defined above
If the selectivity is small, NHThree0 <NH at the outlet of the cracking catalyst layer
Three(Ppm) -NOx(Ppm) <3 (ppm)
The operating range of the plant that can be trawled becomes narrower and wider
It is necessary to control the amount of processing gas and temperature conditions
Therefore, the nitrogen selectivity should be at least 70% or more.
Is preferred.
NH having the above nitrogen selectivityThreeCracking catalyst
As (1.0 ± 0.6) RTwo
O ・ [aMTwoOThree・ BAlTwoOThree] ・ CMeO ・ ySi
OTwo(R: alkali metal ion and / or hydrogen ion,
M: Group VIII element of the periodic table, rare earth element, titanium, banana
From zium, chromium, niobium, antimony and gallium
At least one element selected from the group consisting of: Me: alkaline earth
A class metal element, a + b = 1, a ≧ 0, b ≧ 0, c ≧ 0, y
/ C> 12, y> 12) and the above Table 1
Crystalline silicate having X-ray diffraction pattern shown in
With platinum, palladium, ruthenium as active metals
At least one member selected from the group consisting of
Catalysts containing metals are preferred.
Excess NH in the first denitration catalyst layerThreeIs supplied
NOx: 0 to 10 ppm, N
HThree: 10 to 30 ppm.
ThreeIn the cracking catalyst layer, NHThreeIs reduced to NHThreeCracking catalyst layer
NH at exitThreeThe difference between the concentration and the NOx concentration is 0 <NHThree(P
pm) -NOx (ppm) <3 (ppm)
Then, the exhaust gas having the composition is denitrated in the second denitration catalyst layer,
NOx concentration in exhaust gas from the outlet of the second denitration catalyst layer: 0.
1 ppm or less, NHThreeConcentration: 3ppm or less
it can.
On the other hand, the conventional denitration catalyst layer alone
NHThreeTo remove NOx in the exhaust gas
NOx concentration in steel: 0.1ppm or less
Then, at least 10 ppm or more of NH is contained in the exhaust gas.Three
Is inevitable.
[0013]
The following examples further illustrate the method of the present invention.
Explain physically.
(Example 1)
(Preparation of denitration catalyst): Titania (TiOTwo) Pentic acid as carrier
Vanadium (VTwoOFive4% by weight, tungsten trioxide
Ten (WOThree) Was supported in an amount of 3.3 wt.
mm pitch, 0.5mm wall thickness
This catalyst was used as a denitration catalyst.
(NHThreePreparation of decomposition catalyst) Water glass No. 1
(SiOTwo: 30%): 5616 g to water: 5429 g
After dissolution, this solution was designated as solution A. On the other hand, water: 4175
g of aluminum sulfate: 718.9 g, ferric chloride: 1
10 g, calcium acetate: 47.2 g, sodium chloride
262 g and concentrated hydrochloric acid: 2020 g
This solution was designated as solution B. Solution A and Solution B
And a precipitate is formed, sufficiently stirred, and pH = 8.
A slurry of 0 was obtained. 20 liters of this slurry
Charged in a clave and added tetrapropyl ammonium
Add 500 g of bromide, and add water at 160 ° C for 72 hours.
Perform thermal synthesis, wash with water, dry after synthesis, and further 500
C. for 3 hours to obtain crystalline silicate 1. This result
Crystalline silicate 1 is in the molar ratio of oxides (water of crystallization is omitted)
It is represented by the following composition formula.
It was displayed in.
Embedded image 0.5NaTwoO ・ 0.5HTwoO · [0.8Al
TwoOThree・ 0.2FeTwoOThree・ 0.25CaO] ・ 25S
iOTwo
The above crystalline silicate 1 is converted to 4N NHFourCl aqueous solution 40
Stir for 3 hours atFourIon exchange was performed. Io
After washing and drying at 100 ° C for 24 hours,
Baking at 00 ° C. for 3 hours to obtain H-type crystalline silicate 1
Was.
