JPH08306806A - Semiconductor device and its manufacture - Google Patents
Semiconductor device and its manufactureInfo
- Publication number
- JPH08306806A JPH08306806A JP7105591A JP10559195A JPH08306806A JP H08306806 A JPH08306806 A JP H08306806A JP 7105591 A JP7105591 A JP 7105591A JP 10559195 A JP10559195 A JP 10559195A JP H08306806 A JPH08306806 A JP H08306806A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- ferroelectric thin
- ferroelectric
- semiconductor
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Non-Volatile Memory (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は半導体装置、特に強誘電
体を用いたメモリ効果を有する薄膜トランジスタ等の半
導体装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a semiconductor device such as a thin film transistor having a memory effect using a ferroelectric substance.
【0002】[0002]
【従来の技術】強誘電体材料はヒステリシス特性を有す
ることが知られている。このヒステリシス特性を利用し
て、メモリ効果を持ったデバイスを作成できる。従来、
さまざまなタイプの強誘電体を利用した半導体装置が提
案されている。米国特許3,832,700号には、半
導体基板上に形成した強誘電体薄膜をゲート絶縁膜とし
て用いる電界効果トランジスタを利用したデバイスが記
載されている。この電界効果トランジスタは強誘電体薄
膜の分極電荷により、強誘電体薄膜の下部の半導体表面
の導電特性を制御し、情報を記憶することができる。2. Description of the Related Art Ferroelectric materials are known to have hysteresis characteristics. A device having a memory effect can be created by utilizing this hysteresis characteristic. Conventionally,
Semiconductor devices using various types of ferroelectrics have been proposed. US Pat. No. 3,832,700 describes a device using a field effect transistor in which a ferroelectric thin film formed on a semiconductor substrate is used as a gate insulating film. This field effect transistor can store the information by controlling the conductive property of the semiconductor surface below the ferroelectric thin film by the polarization charge of the ferroelectric thin film.
【0003】また、米国特許4,873,664号に
は、記憶セルに強誘電体キャパシタを用いた記憶デバイ
スが記載されている。前記特許のpp.2の図3に示さ
れているように、記憶セルは強誘電体キャパシタと選択
用トランジスタの組み合わせで構成される。記憶セルの
典型的な断面構造は、IEDM’87のpp.850〜
851中の図2に記載されている。強誘電体キャパシタ
がトランジスタを形成した基板上に絶縁膜を介して配置
される。強誘電体キャパシタに正方向の読み出しパルス
を加えると、パルスの極性と強誘電体の残留分極の向き
が異なり分極反転が起こる場合と、パルスと残留分極の
向きが同一で分極反転が起こらない場合で、キャパシタ
から流れる電荷量が異なり、この差を検出することで情
報を読み出すことができる。Further, US Pat. No. 4,873,664 describes a storage device using a ferroelectric capacitor in a storage cell. The pp. 2, the memory cell is composed of a combination of a ferroelectric capacitor and a selecting transistor. A typical cross-sectional structure of a memory cell is IEDM'87 pp. 850-
2 in 851. A ferroelectric capacitor is arranged on a substrate on which a transistor is formed with an insulating film interposed. When a positive read pulse is applied to a ferroelectric capacitor, the polarity of the pulse and the direction of the remanent polarization of the ferroelectric material differ, causing polarization reversal, or the direction of the pulse and the remanent polarization are the same, and no polarization reversal occurs. Thus, the amount of charge flowing from the capacitor is different, and information can be read by detecting this difference.
【0004】また、PCT特許WO91/06121号
には、強誘電体薄膜上に半導体薄膜を形成した可変抵抗
素子を用いた記憶デバイスが記載されている。可変抵抗
素子は、前記特許の図面pp.2/5中の図3に示され
るように基板上に下部電極、強誘電体薄膜、半導体薄膜
の順に形成し、その半導体薄膜上に2つの電極を間隔を
おいて配置することにより構成される。強誘電体薄膜の
残留分極の向きを制御することにより、半導体薄膜の導
電性を制御することができ、半導体薄膜上の2つの電極
間の抵抗から情報を読みとることができる。PCT Patent WO 91/06121 describes a storage device using a variable resistance element in which a semiconductor thin film is formed on a ferroelectric thin film. The variable resistance element is disclosed in the drawings pp. As shown in FIG. 3 in 2/5, a lower electrode, a ferroelectric thin film, and a semiconductor thin film are formed in this order on a substrate, and two electrodes are arranged on the semiconductor thin film at intervals. . By controlling the direction of the remanent polarization of the ferroelectric thin film, the conductivity of the semiconductor thin film can be controlled, and information can be read from the resistance between two electrodes on the semiconductor thin film.
【0005】[0005]
【発明が解決しようとする課題】このように、強誘電体
薄膜を利用した半導体装置はさまざまなタイプのものが
提案されている。しかしながら、これら従来の半導体装
置にはそれぞれ一長一短があり、問題点を有している。
前記米国特許3,832,700号に記載の電界効果ト
ランジスタの場合、半導体基板上に高品質の強誘電体薄
膜を形成することは困難で、十分な強誘電特性を持つ膜
が得られなかったり、強誘電体/半導体基板界面に多数
の欠陥が生じるなどの問題がある。強誘電体と半導体の
結晶格子の不整合や、各々の構成元素の相互拡散などが
原因である。界面の欠陥は、記憶保持時間が短くなるな
どデバイスとしての特性に悪影響を及ぼす。これらの問
題を解決するために、強誘電体/半導体基板界面にバッ
ファ層を設けることなどの方法が試みられているが、実
用に供するような高い信頼性を持ったデバイスは製造さ
れていない。また強誘電体薄膜形成工程では、通常の半
導体プロセスには用いられない材料が使用され、熱処理
工程が含まれる。このタイプのデバイス構造では、強誘
電体薄膜が半導体基板のすぐ上に形成されるため、強誘
電体の構成元素が半導体基板中の集積回路素子に拡散し
やすく、集積回路素子に損傷を与えてしまうことも問題
になる。As described above, various types of semiconductor devices using the ferroelectric thin film have been proposed. However, each of these conventional semiconductor devices has advantages and disadvantages, and has a problem.
In the case of the field effect transistor described in US Pat. No. 3,832,700, it is difficult to form a high quality ferroelectric thin film on a semiconductor substrate, and a film having sufficient ferroelectric characteristics cannot be obtained. However, there are problems such as a large number of defects occurring at the ferroelectric / semiconductor substrate interface. This is due to the mismatch between the crystal lattices of the ferroelectric and the semiconductor and the mutual diffusion of the constituent elements. Interface defects adversely affect the characteristics of the device, such as shortened memory retention time. In order to solve these problems, methods such as providing a buffer layer at the ferroelectric / semiconductor substrate interface have been attempted, but devices with high reliability for practical use have not been manufactured. Further, in the ferroelectric thin film forming step, a material not used in a normal semiconductor process is used, and a heat treatment step is included. In this type of device structure, since the ferroelectric thin film is formed immediately above the semiconductor substrate, the constituent elements of the ferroelectric substance are easily diffused into the integrated circuit element in the semiconductor substrate, which damages the integrated circuit element. It is also a problem to put it away.
