[go: up one dir, main page]

JPH08303290A - Exhaust gas purifying device for internal combustion engine - Google Patents

Exhaust gas purifying device for internal combustion engine

Info

Publication number
JPH08303290A
JPH08303290A JP7129272A JP12927295A JPH08303290A JP H08303290 A JPH08303290 A JP H08303290A JP 7129272 A JP7129272 A JP 7129272A JP 12927295 A JP12927295 A JP 12927295A JP H08303290 A JPH08303290 A JP H08303290A
Authority
JP
Japan
Prior art keywords
injection
temperature
exhaust
fuel injection
post
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7129272A
Other languages
Japanese (ja)
Other versions
JP3671455B2 (en
Inventor
Tsukasa Kuboshima
司 窪島
Kanehito Nakamura
兼仁 中村
Hajime Suguro
肇 勝呂
Koichi Ohata
耕一 大畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP12927295A priority Critical patent/JP3671455B2/en
Publication of JPH08303290A publication Critical patent/JPH08303290A/en
Application granted granted Critical
Publication of JP3671455B2 publication Critical patent/JP3671455B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE: To provide an exhaust gas purifying device for an internal combustion engine, having high purifying efficiency, in such a way as to effect after-injection of a small amount of fuel at the first half of an expansion stroke. CONSTITUTION: An exhaust gas purifying device for an internal combustion engine comprises an exhaust gas treating means 17 to purify exhaust gas; a temperature estimating means (ECU 18) to estimate an exhaust gas temperature; and a fuel injection control means (ECU 18) to operate a fuel injection means by deciding a fuel injection timing and an injection amount. When an exhaust gas temperature is below a given value, fuel is after-injected after injection of main fuel to generate an engine output, and an exhaust gas temperature is controlled so that temperature is adjusted to a proper value at which the coefficient of purification of the temperature estimating means is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,ディーゼルエンジン等
の排気中に含まれるパティキュレート及びNOx等を浄
化する内燃機関の排気浄化装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine, which purifies particulates and NOx contained in the exhaust gas of a diesel engine or the like.

【0002】[0002]

【従来の技術および問題点】ディーゼルエンジンの排気
中には気体成分と固体成分とから成るパティキュレート
及び窒素酸化物(NOx)が含まれており,これらの有
害成分が環境上問題となっている。このうちパティキュ
レートについては,ディーゼルエンジンの排気通路中に
設けた酸化触媒にて気体成分のみを浄化するという方法
が実用化されている。しかし,この方法ではパティキュ
レートの固体成分の浄化が全くできず,また,排気温度
が触媒の活性温度以下の場合は気体成分についても浄化
ができないという問題がある。
2. Description of the Related Art Diesel engine exhaust contains particulates and nitrogen oxides (NOx) consisting of gas and solid components, and these harmful components pose environmental problems. . Regarding the particulates, a method of purifying only the gas component by an oxidation catalyst provided in the exhaust passage of the diesel engine has been put into practical use. However, this method has a problem that the solid component of particulates cannot be purified at all, and the gas component cannot be purified when the exhaust temperature is lower than the activation temperature of the catalyst.

【0003】これに対し,特公平6−10409号公報
では,触媒を担持したトラップフィルタにてパティキュ
レートを捕集し,所定量のパティキュレートを捕集した
後にエンジンの吸気通路に設けた吸気絞りを絞ることに
より排気温度を昇温し,パティキュレートを燃焼させて
トラップフィルタを再生する方法が提案されている。し
かしながら,この方法では吸気絞り手段,そのアクチュ
エータ及び制御装置などが新たに必要となるため構成が
複雑になってしまう。また,吸気絞りによる排気昇温量
は大きくないため,市街地走行などの排気温度が低い走
行状態ではフィルタを再生することができないという問
題がある。さらには,吸気を絞るとエンジンの燃焼状態
が悪化するため出力が低下し,またエミッションが悪化
するという問題もある。
On the other hand, in Japanese Examined Patent Publication No. 6-10409, a trap filter carrying a catalyst collects particulates, and after collecting a predetermined amount of particulates, an intake throttle provided in an intake passage of an engine. A method has been proposed in which the temperature of the exhaust gas is raised by squeezing, and the particulate matter is burned to regenerate the trap filter. However, this method requires a new intake throttle means, its actuator, a control device, and the like, which complicates the configuration. Further, since the amount of exhaust gas temperature rise due to the intake throttle is not large, there is a problem that the filter cannot be regenerated in a running state where the exhaust temperature is low such as in city driving. Furthermore, when the intake air is throttled, the combustion state of the engine deteriorates, so the output decreases, and the emission deteriorates.