Each of the H-type crystalline silicates 1
Platinic acid aqueous solution, palladium nitrate aqueous solution, ruthenium chloride
Aqueous solution, impregnated with iridium chloride aqueous solution, evaporated to dryness,
The powder was fired at 500 ° C. for 3 hours to obtain a powder catalyst. The resulting powder
Powder: Alumina sol as binder for 100 g:
3 g, silica sol: 55 g (SiOTwo: 20 wt%)
Water: Add 200g to make slurry, for cordierite
Monolith substrate (grid shape per 30 cells square inch)
200g / m per substrate surfaceTwoof
It was carried at the coating amount. The resulting catalyst is converted to NHThreeCracking catalyst 1
To 5. The properties are shown in Table 2 below.
[0017]
[Table 2]
The above NHThreeIn the method for preparing the cracking catalyst, the salt
Cobalt chloride: 112 g instead of ferric chloride, titanium chloride
: 105 g, vanadium chloride: 10 g, chromium chloride:
107 g, niobium chloride: 135 g, antimony chloride: 1
55g, gallium chloride: 119g
H-type crystalline silicates 2, 3, 4, 5,
6, 7 and 8 were prepared, and each of these H-type crystalline silicates was prepared.
Operation similar to the above preparation method using chloroplatinic acid aqueous solution
The platinum is supported on each H-type crystalline silicate by
Operate in the same manner as in
200g / m per substrate surface areaTwoNo
The amount supported. The resulting catalyst is converted to NHThreeDecomposition catalyst 6-1
It was set to 1. The properties are shown in Table 3 below.
[0019]
[Table 3](Denitration reaction test) 40 mm × 50 mm × 4
Three 00 mmL denitration catalysts, 42 mm x 50 mm x
500 mmL of the NHThreeOne cracking catalyst and the denitration catalyst
Two media were arranged in series and tested under the following conditions.
[0021]
[Table 4]
Table 5 shows the results of this test. Conventional
NO at the outlet of the first denitration catalyst layer on the upstream side corresponding to the nitrification method
x is extremely high denitration rate of 0.02-0.03ppm
What is made ゝ NHThreeIs a large amount of 10 to 20 ppm
On the other hand, in the method of the present invention, the second denitration on the downstream side is performed.
NOx: 0.02-0.1 ppm, NH at the catalyst layer outlet
Three<3 ppm or less, NOx, NHThreeBoth sides
It has been confirmed that both emissions have achieved low levels
Was.
[0023]
[Table 5][0024]
According to the denitration method of the present invention, the reducing agent
NHThreeEmissions at a low level,
Rate NOx removal can be performed.