【0006】このような問題は強誘電体キャパシタを利
用したデバイスではある程度解決されている。前記IE
DM’87のpp.850〜851中の図2では、強誘
電体キャパシタは半導体基板上に形成された集積回路素
子と絶縁膜で分離されて配置される。そのため、強誘電
体薄膜形成工程で基板上の集積回路素子に与える損傷を
抑えることができる。また、強誘電体薄膜は金属や導電
性酸化物の電極上に形成される。電極材料を注意深く選
択することにより、半導体基板の上に直接形成するより
も高品質の強誘電体薄膜が得やすい。Such a problem has been solved to some extent in a device using a ferroelectric capacitor. IE
DM'87 pp. In FIG. 2 of 850 to 851, the ferroelectric capacitor is arranged separately from the integrated circuit element formed on the semiconductor substrate with an insulating film. Therefore, damage to the integrated circuit element on the substrate in the ferroelectric thin film forming step can be suppressed. The ferroelectric thin film is formed on the electrode of metal or conductive oxide. By carefully selecting the electrode material, it is easier to obtain a high-quality ferroelectric thin film than that formed directly on the semiconductor substrate.
【0007】しかし、このタイプの不揮発メモリーデバ
イスは記憶内容の読み出し方法が、一度メモリーセルの
情報を破壊する、いわゆる破壊読み出し法であり、読み
出しサイクル時間が長時間を要するなどの問題点があ
る。また、前記PCT特許WO91/06121号に記
載のデバイス構造の場合、同特許の図面pp.2/5中
の図3では基板上に直接強誘電体可変抵抗素子を配置し
ているが、デバイスの構成上、基板を絶縁膜で保護した
上に強誘電体可変抵抗素子を配置しても何ら問題はな
い。そのようなレイアウトにすれば、強誘電体キャパシ
タを使用したものと同様、強誘電体薄膜形成工程での半
導体基板上の集積回路の損傷を抑えることができる。し
かし、この発明では強誘電体薄膜と半導体薄膜で異なる
材料を使用している。そのため、強誘電体/半導体界面
では、それぞれの構成元素の拡散や結晶格子の不整合な
どによる多数の欠陥が生じやすい。そのため、前記米国
特許3,832,700号の場合と同様、記憶保持時間
が短くなるなど安定性の高いデバイスが得られない。However, this type of non-volatile memory device has a problem that the method of reading the stored contents is the so-called destructive reading method in which the information in the memory cell is once destroyed, and the read cycle time is long. In the case of the device structure described in the PCT patent WO91 / 06121, the drawing pp. In FIG. 3 of 2/5, the ferroelectric variable resistance element is arranged directly on the substrate. However, due to the device structure, the ferroelectric variable resistance element may be arranged after the substrate is protected by an insulating film. There is no problem. With such a layout, it is possible to suppress damage to the integrated circuit on the semiconductor substrate in the ferroelectric thin film forming step, as in the case of using a ferroelectric capacitor. However, in this invention, different materials are used for the ferroelectric thin film and the semiconductor thin film. Therefore, a large number of defects are likely to occur at the ferroelectric / semiconductor interface due to diffusion of the respective constituent elements, crystal lattice mismatch, and the like. Therefore, as in the case of US Pat. No. 3,832,700, a device with high stability such as a short memory holding time cannot be obtained.
【0008】このように従来提案されている強誘電体を
用いた半導体装置で、半導体集積回路とのインテグレー
ションの容易性、非破壊読み出し、動作安定性などのす
べてを満足するものはなかった。本発明はこのような従
来技術に対して、前述の問題点が解消された、新しいタ
イプの強誘電体を用いた半導体装置を提供することを目
的とする。すなわち、本発明の目的は、半導体基板上の
集積回路とのインテグレーションが容易で、非破壊読み
出しが可能であり、安定な動作が可能な強誘電体を用い
た半導体装置を提供することである。As described above, none of the conventionally proposed semiconductor devices using a ferroelectric material satisfy all of the ease of integration with a semiconductor integrated circuit, non-destructive readout, and operational stability. It is an object of the present invention to provide a semiconductor device using a new type of ferroelectric material, in which the above-mentioned problems are solved, as compared with such a conventional technique. That is, an object of the present invention is to provide a semiconductor device using a ferroelectric material that can be easily integrated with an integrated circuit on a semiconductor substrate, can be nondestructively read, and can operate stably.
【0009】[0009]
【課題を解決するための手段】本発明の半導体装置は、
強誘電体薄膜と、前記強誘電体薄膜の第1表面に接して
設けられるゲート電極と、前記強誘電体薄膜の第2表面
に接して間隔をおいて設けられる2つのソース/ドレイ
ン電極とを備えた半導体素子において、前記強誘電体薄
膜の第2表面が半導体化されていることを特徴とする。According to the present invention, there is provided a semiconductor device comprising:
A ferroelectric thin film, a gate electrode provided in contact with the first surface of the ferroelectric thin film, and two source / drain electrodes provided in contact with the second surface of the ferroelectric thin film and spaced apart from each other. In the provided semiconductor element, the second surface of the ferroelectric thin film is made into a semiconductor.
【0010】強誘電性領域の残留分極により、半導性領
域中に空乏層や蓄積層が生じることにより半導性領域の
導電性が変化し、ソース−ドレイン電極間の抵抗変化と
して読み出すことができる。情報の書き込み操作、すな
わち強誘電体の分極反転はゲート電極と半導性領域間に
電圧を印加することにより行う。また本発明が別の解決
法として提示する半導体装置は、強誘電体薄膜と、前記
強誘電体薄膜の第1表面に接して設けられるゲート電極
と、前記強誘電体薄膜の第2表面に接して間隔をおいて
設けられる2つのソース/ドレイン電極とを備えた半導
体素子において、前記強誘電体薄膜の第2表面のソース
/ドレイン電極と接しているソース/ドレイン領域がp
型あるいはn型導電型に半導体化され、前記ソース/ド
レイン領域に挟まれた強誘電体薄膜の第2表面は、前記
のソース/ドレイン領域と異なる導電型に半導体化され
たチャネル領域であることを特徴とする。The depletion layer and the storage layer are formed in the semiconducting region due to the remanent polarization of the ferroelectric region, so that the conductivity of the semiconducting region is changed and read as a resistance change between the source and drain electrodes. it can. The information writing operation, that is, the polarization reversal of the ferroelectric substance is performed by applying a voltage between the gate electrode and the semiconducting region. A semiconductor device proposed by the present invention as another solution is a ferroelectric thin film, a gate electrode provided in contact with the first surface of the ferroelectric thin film, and a second surface of the ferroelectric thin film in contact with the gate electrode. In a semiconductor device having two source / drain electrodes spaced apart from each other, the source / drain region in contact with the source / drain electrode on the second surface of the ferroelectric thin film is p
Type or n-type conductivity type semiconductor film, and the second surface of the ferroelectric thin film sandwiched between the source / drain regions is a channel region semiconductorized to a conductivity type different from that of the source / drain regions. Is characterized by.
【0011】強誘電性領域の残留分極により、チャネル
領域中に反転層が生じると、ソース領域とドレイン領域
がこの反転層により電気的に接続される。従って、強誘
電性領域の残留分極の向きはソース−ドレイン電極間に
電流が流れるかどうかで判別できる。情報の書き込み操
作、すなわち強誘電体の分極反転はゲート電極とチャネ
ル領域間に電圧を印加することにより行う。When an inversion layer is formed in the channel region due to remanent polarization of the ferroelectric region, the source region and the drain region are electrically connected by this inversion layer. Therefore, the direction of remanent polarization in the ferroelectric region can be determined by whether or not a current flows between the source and drain electrodes. The information writing operation, that is, the polarization reversal of the ferroelectric substance is performed by applying a voltage between the gate electrode and the channel region.