【0004】また,上記方法では,もうひとつの有害成
分であるNOxが浄化できないため,NOxを浄化する
にはさらに別の浄化手段が必要となりコスト,体積が大
きくなるという問題がある。一方NOxについては,排
気管の途中に触媒を設け,その上流で軽油などの還元剤
を供給し,この還元剤と排気ガスとを混合させて,触媒
上でNOxを還元浄化するという方法が公知である。し
かし,この方法では,上記還元剤が高沸点の分子である
ため反応性が低く,NOxの還元浄化効率が低いという
問題がある。さらに,構成が複雑となるため装置が大型
化するという問題もある。
Further, in the above method, since another harmful component, NOx, cannot be purified, another purification means is required to purify NOx, resulting in a problem of increased cost and volume. On the other hand, for NOx, a method is known in which a catalyst is provided in the middle of an exhaust pipe, a reducing agent such as light oil is supplied upstream of the catalyst, the reducing agent and exhaust gas are mixed, and NOx is reduced and purified on the catalyst. Is. However, this method has a problem in that the reducing agent is a molecule having a high boiling point, so that the reactivity is low and the NOx reduction and purification efficiency is low. In addition, there is a problem that the device becomes large due to the complicated structure.

【0005】そこで,特開平5−156993号公報で
は,燃料をシリンダ室に噴射するフューエルインジェク
タの燃料噴射時期を,電磁弁を用いて制御しこれによっ
て浄化を促進する方法が提案されている。すなわち,機
関出力発生のための主燃料の噴射後に,主燃料噴射量の
0.3〜3%に相当する極微量の燃料を,膨張行程中の
温度が低下したシリンダ室内に後噴射し,これを燃焼さ
せることなく熱分解して反応性が高い炭化水素を生成さ
せる。そしてこの炭化水素を排気ガスにそれを混合し
て,排気ガスに含まれるNOxを触媒上で還元浄化する
という方法である。しかしながら,この方法では,排気
温度が触媒の活性化温度よりも低い場合にはNOxを浄
化ができないという問題がある。
Therefore, Japanese Laid-Open Patent Publication No. 5-156993 proposes a method of controlling the fuel injection timing of a fuel injector for injecting fuel into a cylinder chamber by using a solenoid valve to promote purification. That is, after injecting the main fuel for generating the engine output, a very small amount of fuel corresponding to 0.3 to 3% of the main fuel injection amount is post-injected into the cylinder chamber where the temperature during the expansion stroke is lowered. The hydrocarbon is thermally decomposed without combustion to generate a highly reactive hydrocarbon. Then, this hydrocarbon is mixed with exhaust gas to reduce and purify NOx contained in the exhaust gas on a catalyst. However, this method has a problem that NOx cannot be purified when the exhaust temperature is lower than the activation temperature of the catalyst.

【0006】また,上記公報に提案された方法では,常
に行程の一定時期に後噴射を行うため,燃料の分解度合
が一義的に決まってしまう。すなわち,排気温度が高い
ほど燃料の分解度合が大きく炭素数が小さい炭化水素が
供給されることとなる。しかしながら,詳細を後述する
図19に示すように,NOxを効率良く還元浄化するた
めには,排気温度が高いほど(図19のT2)炭素数が
大きな炭化水素(図19のB)を供給する必要がある。
そのため,この方法では,排気温度によって異なるNO
xの還元浄化効率を最高にするような還元剤(炭化水
素)を常に触媒に供給することができないという問題が
ある。
Further, in the method proposed in the above publication, the post-injection is always carried out at a fixed timing of the stroke, so that the degree of decomposition of the fuel is uniquely determined. That is, the higher the exhaust temperature, the higher the degree of decomposition of fuel and the smaller the carbon number of hydrocarbons supplied. However, as shown in FIG. 19 described in detail later, in order to efficiently reduce and purify NOx, the higher the exhaust temperature (T2 in FIG. 19), the larger the number of carbon atoms supplied (B in FIG. 19). There is a need.
Therefore, in this method, NO
There is a problem that a reducing agent (hydrocarbon) that maximizes the reduction purification efficiency of x cannot always be supplied to the catalyst.