【図面の簡単な説明】 【図1】本発明の排ガスの脱硝方法の一態様の説明図。[Brief description of the drawings] FIG. 1 is an explanatory view of one embodiment of the exhaust gas denitration method of the present invention.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 尾林 良昭 広島県広島市西区観音新町四丁目6番22 号 三菱重工業株式会社 広島研究所内 (72)発明者 小林 敬古 東京都千代田区丸の内二丁目5番1号 三菱重工業株式会社本社内 (72)発明者 芹澤 暁 長崎県長崎市飽の浦町1番1号 三菱重 工業株式会社長崎造船所内 (56)参考文献 特開 昭63−87521(JP,A) 特開 平2−293022(JP,A) 特開 昭51−84771(JP,A) 特開 昭56−108516(JP,A) 特開 昭53−132465(JP,A) 特開 昭53−108065(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/00 B01D 53/86 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Yoshiaki Obayashi, Inventor 4-62-22 Kannon Shinmachi, Nishi-ku, Hiroshima-shi, Hiroshima Mitsubishi Heavy Industries, Ltd. Hiroshima Research Laboratory (72) Inventor Takako Kobayashi 2-5-2 Marunouchi, Chiyoda-ku, Tokyo No. 1 Mitsubishi Heavy Industries, Ltd. Head Office (72) Inventor Akira Serizawa 1-1, Akunouramachi, Nagasaki City, Nagasaki Prefecture Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard (56) References JP-A-63-87521 (JP, A) JP-A-2-293022 (JP, A) JP-A-51-84771 (JP, A) JP-A-56-108516 (JP, A) JP-A-53-132465 (JP, A) JP-A-53-108065 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01J 21/00-38/00 B01D 53/86
Claims (1)
填した反応器に導いて、アンモニアを還元剤として接触
的に窒素酸化物を除去する方法において、ガス流れ上流
側に第1脱硝触媒層を設置し、第1脱硝触媒層の入口に
排ガス中の窒素酸化物の反応当量以上のアンモニアを添
加して、第1脱硝触媒層出口ガス中のNOx濃度を0〜
10ppm、NH3 濃度を10〜30ppmの範囲に調
整し、その後流にアンモニアを窒素及び窒素酸化物に酸
化分解する機能を有するアンモニア分解触媒層を設置
し、アンモニア分解触媒層出口の排ガス中のNH3 濃度
とNOx濃度の差を0<NH3 (ppm)−NOx(p
pm)<3(ppm)の範囲に調整し、さらにその後流
に第2脱硝触媒層を設置し、第2脱硝触媒層出口の排ガ
ス中のNOx濃度を0.1ppm以下、NH3 濃度を3
ppm以下に調整することからなり、上記アンモニア分
解触媒が脱水された状態で、(1.0±0.6)R 2 O
・〔aM 2 O 3 ・bAl 2 O 3 〕・cMeO・ySiO
2 (R:アルカリ金属イオン及び/又は水素イオン、
M:周期律表のVIII族元素、希土類元素、チタン、バナ
ジウム、クロム、ニオブ、アンチモン及びガリウムから
なる群から選ばれる1種以上の元素、Me:アルカリ土
類金属元素、a+b=1、a≧0、b≧0、c≧0、y
/c>12、y>12)の化学式を有し、かつ発明の詳
細な説明の項に記載の表1に示されるX線回折パターン
を有する結晶性シリケートを担体とし、活性金属として
白金、パラジウム、ルテニウム及びイリジウムからなる
群から選ばれる1種以上を含有する触媒であることを特
徴とする排ガスの脱硝方法。 (57) [Claim 1] In a method for removing an oxide of nitrogen by contacting an exhaust gas containing nitrogen oxide to a reactor filled with a catalyst and using ammonia as a reducing agent, the method comprises the steps of: A first denitration catalyst layer is installed on the upstream side of the flow, ammonia is added to the inlet of the first denitration catalyst layer at a reaction equivalent of or more than the reaction equivalent of nitrogen oxides in the exhaust gas, and the NOx concentration in the first denitration catalyst layer outlet gas is reduced. 0 to
10 ppm, the NH 3 concentration was adjusted in the range of 10 to 30 ppm, and an ammonia decomposition catalyst layer having a function of oxidizing and decomposing ammonia into nitrogen and nitrogen oxides was installed in the subsequent stream. the difference between the 3 concentration and NOx concentration 0 <NH 3 (ppm) -NOx (p
pm) <3 (ppm), and further, a second denitration catalyst layer is installed downstream of the denitration catalyst layer. The NOx concentration in the exhaust gas at the outlet of the second denitration catalyst layer is 0.1 ppm or less, and the NH 3 concentration is 3 ppm.