【0012】この構成では先に述べた1種類の導電型の
半導性領域を利用する場合と比べて素子の構造が複雑に
なるが、情報の読み取りがより容易になる。利用目的に
より、2つの構成を使い分ければよい。いずれの場合も
表面が半導体化された強誘電体薄膜を利用することを特
徴としている。同一材料で強誘電性領域と半導性領域を
構成することにより、強誘電性領域と半導性領域の間で
物質拡散が起こらない。強誘電体薄膜の表面を半導体化
したものを利用することにより、強誘電性領域/半導性
領域の界面に結晶格子の不連続がなく欠陥の少ない界面
が得られる。With this structure, the structure of the element is more complicated than in the case of using one type of conductive type semiconducting region described above, but the reading of information becomes easier. Depending on the purpose of use, the two configurations may be used properly. Both cases are characterized by using a ferroelectric thin film having a semiconductor surface. By forming the ferroelectric region and the semiconducting region with the same material, material diffusion does not occur between the ferroelectric region and the semiconducting region. By using a semiconductor thin film on the surface of a ferroelectric thin film, an interface with no defects in the crystal lattice can be obtained at the interface between the ferroelectric region and the semiconducting region.
【0013】基板としてはSi、GaAs、ガラス、サ
ファイアなどが使用できる。Si、GaAsを使用する
場合には、基板上にSiO2 やSiNx 等の絶縁膜を形
成しておくことが好ましい。ゲート電極としては、例え
ば、Pt、Ir、RuO2 など耐酸化性の導電性材料が
好ましい。電極と基板の間には、下地基板との密着性を
改善するためTi、Taやその窒化物を密着層として設
けても良い。As the substrate, Si, GaAs, glass, sapphire or the like can be used. When Si or GaAs is used, it is preferable to form an insulating film such as SiO 2 or SiN x on the substrate. As the gate electrode, for example, an oxidation resistant conductive material such as Pt, Ir, RuO 2 is preferable. Between the electrode and the substrate, Ti, Ta or a nitride thereof may be provided as an adhesive layer in order to improve the adhesiveness with the underlying substrate.
【0014】強誘電体はバンドギャップが4.5eV以
下の材料が好ましく、例えばPbZrTiO3 、BiT
iO12、GaGeTeが用いられる。バンドギャップが
これ以上大きくなると、半導体化が困難になる。また、
強誘電体の残留分極は0.1μC/cm2 以上が必要と
なる。これ以下では、メモリー効果が現れない。PbZ
rTiO3 、BiTiO12、GaGeTeの残留分極は
数μC/cm2 〜数10μC/cm2 あり、メモリーを
示すのに十分な残留分極を持っている。The ferroelectric material is preferably a material having a bandgap of 4.5 eV or less, such as PbZrTiO 3 or BiT.
iO 12 , GaGeTe are used. If the band gap becomes larger than this, it becomes difficult to form a semiconductor. Also,
The remanent polarization of the ferroelectric substance needs to be 0.1 μC / cm 2 or more. Below this, the memory effect does not appear. PbZ
The remanent polarization of rTiO 3 , BiTiO 12 , and GaGeTe is several μC / cm 2 to several tens of μC / cm 2, and they have sufficient remanent polarization to show a memory.
【0015】強誘電体薄膜の厚さは、20nm以上80
0nm以下が好ましい。20nm以下では絶縁破壊しや
すく、また半導体化の際、表面のみの部分的な半導体化
が困難になる。また800nm以上では分極反転させる
ために要する電圧が高くなりすぎる。強誘電体を半導体
化した領域は、キャリア濃度が1015m-3から1027m
-3の範囲になっていることが好ましい。キャリア濃度が
1015m-3以下になると半導性領域の導電率が低くなり
デバイスの動作速度が遅くなってしまう。キャリア濃度
が1027m-3以上では、強誘電性領域の分極変化による
半導性領域の導電性の変化が小さくなりすぎる。The thickness of the ferroelectric thin film is 20 nm or more and 80
It is preferably 0 nm or less. If the thickness is 20 nm or less, dielectric breakdown is likely to occur, and it becomes difficult to partially form a semiconductor only on the surface when forming a semiconductor. On the other hand, if the thickness is 800 nm or more, the voltage required to invert the polarization becomes too high. In the region where the ferroelectric is made into a semiconductor, the carrier concentration is 10 15 m −3 to 10 27 m
It is preferably in the range of -3 . When the carrier concentration is 10 15 m -3 or less, the conductivity of the semiconducting region becomes low and the operation speed of the device becomes slow. When the carrier concentration is 10 27 m −3 or more, the change in conductivity in the semiconducting region due to the polarization change in the ferroelectric region becomes too small.
【0016】半導性領域の厚さは、通常強誘電体の厚み
の1/40 〜1/2程度であり、10nm以上350
nm以下が好ましい。10nm以下では半導性領域の抵
抗が高くなってしまう。350nm以上では強誘電性領
域の分極により半導性領域に生じる蓄積層や空乏層の厚
さに対する半導性領域全体の厚さの割合が大きくなりす
ぎ、半導性領域の抵抗変化が小さくなってしまう。The thickness of the semiconducting region is usually about 1/40 to 1/2 of the thickness of the ferroelectric substance, and is 10 nm or more and 350 nm or more.
nm or less is preferable. If it is 10 nm or less, the resistance of the semiconducting region becomes high. If the thickness is 350 nm or more, the ratio of the total thickness of the semiconducting region to the thickness of the storage layer or the depletion layer generated in the semiconducting region due to the polarization of the ferroelectric region becomes too large, and the resistance change in the semiconducting region becomes small. Will end up.
【0017】ソース/ドレイン電極はAl、Pt、I
r、TiN、TiW、TaNなどが好ましい。ソース−
ドレイン電極間の間隔は100μm以下が好ましい。1
00μm以上では素子のサイズが大きくなりすぎ、ま
た、ソース−ドレイン間の抵抗が高くなりすぎ、信号遅
延が問題となる。ソース/ドレイン電極上には保護膜を
設けても良い。保護膜は絶縁性の材料で、プラズマSi
O2 やSiNx を用いることができる。SOG、PS
G、BPSGなどでもよい。該保護膜にコンタクトホー
ルを形成し、強誘電体素子と他の集積回路素子間のコン
タクトをとる。コンタクトはAlやCu、W、Pドープ
ポリSiなどが好ましい。The source / drain electrodes are made of Al, Pt, I
r, TiN, TiW, TaN and the like are preferable. Source-
The distance between the drain electrodes is preferably 100 μm or less. 1
If the thickness is 00 μm or more, the size of the device becomes too large, and the resistance between the source and the drain becomes too high, which causes a signal delay. A protective film may be provided on the source / drain electrodes. The protective film is an insulating material, and plasma Si
O 2 or SiN x can be used. SOG, PS
G, BPSG, etc. may be used. A contact hole is formed in the protective film to make contact between the ferroelectric element and another integrated circuit element. The contact is preferably Al, Cu, W, P-doped poly-Si, or the like.
【0018】続いてこのような半導体装置の好ましい製
造方法について説明する。本発明の半導体装置の好まし
い製造方法は、基板上あるいは基板上に形成された膜上
にゲート電極を形成する工程と、前記ゲート電極上に強
誘電体薄膜を形成する工程と、前記強誘電体薄膜の表面
を半導体化し強誘電体薄膜の一部に半導性領域を形成す
る工程と、前記半導性領域上に間隔をおいてソース/ド
レイン電極を形成する工程を有することを特徴とする。Next, a preferable method of manufacturing such a semiconductor device will be described. A preferred method of manufacturing a semiconductor device according to the present invention comprises a step of forming a gate electrode on a substrate or a film formed on the substrate, a step of forming a ferroelectric thin film on the gate electrode, and the ferroelectric material. The method further comprises the step of converting the surface of the thin film into a semiconductor and forming a semiconducting region in a part of the ferroelectric thin film, and forming source / drain electrodes at intervals on the semiconducting region. .
【0019】また本発明が別の解決法として提示する半
導体装置の好ましい製造方法は、基板上あるいは基板上
に形成された膜上にゲート電極を形成する工程と、前記
ゲート電極上に強誘電体薄膜を形成する工程と、前記強
誘電体薄膜の表面の間隔をおいた2つの領域をp型ある
いはn型導電型に半導化してソース/ドレイン領域を形
成する工程と、前記強誘電体薄膜の表面の前記ソース/
ドレイン領域に挟まれた領域を前記ソース/ドレイン領
域と異なる導電型に半導化してチャネル領域を形成する
工程と、前記ソース/ドレイン領域上にそれぞれソース
/ドレイン電極を形成する工程を有することを特徴とす
る。A preferred method of manufacturing a semiconductor device presented as another solution by the present invention is a step of forming a gate electrode on a substrate or a film formed on the substrate, and a ferroelectric substance on the gate electrode. Forming a thin film; forming two source / drain regions by semiconducting two spaced-apart regions on the surface of the ferroelectric thin film to p-type or n-type conductivity; and the ferroelectric thin film. The surface of /
And a step of semiconducting a region sandwiched by the drain regions to a conductivity type different from that of the source / drain regions to form a channel region, and forming source / drain electrodes on the source / drain regions respectively. Characterize.
【0020】いずれの場合も、強誘電体薄膜の表面を半
導体化する工程を有することを特徴としている。強誘電
体薄膜と半導体薄膜を別工程で形成すると良好な強誘電
体/半導体界面を形成することが難しい。強誘電体薄膜
の表面を半導体化して、強誘電体薄膜の一部を半導性領
域とすると結晶格子の不連続がなく欠陥の少ない良好な
界面が得られる。Both cases are characterized by including a step of converting the surface of the ferroelectric thin film into a semiconductor. If the ferroelectric thin film and the semiconductor thin film are formed in different steps, it is difficult to form a good ferroelectric / semiconductor interface. When the surface of the ferroelectric thin film is made into a semiconductor and a part of the ferroelectric thin film is used as a semiconducting region, a good interface with few defects without crystal lattice discontinuity can be obtained.
【0021】前記の製造方法について、さらに詳しく説
明する。このような基板上、あるいは基板上に形成され
た絶縁膜上にゲート電極を形成する。ゲート電極は後で
形成する強誘電体が酸化物の場合には耐酸化性の導電性
材料が好ましい。例えば、Pt、Ir、RuO2 などが
好ましい。Ptを用いる場合は、さらに下地基板との密
着性を改善するためTi、Taやその窒化物を密着層と
してあらかじめ形成するのが好ましい。電極のエッチン
グ法としてイオンミリングを始め、プラズマエッチング
やHF等によるウエットエッチングなどでも良い。The above manufacturing method will be described in more detail. A gate electrode is formed on such a substrate or an insulating film formed on the substrate. When the ferroelectric to be formed later is an oxide, the gate electrode is preferably a conductive material having oxidation resistance. For example, Pt, Ir, RuO 2 and the like are preferable. When Pt is used, it is preferable to previously form Ti, Ta or a nitride thereof as an adhesion layer in order to further improve the adhesion to the underlying substrate. As the electrode etching method, ion milling, plasma etching, wet etching using HF or the like may be used.
【0022】このゲート電極上に強誘電体薄膜を形成す
る。強誘電体薄膜の形成方法はsol−gel法、スパ
ッタリング法、CVD法、レーザーアブレーション法な
どが利用できる。続いて強誘電体薄膜の基板側と反対の
表面を半導体化する。強誘電体を半導体化する方法は不
純物拡散法によるものが好ましい。例えばPbZrTi
O3 の場合、Ta、Bi、La、Ce、Pr、Nd、S
mなどを不純物として拡散させることによりn型導電性
の半導体にすることができる。また、p型導電性に半導
体化するための不純物としてはFe、K、Na、Scな
どを用いる。A ferroelectric thin film is formed on this gate electrode. As a method for forming the ferroelectric thin film, a sol-gel method, a sputtering method, a CVD method, a laser ablation method, or the like can be used. Then, the surface of the ferroelectric thin film opposite to the substrate side is made into a semiconductor. The method of converting the ferroelectric into a semiconductor is preferably an impurity diffusion method. For example PbZrTi
In the case of O 3 , Ta, Bi, La, Ce, Pr, Nd, S
By diffusing m or the like as an impurity, an n-type conductive semiconductor can be obtained. Further, Fe, K, Na, Sc, or the like is used as an impurity for converting the semiconductor to p-type conductivity.
【0023】ペロブスカイト型酸化物の一部では酸素欠
陥を導入することによっても半導体化できるが、欠陥量
のコントロールが困難で、またその後の電極形成や保護
膜形成工程の影響を受けやすい。元々の強誘電体を構成
する元素と価数の異なる元素を不純物として拡散させる
原子価制御法により半導体化すると再現性よくキャリア
濃度をコントロールできる。半導体化の方法は、強誘電
体薄膜に不純物として拡散させるイオンを高エネルギー
で打ち込むイオン打ち込み法や、有機金属溶液を表面に
塗布して熱拡散させる方法等を利用する。Although a part of the perovskite type oxide can be made into a semiconductor by introducing oxygen defects, it is difficult to control the amount of defects and it is easily affected by the subsequent electrode formation and protective film formation steps. The carrier concentration can be controlled with good reproducibility if the element is made into a semiconductor by a valence control method in which an element having a different valence from the original element constituting the ferroelectric is diffused as an impurity. As a method for forming a semiconductor, an ion implantation method in which ions to be diffused as an impurity into a ferroelectric thin film are implanted with high energy, a method in which an organic metal solution is applied on the surface to thermally diffuse, and the like are used.
【0024】さらに、表面を半導体化した強誘電体薄膜
上に間隔をおいてソース/ドレイン電極を公知の方法に
より形成する。この上に保護膜を設けても良い。保護膜
にはコンタクトホールを形成し、強誘電体素子と他の集
積回路素子間のコンタクトをとる。Further, source / drain electrodes are formed by a known method on the ferroelectric thin film whose surface is made into a semiconductor, at intervals. A protective film may be provided thereover. A contact hole is formed in the protective film to make a contact between the ferroelectric element and another integrated circuit element.
【0025】[0025]
【作用】本発明によれば、表面が半導体化された強誘電
体薄膜を利用し、強誘電性領域と半導性領域を同一材料
で構成することにより、強誘電性領域と半導性領域の間
で物質拡散が起こらず、強誘電性領域/半導性領域の界
面に結晶格子の不連続がなく欠陥の少ない界面が得られ
る。そのため、キャリアが界面の欠陥にトラップされる
ことがなく、安定に動作させることができる。また、強
誘電体薄膜は基板上に直接形成する必要がなく、基板上
に形成した集積回路素子に損傷を与えることがない。ま
た、記憶された情報は非破壊で読み出すことができる。According to the present invention, the ferroelectric region and the semiconducting region are formed by using the ferroelectric thin film whose surface is made into a semiconductor and forming the ferroelectric region and the semiconducting region with the same material. No material diffusion occurs between them, and an interface with few defects is obtained without discontinuity of the crystal lattice at the interface of the ferroelectric region / semiconductive region. Therefore, carriers can be stably operated without being trapped by defects in the interface. Further, the ferroelectric thin film does not need to be directly formed on the substrate, and does not damage the integrated circuit element formed on the substrate. In addition, the stored information can be read nondestructively.
【0026】本発明の半導体装置は、強誘電体のメモリ
ー効果を利用して記憶デバイスとして利用ができる。他
に、液晶表示デバイスの駆動素子としての利用も可能で
ある。従来の薄膜トランジスタを使用した場合、画素の
表示を維持するためにオン状態にしたトランジスタには
常時ゲート電圧を印加する必要があったが、本発明の素
子ではメモリー効果を利用して、オン状態にするときの
みゲートに電圧を印加すればよい。The semiconductor device of the present invention can be used as a storage device by utilizing the memory effect of the ferroelectric substance. Besides, it can be used as a driving element of a liquid crystal display device. When a conventional thin film transistor is used, it is necessary to always apply a gate voltage to the transistor which is turned on in order to maintain the display of the pixel, but the element of the present invention utilizes the memory effect to turn it on. Only when the voltage is applied, the voltage may be applied to the gate.
【0027】[0027]
【実施例】以下、添付図面に基づき本発明の半導体装置
の実施例を詳細に説明する。Embodiments of the semiconductor device of the present invention will be described in detail below with reference to the accompanying drawings.
【0028】[0028]
【実施例1】図1は本発明の第1実施例の半導体装置の
基本素子の断面図である。半導体基板11上に絶縁膜1
2を挟んでゲート電極13が設けられている。その電極
上に強誘電体薄膜14が設けられ、その上側表面は半導
体化された半導性領域15になっている。その強誘電体
薄膜の上に間隔をおいてソース/ドレイン電極16が配
置される。この素子は絶縁性の保護膜17で保護され、
各電極はコンタクト18により基板上の他の回路素子と
電気的に接続されている。[Embodiment 1] FIG. 1 is a sectional view of a basic element of a semiconductor device according to a first embodiment of the present invention. Insulating film 1 on semiconductor substrate 11
A gate electrode 13 is provided on both sides of 2. A ferroelectric thin film 14 is provided on the electrode, and the upper surface of the ferroelectric thin film 14 is a semiconducting region 15 made into a semiconductor. Source / drain electrodes 16 are arranged on the ferroelectric thin film at intervals. This element is protected by an insulating protective film 17,
Each electrode is electrically connected to another circuit element on the substrate by a contact 18.
【0029】続いて、上記の基本素子の製造工程を説明
する。図3から図14は製造工程の概略を示している。
最初に、図3のように集積回路が形成されたSi基板1
1上に厚さ300nmのSiO2 膜12をプラズマCV
D法により形成した。続いて、SiO2 膜の上に厚さ5
0nmのTi21をスパッタ法で形成した後、厚さ20
0nmのPt電極22を形成した。このPt/Ti電極
をイオンミリングでエッチングし、図4のように所定の
形状に加工した。Next, a manufacturing process of the above basic element will be described. 3 to 14 show the outline of the manufacturing process.
First, the Si substrate 1 on which an integrated circuit is formed as shown in FIG.
300 nm thick SiO 2 film 12 on top of plasma CV
It was formed by the D method. Then, a thickness of 5 is formed on the SiO 2 film.
After forming 0 nm of Ti21 by the sputtering method, a thickness of 20
A 0 nm Pt electrode 22 was formed. This Pt / Ti electrode was etched by ion milling and processed into a predetermined shape as shown in FIG.
【0030】続いて、図5のように、強誘電体薄膜Pb
ZrTiO3 (Zr/Ti比50/50)14をsol
−gel法により形成した。sol−gel法は有機金
属を原料にする薄膜形成法で、酢酸PbとZrメトキシ
エトキシドとTiメトキシエトキシドをメトキシエタノ
ール中で混合した原料溶液を基板上にスピンコーティン
グして、600℃で熱処理してPbZrTiO3 薄膜を
形成した。Then, as shown in FIG. 5, the ferroelectric thin film Pb is formed.
Sol ZrTiO 3 (Zr / Ti ratio 50/50) 14
-Gel method. The sol-gel method is a thin film forming method using an organic metal as a raw material. A raw material solution obtained by mixing Pb, Zr methoxyethoxide, and Ti methoxyethoxide in methoxyethanol is spin-coated on a substrate and heat-treated at 600 ° C. Then, a PbZrTiO 3 thin film was formed.
【0031】続いて、PbZrTiO3 薄膜の上にNb
(OC2 H5 )5 溶液を塗布し、700℃で熱処理する
ことによりPbZrTiO3 の上側表面からNbを拡散
させ、PbZrTiO3 の表面をn型導電性に半導体化
し、図6のように半導性領域15を形成した。続いて、
図7のように、PbZrTiO3 の不要部分をエッチン
グ除去した後、図8のようにPbZrTiO3 上にTi
Nを形成、所定の形状に加工して間隔をおいて配置した
ソース/ドレイン電極16を作成した。Then, Nb is deposited on the PbZrTiO 3 thin film.
(OC 2 H 5) 5 solution was applied, by heat treatment at 700 ° C. to diffuse Nb from the upper surface of the PbZrTiO 3, and the semiconductor of the surface of the PbZrTiO 3 to n-type conductivity, semiconductor as shown in FIG. 6 The region 15 is formed. continue,
After removing unnecessary portions of PbZrTiO 3 by etching as shown in FIG. 7, Ti on PbZrTiO 3 is removed as shown in FIG.
N was formed and processed into a predetermined shape to form source / drain electrodes 16 arranged at intervals.
【0032】続いて、図9のように基板表面にプラズマ
SiNx 17を形成して素子を保護した。最後に、図1
0のように保護膜にコンタクトホールを形成して、Al
をスパッタして素子間のコンタクト18をとり他の集積
回路素子と接続した。さて、このように作成した素子
(以下素子Aと記す)と比較するため、従来技術により
素子Bを作成した。以下、素子Bの作成方法を説明す
る。Subsequently, as shown in FIG. 9, plasma SiN x 17 was formed on the surface of the substrate to protect the device. Finally, Figure 1
A contact hole is formed in the protective film as shown in FIG.
Was sputtered to form contacts 18 between the elements, which were connected to other integrated circuit elements. Now, in order to compare with the device thus produced (hereinafter referred to as the device A), the device B was produced by the conventional technique. Hereinafter, a method for producing the element B will be described.
【0033】素子Aと同様にSiO2 膜を形成したSi
基板上にPt/Tiゲート電極を形成し、その上にPb
ZrTiO3 を形成した。次にPbZrTiO3 上にI
n2O3 薄膜をスパッタリング法により60nm形成し
た。In2 O3 薄膜上にTiNを形成、所定の形状に加
工してソース/ドレイン電極を作成した。続いて、素子
Aの場合と同様に基板表面にプラズマSiNx 保護膜を
形成して素子を保護、保護膜にコンタクトホールを形成
して、Alをスパッタして素子間のコンタクトをとり他
の集積回路素子と接続した。Si having a SiO 2 film formed as in the device A
Pt / Ti gate electrode is formed on the substrate and Pb is formed on it.
ZrTiO 3 was formed. Next, I on PbZrTiO 3
A 60 nm thick n 2 O 3 thin film was formed. TiN was formed on the In 2 O 3 thin film and processed into a predetermined shape to form source / drain electrodes. Then, as in the case of the element A, a plasma SiN x protective film is formed on the substrate surface to protect the element, a contact hole is formed in the protective film, and Al is sputtered to make contact between the elements to make another integration. Connected with the circuit element.
【0034】さて素子Aと素子Bについて、ソース−ド
レイン電極間の抵抗を測定した。両者ともゲート電極に
印加する電圧が0でも、ソース−ドレイン電極間の抵抗
値は強誘電性領域の残留分極の向きにより2つの値をと
った。その抵抗値の比は強誘電性領域を分極反転させた
直後で、素子Aは109:1、素子Bは34:1であっ
た。高抵抗状態と低抵抗状態のそれぞれについて、ゲー
ト電極に電圧をかけることなく放置して、経時変化を調
べると、素子Aは図17のように、素子Bは図18のよ
うに変化した。どちらの場合も抵抗値の対数と時間の対
数は直線関係にあり、図17の実験値を外挿することに
より得られる10年後すなわち約3×108 秒後の高抵
抗状態と低抵抗状態の抵抗比は約23:1となった。こ
の2つの抵抗の差異は簡単な識別回路で識別できるもの
であり、素子Aは10年以上の記憶保持が可能で、高い
安定性を持つことがわかった。これに対して素子Bの場
合、図18の実験値を外挿すると、約6×107 秒後に
両者の値がほぼ等しくなり識別不能になった。この結果
は、従来技術で作成した素子Bに対して本発明の実施例
である素子Aの方が高い安定性を持つことを示してい
る。The resistance between the source and drain electrodes of the elements A and B was measured. In both cases, even if the voltage applied to the gate electrode was 0, the resistance value between the source and drain electrodes had two values depending on the direction of remanent polarization in the ferroelectric region. The ratio of the resistance values was 109: 1 for the element A and 34: 1 for the element B immediately after polarization inversion of the ferroelectric region. In each of the high resistance state and the low resistance state, the change over time was examined by leaving the gate electrode without applying a voltage, and element A changed as shown in FIG. 17 and element B changed as shown in FIG. In both cases, the logarithm of the resistance value and the logarithm of the time are in a linear relationship, and the high resistance state and the low resistance state after 10 years obtained by extrapolating the experimental values of FIG. 17, that is, after about 3 × 10 8 seconds, are obtained. The resistance ratio was about 23: 1. The difference between these two resistances can be identified by a simple identification circuit, and it was found that the element A can retain memory for 10 years or more and has high stability. On the other hand, in the case of the element B, extrapolation of the experimental values in FIG. 18 revealed that after approximately 6 × 10 7 seconds, the two values were almost the same and identification was not possible. This result shows that the device A, which is an example of the present invention, has higher stability than the device B manufactured by the conventional technique.
【0035】[0035]
【実施例2】図2は本発明の第2実施例の半導体装置の
基本素子の断面図である。半導体基板11上に絶縁膜1
2を挟んでゲート電極13が設けられている。そのゲー
ト電極上に強誘電体薄膜14が設けられている。そのゲ
ート電極13の上に位置する強誘電体薄膜の上側表面は
p型あるいはn型導電型に半導体化されたチャネル領域
19になっている。強誘電体薄膜の上側表面のチャネル
領域19を挟む位置にチャネル領域と異なる導電型に半
導体化されたソース/ドレイン領域20が設けられてい
る。そのソース/ドレイン領域20の上にソース/ドレ
イン電極16が配置される。この素子は絶縁性の保護膜
17で保護され、各電極はコンタクト18により基板上
の他の回路素子と電気的に接続されている。Second Embodiment FIG. 2 is a sectional view of a basic element of a semiconductor device according to a second embodiment of the present invention. Insulating film 1 on semiconductor substrate 11
A gate electrode 13 is provided on both sides of 2. A ferroelectric thin film 14 is provided on the gate electrode. The upper surface of the ferroelectric thin film located on the gate electrode 13 serves as a channel region 19 which is made into a p-type or n-type conductivity type semiconductor. Source / drain regions 20 which are made into a semiconductor having a conductivity type different from that of the channel region are provided at positions sandwiching the channel region 19 on the upper surface of the ferroelectric thin film. Source / drain electrodes 16 are arranged on the source / drain regions 20. This element is protected by an insulating protective film 17, and each electrode is electrically connected to another circuit element on the substrate by a contact 18.
【0036】続いて、上記の基本素子の製造工程を説明
する。図11から図16は請求項2に記載の半導体装置
の製造工程の概略を示している。最初に、実施例1の場
合と同様、図11に示すように集積回路を形成したSi
基板上にSiO2 膜を形成し、次にPt/Ti電極を形
成する。そして、図12のように、PbZrTiO3 薄
膜を形成した。Next, the manufacturing process of the above basic element will be described. 11 to 16 show the outline of the manufacturing process of the semiconductor device according to the second aspect. First, as in the case of Example 1, Si having an integrated circuit formed as shown in FIG.
A SiO 2 film is formed on the substrate, and then a Pt / Ti electrode is formed. Then, as shown in FIG. 12, a PbZrTiO 3 thin film was formed.
【0037】続いて、PbZrTiO3 薄膜の表面上
で、Pt/Ti電極の上に位置する部分に、Nb(OC
2 H5 )5 溶液を塗布し、700℃で熱処理することに
よりPbZrTiO3 の上側表面からNbを拡散させ、
PbZrTiO3 の表面をn型導電性に半導体化し、チ
ャネル領域19を形成した。図13に示すように、チャ
ネル領域を挟む領域にAl(OC3 H7 )3 溶液を塗布
し、700℃で熱処理することによりAlを拡散させて
p型導電性に半導体化し、ソース/ドレイン領域20を
形成した。Then, on the surface of the PbZrTiO 3 thin film, Nb (OC
2 H 5 ) 5 solution is applied and heat-treated at 700 ° C. to diffuse Nb from the upper surface of PbZrTiO 3 ,
The surface of PbZrTiO 3 was made semiconductive to n-type conductivity to form a channel region 19. As shown in FIG. 13, Al (OC 3 H 7 ) 3 solution is applied to the region sandwiching the channel region and heat-treated at 700 ° C. to diffuse Al to be a p-type conductive semiconductor, and the source / drain region is formed. 20 was formed.
【0038】続いて、図14のように、PbZrTiO
3 の不要部分をエッチング除去した後、ソース/ドレイ
ン領域上にTiN電極16を形成した。続いて、図15
のように基板表面にプラズマSiNx 17を形成して素
子を保護した。最後に、図16のように保護膜にコンタ
クトホールを形成して、Al電極をスパッタして素子間
のコンタクト18をとり他の集積回路素子と接続した。Then, as shown in FIG. 14, PbZrTiO 3
After removing unnecessary portions of 3 by etching, TiN electrodes 16 were formed on the source / drain regions. Then, in FIG.
As described above, plasma SiNx 17 was formed on the substrate surface to protect the device. Finally, as shown in FIG. 16, a contact hole was formed in the protective film, an Al electrode was sputtered to form a contact 18 between the elements, and the element was connected to another integrated circuit element.
【0039】さて、このように作成した素子の1つにつ
いて、ゲート電圧(ゲート電極に印加する電圧Vg )に
よるドレイン電流(ソース−ドレイン電極間に1Vの電
圧を印加したときに流れる電流Ids)の変化を測定し
た。その結果、この薄膜トランジスタは図19に示すよ
うにヒステリシスを持ち、メモリー特性を有することが
わかった。Vg =0Vで、ドレイン電流が流れるオン状
態と、ほとんど流れないオフ状態の2つの状態を持つ。
オン状態とオフ状態の識別は容易にできる。次にVg =
0Vの時のオン状態とオフ状態のそれぞれについてドレ
イン電流の経時変化を調べた。オフ状態に関しては変化
が見られなかった。オン状態に関してはドレインコンダ
クタンスの対数と時間の対数は直線関係を示し、実験値
を外挿すると、10年後のドレインコンダクタンスは初
期値の30%になった。この素子は10年以上の記憶保
持が可能で、高い安定性を持つことがわかった。Now, in one of the devices thus produced, the drain current (current I ds flowing when a voltage of 1 V is applied between the source and drain electrodes) by the gate voltage (voltage V g applied to the gate electrode). ) Was measured. As a result, it was found that this thin film transistor had hysteresis as shown in FIG. 19 and had memory characteristics. At V g = 0V, it has two states, an on state in which a drain current flows and an off state in which almost no drain current flows.
The on state and the off state can be easily distinguished. Then V g =
The change with time of the drain current was examined for each of the ON state and the OFF state at 0V. There was no change in the off state. Regarding the on-state, the logarithm of drain conductance and the logarithm of time show a linear relationship, and extrapolation of experimental values revealed that the drain conductance after 10 years was 30% of the initial value. It has been found that this device can retain memory for more than 10 years and has high stability.
【0040】[0040]
【発明の効果】以上詳述したとおり本発明によれば、強
誘電体素子と半導体素子の集積化が容易で、非破壊読み
出しが可能であり、安定に動作する信頼性の高いデバイ
スを提供できる。As described in detail above, according to the present invention, it is possible to provide a device in which a ferroelectric element and a semiconductor element can be easily integrated, non-destructive reading is possible, and which operates stably and has high reliability. .
【図1】実施例1に記載の半導体装置の断面図FIG. 1 is a cross-sectional view of a semiconductor device described in Example 1.
【図2】実施例2に記載の半導体装置の断面図FIG. 2 is a sectional view of a semiconductor device described in a second embodiment.
【図3】実施例1に記載の半導体装置の製造工程FIG. 3 is a manufacturing process of the semiconductor device according to the first embodiment.
【図4】実施例1に記載の半導体装置の製造工程FIG. 4 is a manufacturing process of the semiconductor device according to the first embodiment.
【図5】実施例1に記載の半導体装置の製造工程FIG. 5 is a manufacturing process of the semiconductor device according to the first embodiment.
【図6】実施例1に記載の半導体装置の製造工程FIG. 6 is a manufacturing process of the semiconductor device according to the first embodiment.
【図7】実施例1に記載の半導体装置の製造工程FIG. 7 is a manufacturing process of the semiconductor device according to the first embodiment.
【図8】実施例1に記載の半導体装置の製造工程FIG. 8 is a manufacturing process of the semiconductor device according to the first embodiment.
【図9】実施例1に記載の半導体装置の製造工程FIG. 9 is a process of manufacturing the semiconductor device according to the first embodiment.
【図10】実施例1に記載の半導体装置の製造工程FIG. 10 is a manufacturing process of the semiconductor device according to the first embodiment.
【図11】実施例2に記載の半導体装置の製造工程FIG. 11 is a manufacturing process of the semiconductor device according to the second embodiment.
【図12】実施例2に記載の半導体装置の製造工程FIG. 12 is a process for manufacturing the semiconductor device according to the second embodiment.
【図13】実施例2に記載の半導体装置の製造工程FIG. 13 is a manufacturing process of the semiconductor device according to the second embodiment.
【図14】実施例2に記載の半導体装置の製造工程FIG. 14 is a process for manufacturing the semiconductor device according to the second embodiment.
【図15】実施例2に記載の半導体装置の製造工程FIG. 15 is a manufacturing process of the semiconductor device according to the second embodiment.
【図16】実施例2に記載の半導体装置の製造工程16 is a manufacturing process of the semiconductor device described in Example 2; FIG.
【図17】素子Aのソース−ドレイン電極間の抵抗値の
経時変化FIG. 17 shows changes with time in the resistance value between the source and drain electrodes of device A.
【図18】素子Bのソース−ドレイン電極間の抵抗値の
経時変化FIG. 18 shows changes with time in the resistance value between the source and drain electrodes of device B.
【図19】ゲート電圧−ドレイン電流特性FIG. 19: Gate voltage-drain current characteristic
11 半導体基板 12 絶縁膜 13 ゲート電極 14 強誘電体薄膜 15 半導性領域 16 ソース/ドレイン電極 17 保護膜 18 コンタクト 19 チャネル領域 20 ソース/ドレイン領域 21 Ti 22 Pt 11 semiconductor substrate 12 insulating film 13 gate electrode 14 ferroelectric thin film 15 semiconducting region 16 source / drain electrode 17 protective film 18 contact 19 channel region 20 source / drain region 21 Ti 22 Pt
Claims (4)
1表面に接して設けられるゲート電極と、前記強誘電体
薄膜の第2表面に接して間隔をおいて設けられる2つの
ソース/ドレイン電極とを備えた半導体素子において、
前記強誘電体薄膜の第2表面が半導体化されていること
を特徴とする半導体装置。1. A ferroelectric thin film, a gate electrode provided in contact with the first surface of the ferroelectric thin film, and two sources provided in contact with the second surface of the ferroelectric thin film and spaced apart from each other. In a semiconductor device having a / drain electrode,
A semiconductor device, wherein the second surface of the ferroelectric thin film is made into a semiconductor.
1表面に接して設けられるゲート電極と、前記強誘電体
薄膜の第2表面に接して間隔をおいて設けられる2つの
ソース/ドレイン電極とを備えた半導体素子において、
前記強誘電体薄膜の第2表面のソース/ドレイン電極と
接しているソース/ドレイン領域がp型あるいはn型導
電型に半導体化され、前記ソース/ドレイン領域に挟ま
れた強誘電体薄膜の第2表面は、前記ソース/ドレイン
領域と異なる導電型に半導体化されたチャネル領域であ
ることを特徴とする半導体装置。2. A ferroelectric thin film, a gate electrode provided in contact with the first surface of the ferroelectric thin film, and two sources provided in contact with the second surface of the ferroelectric thin film and spaced apart from each other. In a semiconductor device having a / drain electrode,
The source / drain regions of the second surface of the ferroelectric thin film, which are in contact with the source / drain electrodes, are made into semiconductors of p-type or n-type conductivity and are sandwiched between the source / drain regions. 2. The semiconductor device, wherein the second surface is a channel region that is made into a semiconductor of a conductivity type different from that of the source / drain regions.