【0007】更に,極微量の後噴射の燃料を制御するた
めに,極めて高応答性の電磁弁が必要となり,そのため
コストと体積の増大を招くという問題がある。また,こ
の方法ではもうひとつの有害成分であるパティキュレー
トが浄化できないため,パティキュレートを浄化するた
めには,更に別個に浄化装置が必要となりコストと体積
が一段と大きくなるという問題加わってくる。
Further, in order to control a very small amount of post-injection fuel, an extremely highly responsive solenoid valve is required, which causes a problem of increasing cost and volume. In addition, since this method cannot purify the particulates, which is another harmful component, in order to purify the particulates, a separate purifying device is required, which further increases the cost and volume.

【0008】[0008]

【発明が解決しようとする課題】そこで,本発明は簡素
な構成によって,パティキュレートとNOxの両方を含
む排気を効率よく浄化することの出来る内燃機関の排気
浄化装置を提供しようとするものである。
SUMMARY OF THE INVENTION Therefore, the present invention is intended to provide an exhaust gas purifying apparatus for an internal combustion engine, which is capable of efficiently purifying exhaust gas containing both particulates and NOx with a simple structure. .

【0009】[0009]

【課題を解決するための手段】本願の第1発明では,気
筒毎に設けられた燃料噴射手段と,排気通路中に介装さ
れた排気処理手段と,運転状態検出手段と,この運転状
態検出手段からの出力により排気温度を推定する排気温
度推定手段と,この排気温度推定手段の出力を所定値と
比較する温度比較手段と,この温度比較手段の出力に基
づいて上記燃料噴射手段における燃料噴射時期と燃料噴
射量とを決定し上記燃料噴射手段を作動させる燃料噴射
制御手段とを有する内燃機関の排気浄化装置において,
上記燃料噴射制御手段は,排気温度が上記所定値以下の
場合には,機関出力発生のための主燃料噴射後に燃料の
後噴射を指令し,これによって機関の排気温度を上記排
気処理手段の作動に適した温度範囲に制御する。
In the first invention of the present application, fuel injection means provided for each cylinder, exhaust treatment means interposed in the exhaust passage, operating state detecting means, and operating state detecting means are provided. Exhaust temperature estimation means for estimating the exhaust temperature from the output from the means, temperature comparison means for comparing the output of the exhaust temperature estimation means with a predetermined value, and fuel injection in the fuel injection means based on the output of the temperature comparison means An exhaust emission control device for an internal combustion engine, comprising: a fuel injection control means for deciding a timing and a fuel injection amount to operate the fuel injection means,
When the exhaust gas temperature is equal to or lower than the predetermined value, the fuel injection control means commands the post-injection of the fuel after the main fuel injection for generating the engine output, thereby changing the exhaust gas temperature of the engine to the operation of the exhaust processing means. Control the temperature range suitable for.

【0010】第一発明において,最も注目すべきこと
は,燃料噴射量及び燃料噴射時期を制御する燃料噴射制
御手段と温度推定手段及び温度比較手段とが設けられて
おり,上記燃料噴射制御手段は,排気温度が所定値以下
の場合に燃料の後噴射を指令し,排気処理手段が良好に
作動する温度となるように,燃料噴射手段の制御を行う
ことである。なお,上記後噴射は,膨張行程の前半のタ
イミングにおいて実施することが好ましい。膨張行程の
前半で後噴射を行えば,シリンダ室内の温度が高く,燃
料が効果的に燃焼し,効率よく排気温度を上昇させるこ
とが出来るからである。
In the first aspect of the invention, what is most noticeable is that the fuel injection control means for controlling the fuel injection amount and the fuel injection timing, the temperature estimation means and the temperature comparison means are provided. When the exhaust temperature is lower than a predetermined value, the post-injection of fuel is instructed, and the fuel injection means is controlled so that the exhaust processing means has a temperature at which it operates well. In addition, it is preferable that the post-injection be performed at the timing of the first half of the expansion stroke. This is because if post-injection is performed in the first half of the expansion stroke, the temperature in the cylinder chamber will be high, the fuel will effectively burn, and the exhaust gas temperature can be raised efficiently.

【0011】本願の第2発明では,気筒毎に設けられた
燃料噴射手段と,排気通路中に介装されたパティキュレ
ート捕集手段と,パティキュレート捕集手段の入口側に
設けた圧力検出手段と,運転状態検出手段と,この運転
状態検出手段からの出力により排気温度を推定する排気
温度推定手段と,この排気温度推定手段の出力を所定値
と比較する温度比較手段と,上記運転状態検出手段と圧
力検出手段の出力に基づいてパティキュレート捕集手段
におけるパティキュレート堆積量を算出する堆積量演算
手段と,この堆積量演算手段の出力を所定値と比較する
堆積量比較手段と,上記温度比較手段と堆積量比較手段
の出力に基づいて上記燃料噴射手段における燃料噴射時
期と燃料噴射量とを決定し燃料噴射手段を作動させる燃
料噴射制御手段とを有する内燃機関の排気浄化装置にお
いて,上記燃料噴射制御手段は,パティキュレート捕集
手段におけるパティキュレート堆積量が所定値を越え,
かつ排気温度が所定値以下の場合には,機関出力発生の
ための主燃料噴射の後に,機関の膨張行程前半における
燃料の後噴射の実施を指令する。
In the second invention of the present application, the fuel injection means provided for each cylinder, the particulate trapping means interposed in the exhaust passage, and the pressure detecting means provided at the inlet side of the particulate trap means. An operating state detecting means, an exhaust temperature estimating means for estimating an exhaust temperature based on an output from the operating state detecting means, a temperature comparing means for comparing an output of the exhaust temperature estimating means with a predetermined value, and the operating state detecting means. Amount calculating means for calculating the amount of particulate accumulation in the particulate collecting means based on the outputs of the means and the pressure detecting means, a deposit amount comparing means for comparing the output of the particulate amount calculating means with a predetermined value, and the above temperature. Fuel injection control means for activating the fuel injection means by determining the fuel injection timing and the fuel injection amount in the fuel injection means based on the outputs of the comparison means and the accumulation amount comparison means. In the exhaust purification system of an internal combustion engine having, the fuel injection control means, particulate matter deposit amount in the particulate collecting means exceeds a predetermined value,
If the exhaust temperature is lower than the predetermined value, after the main fuel injection for generating the engine output, the execution of the post-injection of fuel in the first half of the expansion stroke of the engine is commanded.

【0012】第2発明において最も注目すべきことは,
排気処理手段としてのパティキュレート捕集手段と,排
気温度推定手段及び温度比較手段と,堆積量演算手段及
び堆積量比較手段と,燃料噴射制御手段とが設けられて
おり,燃料噴射制御手段は,パティキュレート堆積量が
所定値を越えかつ排気温度が所定値以下の場合に,膨張
行程の前半において後噴射が実施されるよう指令するこ
とである。
What is most noticeable in the second invention is that
A particulate collection means as an exhaust treatment means, an exhaust temperature estimation means and a temperature comparison means, a deposition amount calculation means and a deposition amount comparison means, and a fuel injection control means are provided, and the fuel injection control means comprises: When the amount of particulate accumulation exceeds a predetermined value and the exhaust gas temperature is below a predetermined value, it is instructed to perform the post injection in the first half of the expansion stroke.

【0013】本願の第3発明では,気筒毎に設けられた
燃料噴射手段と,排気通路中に介装された窒素酸化物還
元手段と,運転状態検出手段と,この運転状態検出手段
からの出力により排気温度を推定する排気温度推定手段
と,この排気温度推定手段からの出力を所定値と比較す
る温度比較手段と,この温度比較手段の出力により上記
燃料噴射手段における燃料噴射時期と燃料噴射量とを決
定し燃料噴射手段を作動させる燃料噴射制御手段とを有
する内燃機関の排気浄化装置において,上記燃料噴射制
御手段は,排気温度が所定値以上の場合には,機関出力
発生のための主燃料噴射後に燃料の後噴射を膨張行程後
半で実施し,排気温度が所定値以下の場合には,それに
加えて後噴射を膨張行程前半でも実施するよう指令す
る。
According to the third aspect of the present invention, the fuel injection means provided for each cylinder, the nitrogen oxide reducing means interposed in the exhaust passage, the operating state detecting means, and the output from the operating state detecting means. Exhaust temperature estimating means for estimating the exhaust temperature, temperature comparing means for comparing the output from the exhaust temperature estimating means with a predetermined value, and fuel injection timing and fuel injection amount in the fuel injecting means by the output of the temperature comparing means. In the exhaust gas purifying apparatus for an internal combustion engine, the fuel injection control means is a main engine for generating engine output when the exhaust temperature is equal to or higher than a predetermined value. After fuel injection, post-injection of fuel is performed in the latter half of the expansion stroke, and if the exhaust gas temperature is below a predetermined value, in addition to this, it is instructed to perform post-injection in the first half of the expansion stroke as well.

【0014】第3発明において最も注目すべきことは,
排気処理手段としての窒素酸化物還元手段と,排気温度
推定手段及び温度比較手段と,燃料噴射制御手段とが設
けられており,燃料噴射制御手段は,排気温度が所定値
以上の場合には後噴射を膨張行程の後半で実施し,排気
温度が所定値以下の場合には,後噴射を更に膨張行程の
前半においても実施するよう指令することである。
What is most noticeable in the third invention is that
A nitrogen oxide reduction means as an exhaust treatment means, an exhaust temperature estimation means and a temperature comparison means, and a fuel injection control means are provided, and the fuel injection control means is provided for the case where the exhaust temperature is equal to or higher than a predetermined value. Injection is performed in the latter half of the expansion stroke, and if the exhaust gas temperature is below a predetermined value, it is instructed to perform the post-injection in the first half of the expansion stroke as well.

【0015】本願の第4発明では,気筒毎に設けられた
燃料噴射手段と,排気通路中に介装されたパティキュレ
ート捕集手段と,排気通路中に介装された窒素酸化物還
元手段と,パティキュレート捕集手段の入口側に設けた
圧力検出手段と,運転状態検出手段と,この運転状態検
出手段からの出力により排気温度を推定する排気温度推
定手段と,この排気温度推定手段からの出力を所定値と
比較する温度比較手段と,前記運転状態検出手段と圧力
検出手段からの出力によりパティキュレート捕集手段に
おけるパティキュレート堆積量を算出する堆積量演算手
段と,この堆積量演算手段からの出力を所定値と比較す
る堆積量比較手段と,前記温度比較手段と堆積量比較手
段からの出力により前記燃料噴射手段における燃料噴射
時期と燃料噴射量とを決定し燃料噴射手段を作動させる
燃料噴射制御手段とを有する内燃機関の排気浄化装置に
おいて,上記燃料噴射制御手段は,パティキュレート捕
集手段におけるパティキュレート堆積量が所定値以下の
場合には,機関出力発生のための主燃料噴射後の後噴射
を膨張行程後半で実施し,パティキュレート捕集手段へ
のパティキュレート堆積量が所定値を越え,かつ排気温
度が所定値以下の場合にはそれに加えて,後噴射を膨張
行程前半でも実施するよう指令する。
In the fourth aspect of the present invention, the fuel injection means provided for each cylinder, the particulate trapping means interposed in the exhaust passage, and the nitrogen oxide reducing means interposed in the exhaust passage. , A pressure detecting means provided on the inlet side of the particulate trapping means, an operating state detecting means, an exhaust temperature estimating means for estimating an exhaust temperature from an output from the operating state detecting means, and an exhaust temperature estimating means for estimating the exhaust temperature. A temperature comparing means for comparing the output with a predetermined value, a deposit amount calculating means for calculating the particulate deposit amount in the particulate trapping means based on the outputs from the operating state detecting means and the pressure detecting means, and the deposit amount calculating means. Of the fuel injection timing and fuel injection amount in the fuel injection means based on the output from the temperature comparison means and the deposition amount comparison means In the exhaust gas purifying apparatus for an internal combustion engine, the fuel injection control means includes: a fuel injection control means for activating the fuel injection means, and the fuel injection control means, when the particulate accumulation amount in the particulate collection means is equal to or less than a predetermined value, After the main fuel injection to generate the engine output, the post-injection is performed in the latter half of the expansion stroke, and if the particulate accumulation amount on the particulate collection means exceeds the specified value and the exhaust temperature is below the specified value, In addition, a command is given to carry out post-injection even in the first half of the expansion stroke.

【0016】第4発明において最も注目すべきことは,
排気処理手段としてのパティキュレート捕集手段及び窒
素酸化物還元手段と,排気温度推定手段及び温度比較手
段と,堆積量推定手段及び堆積量比較手段と,燃料噴射
制御手段とを有しており,パティキュレート堆積量が所
定値以下の場合には,後噴射を膨張行程の後半で実施
し,パティキュレート堆積量が所定値を越え且つ排気温
度が所定値以下の場合には,それに加えて膨張行程の前
半においても後噴射を実施することである。
What is most noticeable in the fourth invention is that
It has particulate collection means and nitrogen oxide reduction means as exhaust treatment means, exhaust temperature estimation means and temperature comparison means, deposition amount estimation means and deposition amount comparison means, and fuel injection control means, If the particulate accumulation amount is less than the specified value, post-injection is performed in the latter half of the expansion stroke. If the particulate accumulation amount exceeds the specified value and the exhaust gas temperature is less than the specified value, the expansion stroke is also added. The post-injection is also performed in the first half of.