ppm consists in adjusting below, the ammonia partial
With the decatalyst dehydrated, (1.0 ± 0.6) R 2 O
・ [ AM 2 O 3 ・ bAl 2 O 3 ] ・ cMeO ・ ySiO
2 (R: alkali metal ion and / or hydrogen ion,
M: Group VIII element of the periodic table, rare earth element, titanium, banana
From zium, chromium, niobium, antimony and gallium
At least one element selected from the group consisting of: Me: alkaline earth
A class metal element, a + b = 1, a ≧ 0, b ≧ 0, c ≧ 0, y
/ C> 12, y> 12) and the details of the invention
X-ray diffraction pattern shown in Table 1 described in the detailed description section
Crystalline silicate with a carrier as active metal
Consists of platinum, palladium, ruthenium and iridium
A catalyst containing at least one member selected from the group
Exhaust gas denitration method.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17649494A JP3462580B2 (en) | 1994-07-28 | 1994-07-28 | Exhaust gas denitration method |
CA002154500A CA2154500C (en) | 1994-07-28 | 1995-07-24 | Methods of denitrating exhaust gases |
AT95111683T ATE196998T1 (en) | 1994-07-28 | 1995-07-25 | METHOD FOR DENITRATION OF EXHAUST GASES |
DE69519137T DE69519137T2 (en) | 1994-07-28 | 1995-07-25 | Exhaust gas denitrification process |
EP95111683A EP0694329B1 (en) | 1994-07-28 | 1995-07-25 | Method of denitrating exhaust gases |
US08/508,174 US5728356A (en) | 1994-07-28 | 1995-07-27 | Methods of denitrating exhaust gases |
US08/988,116 US6080376A (en) | 1994-07-28 | 1997-12-10 | Methods of denitrating exhaust gases |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17649494A JP3462580B2 (en) | 1994-07-28 | 1994-07-28 | Exhaust gas denitration method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0838856A JPH0838856A (en) | 1996-02-13 |
JP3462580B2 true JP3462580B2 (en) | 2003-11-05 |
Family
ID=16014650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17649494A Expired - Lifetime JP3462580B2 (en) | 1994-07-28 | 1994-07-28 | Exhaust gas denitration method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3462580B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000093749A (en) | 1998-09-25 | 2000-04-04 | Mitsubishi Heavy Ind Ltd | Gas denitration process |
US6197268B1 (en) * | 1999-07-02 | 2001-03-06 | The Boc Group, Inc. | Reduction of toxic substances in waste gas emissions |
DK2363194T3 (en) * | 2006-08-01 | 2013-02-11 | Cormetech Inc | Nitrous oxide removal system from an exhaust gas |
JP2023161206A (en) * | 2022-04-25 | 2023-11-07 | 三菱重工業株式会社 | Exhaust gas treatment device, combustion facility, power generation facility and exhaust gas treatment method |
WO2024247868A1 (en) * | 2023-05-31 | 2024-12-05 | 三菱重工業株式会社 | Exhaust gas treatment device, and exhaust gas treatment method |
-
1994
- 1994-07-28 JP JP17649494A patent/JP3462580B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0838856A (en) | 1996-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0686423B1 (en) | Use of ammonia decomposition catalysts | |
US5728356A (en) | Methods of denitrating exhaust gases | |
JP2732614B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
US6479026B1 (en) | Method of denitrating exhaust gas | |
JP3462580B2 (en) | Exhaust gas denitration method | |
JP4118077B2 (en) | Exhaust gas purification method | |
JP3132959B2 (en) | Ammonia decomposition catalyst | |
JPH08215544A (en) | Method for removing nitrogen oxide of diesel engine | |
JP3132960B2 (en) | Ammonia decomposition catalyst | |
JP3388941B2 (en) | Exhaust gas purification method | |
JP3495591B2 (en) | Method for reduction treatment of nitrogen oxides and SO3 in exhaust gas | |
JP3229136B2 (en) | Ammonia decomposition method | |
JP3241216B2 (en) | Exhaust gas denitration treatment method | |
JP3332652B2 (en) | Ammonia decomposition removal method | |
JP3256660B2 (en) | Purification method of ammonia-containing exhaust gas | |
JP3495548B2 (en) | Reduction method of sulfur trioxide | |
JP3219613B2 (en) | Ammonia decomposition catalyst and method for decomposing and removing ammonia | |
JP3229117B2 (en) | Ammonia decomposition method | |
JP3495542B2 (en) | Sulfur trioxide reduction method | |
JP3322520B2 (en) | Exhaust gas denitration catalyst | |
JPH08266870A (en) | Denitrifying method | |
JP3034981B2 (en) | Exhaust gas purification method | |
JP3453172B2 (en) | DeNOx method | |
JPH06327943A (en) | Method for nox removal treatment | |
JPH10128064A (en) | Reducing method of sulfur trioxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20011023 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070815 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080815 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080815 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090815 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090815 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100815 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100815 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110815 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110815 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120815 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130815 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |