JP2002329843A - Ferroelectric transistor type nonvolatile memory element and method of manufacturing the same - Google Patents
Ferroelectric transistor type nonvolatile memory element and method of manufacturing the sameInfo
- Publication number
- JP2002329843A JP2002329843A JP2001129903A JP2001129903A JP2002329843A JP 2002329843 A JP2002329843 A JP 2002329843A JP 2001129903 A JP2001129903 A JP 2001129903A JP 2001129903 A JP2001129903 A JP 2001129903A JP 2002329843 A JP2002329843 A JP 2002329843A
- Authority
- JP
- Japan
- Prior art keywords
- ferroelectric
- memory element
- nonvolatile memory
- transistor
- type nonvolatile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000000034 method Methods 0.000 claims abstract description 33
- 239000003990 capacitor Substances 0.000 claims abstract description 31
- 230000010287 polarization Effects 0.000 claims abstract description 18
- 230000005669 field effect Effects 0.000 claims abstract description 17
- 239000000126 substance Substances 0.000 claims abstract description 14
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 229910052751 metal Inorganic materials 0.000 claims abstract description 12
- 239000004065 semiconductor Substances 0.000 claims abstract description 10
- 239000002184 metal Substances 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims description 21
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 7
- 238000005229 chemical vapour deposition Methods 0.000 claims description 7
- 239000013078 crystal Substances 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229910052741 iridium Inorganic materials 0.000 claims description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 2
- 238000005498 polishing Methods 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims 1
- 239000010936 titanium Substances 0.000 claims 1
- 230000014759 maintenance of location Effects 0.000 abstract description 8
- 238000003860 storage Methods 0.000 abstract description 4
- 239000010408 film Substances 0.000 description 50
- 239000010410 layer Substances 0.000 description 12
- 239000011229 interlayer Substances 0.000 description 8
- 239000010409 thin film Substances 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 238000000137 annealing Methods 0.000 description 6
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 6
- 229910052721 tungsten Inorganic materials 0.000 description 6
- 239000010937 tungsten Substances 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 230000005684 electric field Effects 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000013212 metal-organic material Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000001552 radio frequency sputter deposition Methods 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910000457 iridium oxide Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
Landscapes
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Abstract
(57)【要約】
【課題】 強誘電体のプロセスダメージを避けて、記憶
保持特性の良い、高品質な記憶素子とする。
【解決手段】 半導体基板1に形成した電界効果型トラ
ンジスタのゲート電極6と電気的に接続される強誘電体
11の残留分極を利用して、電界効果型トランジスタの
オン、オフ動作をさせる強誘電体トランジスタ型不揮発
性記憶素子において、電界効果型トランジスタのソース
領域3、ドレイン領域4と接続される1層又は2層以上
の金属配線8を絶縁層を介して形成した後に、絶縁層を
介して、強誘電体11を電極を用いて挟んだ構造を持つ
キャパシタを設けた。
(57) [Summary] [PROBLEMS] To provide a high-quality storage element having good storage retention characteristics while avoiding process damage to a ferroelectric substance. SOLUTION: A ferroelectric for turning on and off a field effect transistor utilizing remanent polarization of a ferroelectric substance 11 electrically connected to a gate electrode 6 of a field effect transistor formed on a semiconductor substrate 1. In the body transistor type nonvolatile memory element, one or more metal wirings 8 connected to the source region 3 and the drain region 4 of the field-effect transistor are formed via an insulating layer, and then, via the insulating layer. A capacitor having a structure in which the ferroelectric substance 11 is sandwiched between electrodes is provided.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、強誘電体トランジ
スタ型不揮発性記憶素子とその製造方法に関し、特に、
強誘電体をもちいた不揮発性メモリに係るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferroelectric transistor type nonvolatile memory element and a method of manufacturing the same,
The present invention relates to a nonvolatile memory using a ferroelectric substance.
【0002】[0002]
【従来の技術】最近開発が進められているFeRAM
(Ferroelectric Random Access Memory)の多くはDR
AMのキャパシタを強誘電体キャパシタに置き換えた構
成をしており(特開平2−113496号公報)、その
動作は強誘電体キャパシタの分極が反転するときと反転
しないときの電荷量の差を検知することによってなされ
る。このため、情報を読み出す際に保持していた情報が
破壊される破壊読出しとなる。また、強誘電体キャパシ
タから排出される電荷量を比較するために、参照セルを
各セルに1対ずつ配置する必要があるために、1つのメ
モリセルを構成するのに2トランジスタ2キャパシタが
必要となる。そのため、メモリセル面積が同加工精度の
DRAMに比較して2倍以上大きくなる問題がある。2. Description of the Related Art Recently developed FeRAM
(Ferroelectric Random Access Memory) is mostly DR
The AM capacitor is replaced with a ferroelectric capacitor (Japanese Patent Application Laid-Open No. 2-113496), and the operation detects a difference in charge amount between when the polarization of the ferroelectric capacitor is inverted and when it is not inverted. It is done by doing. For this reason, destructive reading is performed in which information held when information is read is destroyed. Also, in order to compare the amount of electric charge discharged from the ferroelectric capacitor, it is necessary to arrange a pair of reference cells in each cell. Therefore, two transistors and two capacitors are required to constitute one memory cell. Becomes Therefore, there is a problem that the memory cell area is twice or more as large as that of a DRAM having the same processing accuracy.
【0003】一方、強誘電体を電界効果型トランジスタ
(FET;Field Effect Transistor)のゲート部に配置す
る強誘電体トランジスタは、単一のトランジスタでメモ
リセルを構成することが可能であるためセル面積を小さ
くすることができるばかりでなく、強誘電体の分極によ
りFETのオン、オフを維持するため、読み出し動作に
より情報が破壊されない、非破壊読出しが可能である。On the other hand, a ferroelectric transistor in which a ferroelectric substance is disposed at a gate portion of a field effect transistor (FET) has a cell area because a single transistor can constitute a memory cell. Not only can be reduced, but also because the FET is kept on and off by the polarization of the ferroelectric, non-destructive reading is possible in which information is not destroyed by the reading operation.