にゲート電極を形成する工程と、前記ゲート電極上に強
誘電体薄膜を形成する工程と、前記強誘電体薄膜の表面
を半導体化し強誘電体薄膜の一部に半導性領域を形成す
る工程と、前記半導性領域上に間隔をおいて2つのソー
ス/ドレイン電極を形成する工程を有することを特徴と
する半導体装置の製造方法。3. A step of forming a gate electrode on a substrate or a film formed on the substrate, a step of forming a ferroelectric thin film on the gate electrode, and a step of converting the surface of the ferroelectric thin film into a semiconductor. Manufacturing a semiconductor device, comprising: forming a semiconducting region in a part of a ferroelectric thin film; and forming two source / drain electrodes on the semiconducting region at intervals. Method.
にゲート電極を形成する工程と、前記ゲート電極上に強
誘電体薄膜を形成する工程と、前記強誘電体薄膜の表面
の間隔をおいた2つの領域をp型あるいはn型導電型に
半導化してソース/ドレイン領域を形成する工程と、前
記強誘電体薄膜の表面の前記ソース/ドレイン領域に挟
まれた領域を前記ソース/ドレイン領域と異なる導電型
に半導化してチャネル領域を形成する工程と、前記ソー
ス/ドレイン領域上にそれぞれソース/ドレイン電極を
形成する工程を有することを特徴とする半導体装置の製
造方法。4. A step of forming a gate electrode on a substrate or a film formed on the substrate, a step of forming a ferroelectric thin film on the gate electrode, and a gap between surfaces of the ferroelectric thin film. Forming a source / drain region by semiconducting the two regions thus set to a p-type or n-type conductivity type; and a region sandwiched between the source / drain regions on the surface of the ferroelectric thin film as the source / drain region. A method for manufacturing a semiconductor device, comprising: a step of semiconducting to a conductivity type different from that of a drain region to form a channel region; and a step of forming source / drain electrodes on the source / drain regions, respectively.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7105591A JPH08306806A (en) | 1995-04-28 | 1995-04-28 | Semiconductor device and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7105591A JPH08306806A (en) | 1995-04-28 | 1995-04-28 | Semiconductor device and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08306806A true JPH08306806A (en) | 1996-11-22 |
Family
ID=14411749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7105591A Withdrawn JPH08306806A (en) | 1995-04-28 | 1995-04-28 | Semiconductor device and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08306806A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100275945B1 (en) * | 1997-12-30 | 2000-12-15 | 김영환 | Semiconductor memory cell and fabricating method thereof |
WO2006009218A1 (en) * | 2004-07-22 | 2006-01-26 | Nippon Telegraph And Telephone Corporation | Apparatus for obtaining double stable resistance values, method for manufacturing the same, metal oxide thin film and method for manufacturing the same |
JP2006121029A (en) * | 2004-09-27 | 2006-05-11 | Tokyo Institute Of Technology | Solid state electronic equipment |
-
1995
- 1995-04-28 JP JP7105591A patent/JPH08306806A/en not_active Withdrawn
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100275945B1 (en) * | 1997-12-30 | 2000-12-15 | 김영환 | Semiconductor memory cell and fabricating method thereof |
WO2006009218A1 (en) * | 2004-07-22 | 2006-01-26 | Nippon Telegraph And Telephone Corporation | Apparatus for obtaining double stable resistance values, method for manufacturing the same, metal oxide thin film and method for manufacturing the same |
KR100781737B1 (en) * | 2004-07-22 | 2007-12-03 | 니폰덴신뎅와 가부시키가이샤 | Bistable Resistance Value Acquisition Device, Manufacturing Method Thereof, Metal Oxide Thin Film, and Manufacturing Method Thereof |
JPWO2006009218A1 (en) * | 2004-07-22 | 2008-05-01 | 日本電信電話株式会社 | Bistable resistance value acquisition device and manufacturing method thereof, metal oxide thin film and manufacturing method thereof |
KR100892967B1 (en) * | 2004-07-22 | 2009-04-10 | 니폰덴신뎅와 가부시키가이샤 | Bistable Resistance Value Acquisition Device, Manufacturing Method Thereof, Metal Oxide Thin Film, and Manufacturing Method Thereof |
US7696502B2 (en) | 2004-07-22 | 2010-04-13 | Nippon Telegraph And Telephone Corporation | Bistable resistance value acquisition device, manufacturing method thereof, metal oxide thin film, and manufacturing method thereof |
JP4559425B2 (en) * | 2004-07-22 | 2010-10-06 | 日本電信電話株式会社 | 2 Stable resistance value acquisition device and method for manufacturing the same |
US7875872B2 (en) | 2004-07-22 | 2011-01-25 | Nippon Telegraph And Telephone Corporation | Bistable resistance value acquisition device, manufacturing method thereof, metal oxide thin film, and manufacturing method thereof |
US8088644B2 (en) | 2004-07-22 | 2012-01-03 | Nippon Telegraph And Telephone Corporation | Bistable resistance value acquisition device, manufacturing method thereof, metal oxide thin film, and manufacturing method thereof |
JP2006121029A (en) * | 2004-09-27 | 2006-05-11 | Tokyo Institute Of Technology | Solid state electronic equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8026543B2 (en) | Semiconductor devices having phase change memory cells, electronic systems employing the same and methods of fabricating the same | |
TWI244701B (en) | Method of fabricating 1T1R resistive memory array | |
KR100281017B1 (en) | Semiconductor Memory and Manufacturing Method | |
JP3833841B2 (en) | Semiconductor device and manufacturing method thereof | |
WO1992007382A1 (en) | Structure of semiconductor device and manufacturing method thereof | |
US5721700A (en) | Non-volatile semiconductor memory device in which applied voltage to ferroelectric capacitor is adjusted | |
JPH0439232B2 (en) | ||
JP2000294796A (en) | Manufacture of field effect transistor having buried mott material oxide channel | |
WO2008075414A1 (en) | Process for producing resistance change device | |
JP3776318B2 (en) | Ferroelectric transistor and manufacturing method thereof | |
JPH04230075A (en) | Semiconductor device | |
US20040197937A1 (en) | Method of manufacturing ferroelectric substance thin film and ferroelectric memory using the ferroelectric substance thin film | |
JPH08306806A (en) | Semiconductor device and its manufacture | |
JP4017209B2 (en) | Semiconductor memory device and method for forming the same | |
KR100718525B1 (en) | Ferroelectric capacitor and its manufacturing method | |
JP2000058684A (en) | Field-effect semiconductor memory and manufacture thereof | |
JP3039425B2 (en) | Capacitive element and method of manufacturing the same | |
JP2002329843A (en) | Ferroelectric transistor type nonvolatile storage element and its manufacturing method | |
US20250014945A1 (en) | Semiconductor device including a metal oxide interface layer and methods for forming the same | |
JP2001244423A (en) | Ferroelectric memory device and method of manufacturing the same | |
JP4459335B2 (en) | Ferroelectric transistor type nonvolatile memory element and manufacturing method thereof | |
JP2008166486A (en) | Semiconductor memory element | |
JPH02288361A (en) | semiconductor equipment | |
JPH11177038A (en) | Mfmis ferroelectric storage element and its manufacture | |
JPH01255271A (en) | Semiconductor integrated circuit device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020702 |