【0004】[0004]
【発明が解決しようとする課題】これらFeRAM、強
誘電体トランジスタに共通することは、強誘電体がLS
Iの製造工程においてプロセスダメージを受け、最終工
程まで本来の強誘電特性を維持できない問題点があるこ
とである。このため、従来の技術においては、強誘電体
を形成した後にもたびたびアニールを行ない、強誘電体
の機能を回復させる、プロセスダメージを受けにくい強
誘電材料や電極材料を選択するなどの対策を行なってき
た。しかしながら、これらの対策は十分な成果を上げて
おらず、このためにデバイスの信頼性保証が困難である
などの大きな課題を残したままとなっている。What is common to these FeRAMs and ferroelectric transistors is that the ferroelectric is LS
There is a problem in that the original ferroelectric characteristics cannot be maintained until the final step due to process damage in the manufacturing process of I. For this reason, in the conventional technology, annealing is frequently performed even after the ferroelectric material is formed to take measures such as recovering the function of the ferroelectric material and selecting a ferroelectric material or an electrode material that is not easily damaged by the process. Have been. However, these countermeasures have not achieved sufficient results, and therefore, have a great problem that it is difficult to guarantee the reliability of the device.
【0005】上記のようにFeRAM、強誘電体トラン
ジスタにおいては、強誘電体がLSI製造工程における
プロセスダメージを受け、強誘電特性の維持が困難であ
るなどの課題を有している。As described above, the FeRAM and the ferroelectric transistor have a problem that the ferroelectric undergoes process damage in an LSI manufacturing process, and it is difficult to maintain ferroelectric characteristics.
【0006】本発明は、このような従来の技術が有する
未解決の課題を解決するべく行われたものであり、強誘
電体がLSI製造工程において受けるプロセスダメージ
をより抑えることによって、信頼性の高い、記憶保持特
性の優れた強誘電体トランジスタ型不揮発性記憶素子と
その製造方法を提供するものである。SUMMARY OF THE INVENTION The present invention has been made to solve such an unresolved problem of the conventional technology, and has been proposed to reduce the process damage to the ferroelectric material in the LSI manufacturing process, thereby improving the reliability. An object of the present invention is to provide a ferroelectric transistor-type nonvolatile memory element having high memory retention characteristics and an excellent method of manufacturing the same.
【0007】[0007]
【課題を解決するための手段および作用】本発明の強誘
電体トランジスタ型不揮発性記憶素子は、半導体基板に
形成した電界効果型トランジスタのゲート電極と電気的
に接続される強誘電体の残留分極を利用して、該電界効
果型トランジスタのオン、オフ動作をさせる強誘電体ト
ランジスタ型不揮発性記憶素子において、前記電界効果
型トランジスタのソース領域、ドレイン領域と接続され
る1層又は2層以上の金属配線を絶縁層を介して形成し
た後に、絶縁層を介して、前記強誘電体を電極を用いて
挟んだ構造を持つキャパシタを設けたことを特徴とする
ものである。SUMMARY OF THE INVENTION A ferroelectric transistor type nonvolatile memory element according to the present invention provides a remanent polarization of a ferroelectric which is electrically connected to a gate electrode of a field effect transistor formed on a semiconductor substrate. In the ferroelectric transistor-type nonvolatile memory element for turning on and off the field-effect transistor, one or more layers connected to a source region and a drain region of the field-effect transistor After the metal wiring is formed via the insulating layer, a capacitor having a structure in which the ferroelectric substance is sandwiched between the electrodes using the insulating layer is provided.
【0008】また本発明の強誘電体トランジスタ型不揮
発性記憶素子は、半導体基板に形成した電界効果型トラ
ンジスタのゲート電極と電気的に接続される強誘電体の
残留分極を利用して、該電界効果型トランジスタのオ
ン、オフ動作させる強誘電体トランジスタ型不揮発性記
憶素子において、前記強誘電体を電極を用いて挟んだ構
造を持つキャパシタを、前記ゲート電極と接続される、
2層以上のコンタクトプラグ上に設けたことを特徴とす
るものである。Further, the nonvolatile memory element of the ferroelectric transistor type according to the present invention utilizes the remanent polarization of a ferroelectric which is electrically connected to a gate electrode of a field effect transistor formed on a semiconductor substrate. In a ferroelectric transistor-type nonvolatile memory element that performs on / off operation of an effect transistor, a capacitor having a structure in which the ferroelectric is sandwiched between electrodes is connected to the gate electrode,
It is characterized by being provided on two or more contact plugs.
【0009】本発明の概要を示す図1をもとにその作用
について説明する。半導体基板1に形成した電界効果型
トランジスタは、例えばゲート絶縁膜5上に導電体から
なるゲート電極6を形成した積層構造を持ち、このゲー
ト電極6に電圧を印加してソース3、ドレイン4間に流
れる電流を制御し、オン、オフの動作をさせる。本発明
は、このゲート電極6に強誘電体キャパシタ(容量)を
接続し、強誘電体の残留分極を利用して不揮発性メモリ
とするものである。強誘電体キャパシタは、下部電極1
0、強誘電体11、上部電極12からなり、配線間また
は配線−基板間を結合するプラグ7と配線8層によっ
て、ゲート電極6と結合される。配線8、プラグ7等
は、層間絶縁膜9にて分離される。13は金属配線層、
2はフィールド酸化膜である。The operation of the present invention will be described with reference to FIG. The field-effect transistor formed on the semiconductor substrate 1 has, for example, a laminated structure in which a gate electrode 6 made of a conductor is formed on a gate insulating film 5. Control the current flowing through the switch to turn on and off. In the present invention, a ferroelectric capacitor (capacitance) is connected to the gate electrode 6, and a non-volatile memory is formed by utilizing the residual polarization of the ferroelectric. The ferroelectric capacitor has a lower electrode 1
0, a ferroelectric material 11, and an upper electrode 12, and are connected to the gate electrode 6 by a plug 7 and a wiring 8 layer for connecting between wirings or between a wiring and a substrate. The wiring 8, the plug 7, and the like are separated by an interlayer insulating film 9. 13 is a metal wiring layer,
2 is a field oxide film.
【0010】強誘電体は誘電体(絶縁体)の一種であ
り、外部から印加される電界により内部分極が発生する
が、外部電界を取り去っても内部分極が残留する。これ
を残留分極と称し、この残留分極を利用して、外部電界
を取り去っても電界効果型トランジスタのオン、オフ状
態を維持できる、いわゆる不揮発性メモリとして機能さ
せることができる。A ferroelectric is a kind of dielectric (insulator), and internal polarization is generated by an electric field applied from the outside, but the internal polarization remains even when the external electric field is removed. This is called remanent polarization, and the remnant polarization can be used to function as a so-called non-volatile memory that can maintain the on / off state of the field effect transistor even when an external electric field is removed.
【0011】本発明の構造を採用することにより、配線
構造を形成した後に強誘電体キャパシタを形成できるた
め、強誘電体のプロセスダメージをより抑えることがで
きる。従来、強誘電体キャパシタを使用したメモリデバ
イスでは、強誘電体キャパシタを形成した後に層間絶縁
膜形成、配線・プラグ形成、加工を行なうため、強誘電
体がダメージを受け、本来強誘電体が持っている残留分
極が3分の1程度になったり、疲労耐性が劣化、記憶保
持特性が劣化するなどの影響が出ていた。By employing the structure of the present invention, the ferroelectric capacitor can be formed after the wiring structure is formed, so that the process damage of the ferroelectric can be further suppressed. Conventionally, in a memory device using a ferroelectric capacitor, after forming the ferroelectric capacitor, forming an interlayer insulating film, forming wiring and plugs, and processing, the ferroelectric material is damaged, and the ferroelectric material originally has The remaining remanent polarization is reduced to about one third, the fatigue resistance is deteriorated, and the memory retention characteristics are deteriorated.
【0012】一方、従来の強誘電体キャパシタを使用し
たメモリデバイスでは、電界効果型トランジスタを形成
した後、配線工程を経ずに強誘電体キャパシタを形成す
るため、比較的高温での熱処理が可能であったが、本発
明の構造の場合、配線がダメージを受けずにすむ、比較
的低い温度での熱処理を行なうことが求められる。On the other hand, in a memory device using a conventional ferroelectric capacitor, since a ferroelectric capacitor is formed without a wiring step after forming a field-effect transistor, heat treatment at a relatively high temperature is possible. However, in the case of the structure of the present invention, it is required to perform a heat treatment at a relatively low temperature so that the wiring is not damaged.
【0013】本発明におけるゲート絶縁膜5は、シリコ
ン系酸化膜のほかに、誘電率を大きく取り、強誘電体に
より大きな電圧をかけることができる、シリコン窒化物
や酸化タンタルなどを主体とする絶縁性薄膜を用いるこ
とができる。また、強誘電体キャパシタの下部電極10
および上部電極12として、好ましくは白金、イリジウ
ム、酸化イリジウム、またはこれらの混合物、またはこ
れらの積層構造体を用いる。また、強誘電体薄膜11と
しては、ABO3型、A2B2O7型の構造を持つ強誘電
体、または層状ペロブスカイト型構造をもつ強誘電体を
用いることができる。ここで、A、Bは金属元素を表わ
す。A、Bに相当する金属元素は、例えば、それぞれ「S
r、Bi」「Nb、Ta」が挙げられる。層状ペロブスカイト
型構造の材料は、ペロブスカイト格子がBi-Oなどの層状
構造の間に挟まれたもののことで、具体的にはSrBi
2Ta2O9やこれにNbを添加したものなどがあげられ
る。特に、Sr2Ta2O7、あるいはSr2(NbTa)
2O7、あるいはSrBi2Ta2O 9のように比較的比誘
電率が低い強誘電体材料を用いることがより好ましい。
その理由としては、ゲート部分の構造が、強誘電体薄膜
11とゲート絶縁膜5とが直列に接続されたキャパシタ
と等価な回路となるため、電圧を印加すると各薄膜に電
圧が容量に反比例してかかる。このため、強誘電体の比
誘電率が小さく、容量が小さくなるほうが印加電圧が高
くなり、分極を十分飽和させることができ、記憶保持に
有利となるからである。In the present invention, the gate insulating film 5 is made of silicon.
In addition to oxide-based oxide films, a large dielectric constant
Silicon nitride that can apply higher voltage
Use an insulating thin film mainly composed of
Can be. Further, the lower electrode 10 of the ferroelectric capacitor
And the upper electrode 12 is preferably platinum or iridium.
Or iridium oxide, or a mixture thereof, or
These laminated structures are used. Also, the ferroelectric thin film 11
ABOThreeType, ATwoBTwoO7Ferroelectric with mold structure
Body or ferroelectric with a layered perovskite structure
Can be used. Here, A and B represent metal elements.
You. The metal elements corresponding to A and B are, for example, `` S
r, Bi "," Nb, Ta ". Layered perovskite
The perovskite lattice has a layered structure such as Bi-O
It is sandwiched between structures, specifically SrBi
TwoTaTwoO9And those with Nb added to it
You. In particular, SrTwoTaTwoO7Or SrTwo(NbTa)
TwoO7Or SrBiTwoTaTwoO 9Relatively inviting like
It is more preferable to use a ferroelectric material having a low electric conductivity.
The reason is that the structure of the gate part is a ferroelectric thin film
11 and a capacitor in which the gate insulating film 5 is connected in series
When a voltage is applied, the voltage is applied to each thin film.
Pressure is applied in inverse proportion to volume. Therefore, the ratio of ferroelectric
The smaller the dielectric constant and the smaller the capacitance, the higher the applied voltage
And can sufficiently saturate the polarization,
This is advantageous.
【0014】この点について、より具体的に説明する。
前記電界効果型トランジスタがもつゲート絶縁膜6は、
設計ルールにもよるが一般に5前後の比誘電率と10nm以
下の膜厚を持つ。これに対し、前記強誘電体薄膜は、少
なくとも100nm程度の膜厚を持つために、比誘電率は50
程度以下となることが望ましい。この理由は、前記ゲー
ト電極8に印加した電圧の少なくとも半分程度の電圧が
前記強誘電体にかかる必要があり、このためには前記強
誘電体キャパシタの容量が、前記ゲート絶縁膜が持つ容
量と同等以下になることが望ましいためである。This will be described more specifically.
The gate insulating film 6 of the field effect transistor has
Although it depends on design rules, it generally has a relative dielectric constant of about 5 and a film thickness of 10 nm or less. On the other hand, since the ferroelectric thin film has a thickness of at least about 100 nm, the relative dielectric constant is 50
It is desirable that it be less than about. The reason is that at least about half of the voltage applied to the gate electrode 8 needs to be applied to the ferroelectric, and for this, the capacitance of the ferroelectric capacitor is equal to the capacitance of the gate insulating film. This is because it is desirable to be equal or less.
【0015】さらに、ゲート面積より、強誘電キャパシ
タの面積を小さくすることにより、実効的な強誘電体キ
ャパシタの容量を小さくすることができ、強誘電体キャ
パシタにより多くの電圧をかけることが可能になる。Furthermore, by making the area of the ferroelectric capacitor smaller than the gate area, the effective capacity of the ferroelectric capacitor can be reduced, and more voltage can be applied to the ferroelectric capacitor. Become.
【0016】また、強誘電体の残留分極量が大きすぎる
と、前記ゲート絶縁膜5上面電位が大きく振れてしま
い、記憶保持特性が不安定になる傾向がある。これは、
前記ゲート絶縁膜5下の半導体部分が大きくても数μC/
cm2程度の電荷を発生できないことによる。したがっ
て、前記強誘電体膜11が10μC/cm2以下の残留分極
を持つことが好ましい。If the amount of remanent polarization of the ferroelectric is too large, the potential on the upper surface of the gate insulating film 5 fluctuates greatly, and the memory retention characteristics tend to be unstable. this is,
Even if the semiconductor portion under the gate insulating film 5 is large,
This is due to the inability to generate about cm2 of charge. Therefore, it is preferable that the ferroelectric film 11 has a residual polarization of 10 μC / cm 2 or less.
【0017】前述の強誘電体薄膜は、セラミックターゲ
ットを用いたRFスパッタリング法や、金属有機物からな
る薬液をウエハ上に塗布した上で焼結するスピンオン
法、金属有機物からなる原料を気化してウエハ上に運び
膜形成する化学気相成長法などを用いて得ることができ
る。特に化学気相成長法は段差被覆性に優れるため、下
地絶縁膜表面に凹凸がある場合有利である。下地絶縁膜
表面を化学機械研磨法(CMP法)で平坦化した場合、前
記RFスパッタリング法や、スピンオン法も有用になる。The above-mentioned ferroelectric thin film can be formed by an RF sputtering method using a ceramic target, a spin-on method in which a chemical solution composed of a metal organic substance is applied onto a wafer and then sintered, or a raw material composed of a metal organic substance is vaporized into a wafer. It can be obtained by using a chemical vapor deposition method or the like in which a film is transferred to form a film. In particular, since the chemical vapor deposition method has excellent step coverage, it is advantageous when the surface of the base insulating film has irregularities. When the surface of the base insulating film is flattened by a chemical mechanical polishing method (CMP method), the RF sputtering method and the spin-on method are also useful.
【0018】以上の説明のように、本発明によれば、従
来の強誘電体メモリ素子では達成困難な課題を容易な構
造、駆動方法によって実現することができる。As described above, according to the present invention, it is possible to achieve a problem that is difficult to achieve with a conventional ferroelectric memory element by using an easy structure and driving method.
【0019】[0019]
【実施例】以下、本発明の実施例を図面に基づいて説明
する。Embodiments of the present invention will be described below with reference to the drawings.
【0020】(実施例1)図2に示すような、本実施例
に係わる強誘電体トランジスタ(サンプルA)と、比較
例として図3に示すような強誘電体トランジスタ(サン
プルB)を試作した。双方の強誘電体トランジスタは、
p型シリコン(100)単結晶基板14を用い、フィー
ルド酸化膜15を熱酸化法にて成膜し、フォトリソグラ
フィー、エッチングによりトランジスタを作製するべき
活性化領域を開口した。次に、ゲート絶縁膜18を熱酸
化法にて膜厚12nm成膜し、ゲート電極19として多
結晶シリコン膜を形成、エッチング加工した後、このゲ
ート部分をマスクとして、イオン注入法によりリンをイ
オン注入し、活性化アニールしてソース16、ドレイン
17を形成した。Example 1 A ferroelectric transistor (sample A) according to the present example as shown in FIG. 2 and a ferroelectric transistor (sample B) as shown in FIG. 3 as a comparative example were prototyped. . Both ferroelectric transistors
Using a p-type silicon (100) single crystal substrate 14, a field oxide film 15 was formed by a thermal oxidation method, and an active region where a transistor was to be formed was opened by photolithography and etching. Next, a gate insulating film 18 is formed to a thickness of 12 nm by a thermal oxidation method, a polycrystalline silicon film is formed as a gate electrode 19, and etching is performed. Then, phosphorus is ion-implanted by ion implantation using the gate portion as a mask. Implantation and activation annealing were performed to form a source 16 and a drain 17.
【0021】サンプルAの場合、タングステンプラグ2
0、アルミニウム配線層21を2段形成する。この際、
ゲート電極19上部への接続は、プラグを介して独立に
チップ表面まで引き上げるようにする。次に、下部電極
23として、Ti、Pt積層膜をスパッタリング法にて
成膜し、強誘電体薄膜24としてSrBi2Ta2O9膜
を金属有機物を塗布、焼成する方法にて成膜した。焼成
温度は約430℃で、減圧酸素雰囲気中で赤外線加熱す
る方法で焼成した。上部電極25として、Pt膜をスパ
ッタリング法にて成膜した。これを、上部電極25、強
誘電体膜24、下部電極23の順でドライエッチング
し、キャパシタ構造を作製した。ここで約400℃で酸
素雰囲気中でダメージ回復アニールを行ない、層間絶縁
膜として酸化シリコン膜をCVD(Chemical Vapor Dep
osition)法にて成膜した。これにコンタクトホールを
ドライエッチング法にて開口し、強誘電体キャパシタの
上部電極25に接続するアルミニウム配線26を形成し
て完成となる。In the case of sample A, tungsten plug 2
0, the aluminum wiring layer 21 is formed in two stages. On this occasion,
The connection to the upper part of the gate electrode 19 is independently pulled up to the chip surface via a plug. Next, as the lower electrode 23, a Ti / Pt laminated film was formed by a sputtering method, and as the ferroelectric thin film 24, a SrBi 2 Ta 2 O 9 film was formed by applying a metal organic material and baking it. The sintering temperature was about 430 ° C., and sintering was performed in a reduced pressure oxygen atmosphere by infrared heating. As the upper electrode 25, a Pt film was formed by a sputtering method. This was dry-etched in the order of the upper electrode 25, the ferroelectric film 24, and the lower electrode 23 to produce a capacitor structure. Here, damage recovery annealing is performed at about 400 ° C. in an oxygen atmosphere, and a silicon oxide film is formed as an interlayer insulating film by CVD (Chemical Vapor Dep.
osition) method. Then, a contact hole is opened by a dry etching method, and an aluminum wiring 26 connected to the upper electrode 25 of the ferroelectric capacitor is formed.
【0022】サンプルBの場合、層間絶縁膜にコンタク
トホールを開口し、ゲート電極19上部に接続するタン
グステンプラグ20のみを形成する。次に、サンプルA
と同様に強誘電体キャパシタを形成する。ここで約40
0℃で酸素雰囲気中でダメージ回復アニールを行ない、
層間絶縁膜として酸化シリコン膜をCVD法にて成膜し
た。次に、タングステンプラグ20、アルミニウム配線
21を2段形成し、完成となる。In the case of sample B, a contact hole is opened in the interlayer insulating film, and only a tungsten plug 20 connected to the upper part of the gate electrode 19 is formed. Next, sample A
A ferroelectric capacitor is formed in the same manner as described above. About 40 here
Perform damage recovery annealing in an oxygen atmosphere at 0 ° C.
A silicon oxide film was formed as an interlayer insulating film by a CVD method. Next, the tungsten plug 20 and the aluminum wiring 21 are formed in two steps to complete the process.
【0023】サンプルA、Bともに、強誘電体膜厚は2
00nmとし、強誘電体キャパシタの面積は、ゲート電
極の面積の5分の1となるようにした。In both samples A and B, the ferroelectric film thickness was 2
00 nm, and the area of the ferroelectric capacitor was set to be 1/5 of the area of the gate electrode.
【0024】次に、記憶保持特性を評価する。サンプル
A、およびBについて、上部電極26とシリコン単結晶
基板14間に電圧を印加し、強誘電体の分極を発生させ
て情報を書き込む。その後、ソース部を接地し、ドレイ
ン部に1Vの電圧を印加し、書込み電圧を印加してか
ら、ある時間保持した後のドレインに流れる電流値を観
察した。その結果を図4に示す。この結果から明らかな
ように、サンプルAの方がサンプルBに比べて、記憶保
持時間が長くなっていることが判る。これは、強誘電体
膜24がプロセスダメージを受けているかいないかによ
って起こった差違であると考えることができる。Next, the memory retention characteristics are evaluated. With respect to the samples A and B, a voltage is applied between the upper electrode 26 and the silicon single crystal substrate 14 to generate polarization of the ferroelectric and write information. Thereafter, the source portion was grounded, a voltage of 1 V was applied to the drain portion, a write voltage was applied, and a current value flowing through the drain after holding for a certain time was observed. The result is shown in FIG. As is clear from the result, it is understood that the storage time of the sample A is longer than that of the sample B. This can be considered to be a difference caused by whether or not the ferroelectric film 24 has undergone process damage.
【0025】(実施例2)図5に示すような、強誘電体
トランジスタを試作した。強誘電体トランジスタは、p
型シリコン(100)単結晶基板14を用い、フィール
ド酸化膜15を熱酸化法にて成膜し、フォトリソグラフ
ィー、エッチングによりトランジスタを作製するべき活
性化領域を開口した。次に、ゲート絶縁膜27を窒素イ
オン注入と熱酸化法にて膜厚12nm成膜し、SiON
膜とした。ゲート電極19として多結晶シリコンとタン
グステンの混晶膜を形成、エッチング加工した後、この
ゲート部分をマスクとして、イオン注入法によりリンを
イオン注入し、活性化アニールしてソース16、ドレイ
ン17を形成した。Example 2 A ferroelectric transistor as shown in FIG. 5 was prototyped. The ferroelectric transistor has p
A field oxide film 15 was formed by thermal oxidation using a type silicon (100) single crystal substrate 14, and an active region where a transistor was to be formed was opened by photolithography and etching. Next, a gate insulating film 27 is formed to a thickness of 12 nm by nitrogen ion implantation and thermal oxidation.
It was a membrane. After forming and etching a mixed crystal film of polycrystalline silicon and tungsten as the gate electrode 19, phosphorus is ion-implanted by ion implantation using the gate portion as a mask, and activation annealing is performed to form the source 16 and the drain 17. did.
【0026】次に、タングステンプラグ20、アルミニ
ウム配線層21を2段形成する。この際、ゲート電極1
9上部への接続は、プラグを介して独立にチップ表面ま
で引き上げるようにする。次に、下部電極23として、
Ti、Pt積層膜をスパッタリング法にて成膜し、強誘
電体薄膜28としてSr2(NbTa)2O7膜を金属有
機物を塗布、焼成する方法にて成膜した。焼成温度は約
450℃で、減圧酸素雰囲気中で赤外線加熱する方法で
焼成した。上部電極25として、Pt膜をスパッタリン
グ法にて成膜した。これを、上部電極25、強誘電体膜
28、下部電極23の順でドライエッチングし、キャパ
シタ構造を作製した。ここで約400℃で酸素雰囲気中
でダメージ回復アニールを行ない、層間絶縁膜として酸
化シリコン膜をCVD(Chemical Vapor Deposition)
法にて成膜した。これにコンタクトホールをドライエッ
チング法にて開口し、強誘電体キャパシタの上部電極2
5に接続するアルミニウム配線を形成して完成となる。Next, a two-stage tungsten plug 20 and an aluminum wiring layer 21 are formed. At this time, the gate electrode 1
The connection to the upper part 9 is independently pulled up to the chip surface via a plug. Next, as the lower electrode 23,
A Ti and Pt laminated film was formed by a sputtering method, and a Sr 2 (NbTa) 2 O 7 film as a ferroelectric thin film 28 was formed by a method of applying a metal organic material and baking it. The sintering temperature was about 450 ° C., and sintering was performed in a reduced pressure oxygen atmosphere by infrared heating. As the upper electrode 25, a Pt film was formed by a sputtering method. This was dry-etched in the order of the upper electrode 25, the ferroelectric film 28, and the lower electrode 23 to produce a capacitor structure. Here, damage recovery annealing is performed in an oxygen atmosphere at about 400 ° C., and a silicon oxide film is formed as an interlayer insulating film by CVD (Chemical Vapor Deposition).
The film was formed by the method. A contact hole is opened in this by a dry etching method, and the upper electrode 2 of the ferroelectric capacitor is formed.
5 is completed by forming an aluminum wiring to be connected.
【0027】次に、記憶保持特性を評価し、実施例1に
おけるサンプルAと同様の結果を得た。Next, the memory retention characteristics were evaluated, and the same result as that of Sample A in Example 1 was obtained.
【0028】[0028]
【発明の効果】本発明によれば、強誘電体のプロセスダ
メージを避けて、記憶保持特性の良い、高品質の強誘電
体トランジスタ型不揮発性メモリを提供することができ
る。According to the present invention, it is possible to provide a high-quality ferroelectric transistor-type nonvolatile memory having good storage retention characteristics while avoiding process damage to the ferroelectric material.
【図1】本発明における素子構造の一例を示す図であ
る。FIG. 1 is a diagram showing an example of an element structure according to the present invention.
【図2】実施例1におけるサンプルAの構造を示す図で
ある。FIG. 2 is a diagram showing a structure of a sample A in Example 1.
【図3】実施例1におけるサンプルBの構造を示す図で
ある。FIG. 3 is a diagram showing a structure of a sample B in Example 1.
【図4】実施例1における試作サンプルの記憶保持特性
の測定結果を示す図である。FIG. 4 is a diagram showing a measurement result of a memory retention characteristic of a prototype sample in Example 1.
【図5】実施例2におけるサンプルの構造を示す図であ
る。FIG. 5 is a diagram illustrating a structure of a sample according to a second embodiment.
1 半導体基板 2 フィールド絶縁膜 3 ソース領域 4 ドレイン領域 5 ゲート絶縁膜 6 ゲート電極 7 プラグ 8 金属配線層 9 層間絶縁膜 10 下部電極 11 強誘電体膜 12 上部電極 13 金属配線層 14 p型単結晶シリコン基板 15 フィールド酸化膜 16 ソース領域 17 ドレイン領域 18 ゲート絶縁膜(SiO2) 19 多結晶シリコンゲート電極 20 タングステンプラグ 21 アルミニウム配線層 22 シリコン酸化膜層間絶縁層 23 Pt/Ti下部電極 24 SrBi2Ta2O9強誘電体膜 25 Pt上部電極 26 アルミニウム配線層 27 SiONゲート絶縁膜 28 Sr2(NbTa)2O7強誘電体膜REFERENCE SIGNS LIST 1 semiconductor substrate 2 field insulating film 3 source region 4 drain region 5 gate insulating film 6 gate electrode 7 plug 8 metal wiring layer 9 interlayer insulating film 10 lower electrode 11 ferroelectric film 12 upper electrode 13 metal wiring layer 14 p-type single crystal Silicon substrate 15 Field oxide film 16 Source region 17 Drain region 18 Gate insulating film (SiO 2 ) 19 Polycrystalline silicon gate electrode 20 Tungsten plug 21 Aluminum wiring layer 22 Silicon oxide interlayer insulating layer 23 Pt / Ti lower electrode 24 SrBi 2 Ta 2 O 9 ferroelectric film 25 Pt upper electrode 26 Aluminum wiring layer 27 SiON gate insulating film 28 Sr 2 (NbTa) 2 O 7 ferroelectric film
Claims (11)
ジスタのゲート電極と電気的に接続される強誘電体の残
留分極を利用して、該電界効果型トランジスタのオン、
オフ動作をさせる強誘電体トランジスタ型不揮発性記憶
素子において、 前記電界効果型トランジスタのソース領域、ドレイン領
域と接続される1層又は2層以上の金属配線を絶縁層を
介して形成した後に、絶縁層を介して、前記強誘電体を
電極を用いて挟んだ構造を持つキャパシタを設けたこと
を特徴とする強誘電体トランジスタ型不揮発性記憶素
子。1. A method of manufacturing a semiconductor device, comprising the steps of: turning on a field effect transistor using a remanent polarization of a ferroelectric electrically connected to a gate electrode of the field effect transistor formed on a semiconductor substrate;
In a ferroelectric transistor-type nonvolatile memory element that performs an off operation, after forming one or more layers of metal wiring connected to a source region and a drain region of the field-effect transistor via an insulating layer, A ferroelectric transistor-type nonvolatile memory element, comprising: a capacitor having a structure in which the ferroelectric is sandwiched between electrodes using a layer.
ジスタのゲート電極と電気的に接続される強誘電体の残
留分極を利用して、該電界効果型トランジスタのオン、
オフ動作させる強誘電体トランジスタ型不揮発性記憶素
子において、 前記強誘電体を電極を用いて挟んだ構造を持つキャパシ
タを、前記ゲート電極と接続される、2層以上のコンタ
クトプラグ上に設けたことを特徴とする強誘電体トラン
ジスタ型不揮発性記憶素子。2. The method according to claim 1, further comprising using a remanent polarization of a ferroelectric substance electrically connected to a gate electrode of the field effect transistor formed on the semiconductor substrate to turn on and off the field effect transistor.
In the ferroelectric transistor-type nonvolatile memory element to be turned off, a capacitor having a structure in which the ferroelectric is sandwiched between electrodes is provided on two or more contact plugs connected to the gate electrode. A non-volatile memory element of the ferroelectric transistor type.
体トランジスタ型不揮発性記憶素子の強誘電体材料とし
て、比誘電率が50以下の材料を用いることを特徴とす
る強誘電体トランジスタ型不揮発性記憶素子。3. The ferroelectric transistor according to claim 1 or 2, wherein a material having a relative dielectric constant of 50 or less is used as a ferroelectric material of the nonvolatile memory element of the ferroelectric transistor type. Nonvolatile memory element.
体トランジスタ型不揮発性記憶素子の強誘電体材料とし
て、残留分極が10μC/cm2以下の材料を用いるこ
とを特徴とする強誘電体トランジスタ型不揮発性記憶素
子。4. The ferroelectric material of the ferroelectric transistor type nonvolatile memory element according to claim 1 or 2, wherein the ferroelectric material has a remanent polarization of 10 μC / cm 2 or less. Body transistor type nonvolatile memory element.
体トランジスタ型不揮発性記憶素子の強誘電体材料とし
て、ABO3型構造を持つ強誘電体(A、Bは金属元
素)、A2B2O7(A、Bは金属元素)型構造を持つ強
誘電体、あるいは層状ペロブスカイト型構造の材料を使
用することを特徴とする強誘電体トランジスタ型不揮発
性記憶素子。5. A ferroelectric material having an ABO 3 type structure (A and B are metal elements) as a ferroelectric material of the ferroelectric transistor type nonvolatile memory element according to claim 1 or 2. A ferroelectric transistor-type nonvolatile memory element using a ferroelectric material having a 2 B 2 O 7 (A and B are metal elements) type structure or a layered perovskite type material.
トランジスタ型不揮発性記憶素子の駆動方法において、
前記強誘電体素子の強誘電体として、Sr2Nb2O7、
あるいはSr2Ta2O7、あるいはSr2(NbTa)2
O7、あるいはSrBi2Ta2O9を主体とする材料を用
いることを特徴とする強誘電体トランジスタ型不揮発性
記憶素子の駆動方法。6. The method for driving a ferroelectric transistor type nonvolatile memory element according to claim 1, wherein
Sr 2 Nb 2 O 7 , as a ferroelectric substance of the ferroelectric element,
Alternatively, Sr 2 Ta 2 O 7 or Sr 2 (NbTa) 2
A method for driving a ferroelectric transistor-type nonvolatile memory element, characterized by using a material mainly composed of O 7 or SrBi 2 Ta 2 O 9 .
体トランジスタ型不揮発性記憶素子の強誘電体材料とし
て有機物強誘電体を使用することを特徴とした強誘電体
トランジスタ型不揮発性記憶素子。7. A ferroelectric transistor type nonvolatile memory according to claim 1, wherein an organic ferroelectric material is used as a ferroelectric material of the ferroelectric transistor type nonvolatile memory element. element.
体トランジスタ型不揮発性記憶素子において、半導体基
板としてシリコン単結晶を主体とした材料を用いること
を特徴とする強誘電体トランジスタ型不揮発性記憶素
子。8. The ferroelectric transistor type nonvolatile memory element according to claim 1, wherein a material mainly composed of a silicon single crystal is used as a semiconductor substrate. Memory element.
体トランジスタ型不揮発性記憶素子において、前記キャ
パシタの電極として、白金、イリジウムまたはチタン、
またはこれらの酸化物を混合または積層した構造、を用
いることを特徴とする強誘電体トランジスタ型不揮発性
記憶素子。9. The ferroelectric transistor type nonvolatile memory element according to claim 1, wherein platinum, iridium or titanium is used as an electrode of the capacitor.
Alternatively, a ferroelectric transistor-type nonvolatile memory element using a structure in which these oxides are mixed or stacked.
電体トランジスタ型不揮発性記憶素子の製造方法であっ
て、前記強誘電体を化学気相成長法を用いて形成するこ
とを特徴とする強誘電体トランジスタ型不揮発性記憶素
子の製造方法。10. A method for manufacturing a ferroelectric transistor type nonvolatile memory element according to claim 1, wherein the ferroelectric is formed using a chemical vapor deposition method. Of manufacturing a ferroelectric transistor type nonvolatile memory element.
電体トランジスタ型不揮発性記憶素子の製造方法であっ
て、前記キャパシタの下地絶縁膜を化学機械研磨法を用
いて平坦化することを特徴とする強誘電体トランジスタ
型不揮発性記憶素子の製造方法。11. The method for manufacturing a nonvolatile memory element according to claim 1, wherein the base insulating film of the capacitor is planarized by a chemical mechanical polishing method. A method for manufacturing a ferroelectric transistor-type nonvolatile memory element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001129903A JP2002329843A (en) | 2001-04-26 | 2001-04-26 | Ferroelectric transistor type nonvolatile memory element and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001129903A JP2002329843A (en) | 2001-04-26 | 2001-04-26 | Ferroelectric transistor type nonvolatile memory element and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002329843A true JP2002329843A (en) | 2002-11-15 |
JP2002329843A5 JP2002329843A5 (en) | 2008-06-19 |
Family
ID=18978365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001129903A Pending JP2002329843A (en) | 2001-04-26 | 2001-04-26 | Ferroelectric transistor type nonvolatile memory element and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002329843A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004047176A1 (en) * | 2002-11-20 | 2004-06-03 | National Institute Of Advanced Industrial Science And Technology | Ferroelectric memory array |
JP2006261159A (en) * | 2005-03-15 | 2006-09-28 | Tohoku Univ | Ferroelectric film, metal oxide, semiconductor device, and manufacturing method thereof |
JP2009177206A (en) * | 2009-05-07 | 2009-08-06 | Tohoku Univ | Ferroelectric film, metal oxide, semiconductor device, and manufacturing method thereof |
CN114023696A (en) * | 2021-10-22 | 2022-02-08 | 华中科技大学 | A kind of ferroelectric field effect transistor and preparation method thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09213818A (en) * | 1996-01-29 | 1997-08-15 | Oki Electric Ind Co Ltd | Ferroelectric gate memory, formation of ferroelectric thin film used therefor, and precursor solution used for the formation |
JPH1022470A (en) * | 1996-07-02 | 1998-01-23 | Hitachi Ltd | Semiconductor memory device and method of manufacturing the same |
JPH10303376A (en) * | 1997-04-24 | 1998-11-13 | Oki Electric Ind Co Ltd | Semiconductor storage device |
JPH1140768A (en) * | 1997-07-17 | 1999-02-12 | Toshiba Corp | Semiconductor integrated circuit and method of manufacturing the same |
JPH11261019A (en) * | 1998-01-02 | 1999-09-24 | Sharp Corp | C-axis oriented thin film ferroelectric transistor memory cell and method of manufacturing the same |
JPH11317500A (en) * | 1998-03-04 | 1999-11-16 | Nec Corp | Semiconductor device having capacitive element, and manufacture thereof |
JPH11354653A (en) * | 1998-06-03 | 1999-12-24 | Mitsubishi Electric Corp | Nonvolatile semiconductor memory and fabrication thereof |
JP2000150813A (en) * | 1998-09-02 | 2000-05-30 | Sanyo Electric Co Ltd | Semiconductor device and its manufacture |
-
2001
- 2001-04-26 JP JP2001129903A patent/JP2002329843A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09213818A (en) * | 1996-01-29 | 1997-08-15 | Oki Electric Ind Co Ltd | Ferroelectric gate memory, formation of ferroelectric thin film used therefor, and precursor solution used for the formation |
JPH1022470A (en) * | 1996-07-02 | 1998-01-23 | Hitachi Ltd | Semiconductor memory device and method of manufacturing the same |
JPH10303376A (en) * | 1997-04-24 | 1998-11-13 | Oki Electric Ind Co Ltd | Semiconductor storage device |
JPH1140768A (en) * | 1997-07-17 | 1999-02-12 | Toshiba Corp | Semiconductor integrated circuit and method of manufacturing the same |
JPH11261019A (en) * | 1998-01-02 | 1999-09-24 | Sharp Corp | C-axis oriented thin film ferroelectric transistor memory cell and method of manufacturing the same |
JPH11317500A (en) * | 1998-03-04 | 1999-11-16 | Nec Corp | Semiconductor device having capacitive element, and manufacture thereof |
JPH11354653A (en) * | 1998-06-03 | 1999-12-24 | Mitsubishi Electric Corp | Nonvolatile semiconductor memory and fabrication thereof |
JP2000150813A (en) * | 1998-09-02 | 2000-05-30 | Sanyo Electric Co Ltd | Semiconductor device and its manufacture |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004047176A1 (en) * | 2002-11-20 | 2004-06-03 | National Institute Of Advanced Industrial Science And Technology | Ferroelectric memory array |
JP2006261159A (en) * | 2005-03-15 | 2006-09-28 | Tohoku Univ | Ferroelectric film, metal oxide, semiconductor device, and manufacturing method thereof |
JP2009177206A (en) * | 2009-05-07 | 2009-08-06 | Tohoku Univ | Ferroelectric film, metal oxide, semiconductor device, and manufacturing method thereof |
CN114023696A (en) * | 2021-10-22 | 2022-02-08 | 华中科技大学 | A kind of ferroelectric field effect transistor and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4005270B2 (en) | Manufacturing method of semiconductor device | |
JP3369827B2 (en) | Semiconductor device and manufacturing method thereof | |
JP3319994B2 (en) | Semiconductor storage element | |
JP3833841B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH09205181A (en) | Semiconductor device | |
JPH0437170A (en) | Manufacturing method of semiconductor device | |
JP4050004B2 (en) | Semiconductor device and manufacturing method thereof | |
TWI228798B (en) | Barrier for capacitor over plug structures | |
CN101093795B (en) | Method for manufacturing the semiconductor device | |
KR100405146B1 (en) | Process for producing a structured metal oxide-containing layer | |
JP2005183841A (en) | Manufacturing method of semiconductor device | |
JP2002329843A (en) | Ferroelectric transistor type nonvolatile memory element and method of manufacturing the same | |
JP3989414B2 (en) | Ferroelectric capacitor, semiconductor device including ferroelectric capacitor, method for manufacturing ferroelectric capacitor, and method for manufacturing semiconductor device | |
KR100247884B1 (en) | Nonvolatile semiconductor memory utilizing polarization of ferroelectric material | |
JP3111940B2 (en) | Capacity and manufacturing method thereof | |
JPH07169854A (en) | Semiconductor device and manufacture of it | |
JP3039425B2 (en) | Capacitive element and method of manufacturing the same | |
JP2002329845A (en) | Method of manufacturing ferroelectric memory element and ferroelectric memory device | |
WO2004053991A1 (en) | Ferroelectric capacitor and its manufacturing method | |
JP4459335B2 (en) | Ferroelectric transistor type nonvolatile memory element and manufacturing method thereof | |
WO2005081317A1 (en) | Process for fabricating semiconductor device | |
JP4286492B2 (en) | Method for manufacturing ferroelectric capacitor | |
JP2003282827A (en) | Ferroelectric thin film memory | |
JPH11177038A (en) | Mfmis ferroelectric storage element and its manufacture | |
JP2001244423A (en) | Ferroelectric memory device and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080424 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080424 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20090324 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20100201 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20100630 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101130 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110128 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20111011 |