【0017】本願の5発明では,気筒毎に設けられた燃
料噴射手段と,排気通路中に介装されたパティキュレー
ト捕集手段と,排気通路中に介装された窒素酸化物還元
手段と,パティキュレート捕集手段の入口側に設けた圧
力検出手段と,運転状態検出手段と,この運転状態検出
手段の出力に基づいて排気温度を推定する排気温度推定
手段と,この排気温度推定手段の出力に基づいて燃料噴
射時期を補正変更する燃料噴射時期補正手段と,前記排
気温度推定手段の出力を所定値と比較する温度比較手段
と,上記運転状態検出手段と圧力検出手段の出力に基づ
いてパティキュレート捕集手段におけるパティキュレー
ト堆積量を算出する堆積量演算手段と,この堆積量演算
手段の出力を所定値と比較する堆積量比較手段と,上記
温度比較手段と堆積量比較手段の出力に基づいて上記燃
料噴射手段における燃料噴射時期と燃料噴射量とを決定
し燃料噴射手段を作動させる燃料噴射制御手段とを有す
る内燃機関の排気浄化装置において,上記燃料噴射制御
手段は,上記パティキュレート捕集手段におけるパティ
キュレート堆積量が所定値以下の場合には,機関出力発
生のための主燃料噴射後に,燃料の後噴射を機関の膨張
行程後半で実施するよう指令し,パティキュレート捕集
手段におけるパティキュレート堆積量が所定値を越え,
かつ排気温度が所定値以下の場合には,それに加えて燃
料の後噴射を膨張行程前半でも実施するよう指令し,か
つ,パティキュレート堆積量が所定値以下の場合におけ
る膨張行程後半での上記後噴射の噴射時期を排気温度検
出手段の出力に基づいて変更し,排気温度が高温になる
ほど後噴射時期を設定時期より遅らせるよう指令する。
According to the fifth aspect of the present invention, the fuel injection means provided for each cylinder, the particulate trapping means interposed in the exhaust passage, and the nitrogen oxide reducing means interposed in the exhaust passage, Pressure detection means provided on the inlet side of the particulate collection means, operating state detection means, exhaust temperature estimation means for estimating exhaust temperature based on the output of this operating state detection means, and output of this exhaust temperature estimation means Fuel injection timing correction means for correcting and changing the fuel injection timing based on the above, temperature comparison means for comparing the output of the exhaust gas temperature estimation means with a predetermined value, and a pattern based on the outputs of the operating state detection means and the pressure detection means. A deposit amount calculating means for calculating the particulate deposit amount in the curate collecting means, a deposit amount comparing means for comparing the output of the deposit amount calculating means with a predetermined value, the temperature comparing means and the stack. In an exhaust emission control device for an internal combustion engine, comprising: a fuel injection control unit that determines a fuel injection timing and a fuel injection amount in the fuel injection unit based on the output of the amount comparison unit and operates the fuel injection unit. If the particulate collection amount in the particulate collection means is less than or equal to a predetermined value, after the main fuel injection for generating the engine output, a command is made to carry out post-injection of fuel in the latter half of the expansion stroke of the engine. When the particulate collection amount in the particulate collection means exceeds a predetermined value,
If the exhaust temperature is lower than the predetermined value, the fuel injection is instructed to be performed in the first half of the expansion stroke as well, and if the particulate accumulation amount is lower than the predetermined value, the latter half of the expansion stroke is performed. The injection timing of the injection is changed based on the output of the exhaust gas temperature detection means, and a command is made to delay the post injection timing from the set timing as the exhaust gas temperature becomes higher.

【0018】第5発明において最も注目すべきことは,
第4発明の構成に加えて,燃料噴射時期を補正変更する
燃料噴射時期補正手段が設けられており,パティキュレ
ート堆積量が所定値以下の場合に膨張行程後半において
実施する後噴射のタイミングを,排気温度が高温になる
ほど遅らせるよう指令することである。
What is most noticeable in the fifth invention is that
In addition to the configuration of the fourth aspect of the invention, a fuel injection timing correction means for correcting and changing the fuel injection timing is provided, and the timing of the post-injection performed in the latter half of the expansion stroke when the particulate accumulation amount is equal to or less than a predetermined value, The command is to delay the exhaust temperature as the temperature rises.

【0019】一方,本願の第6発明は,上記第4,第5
発明において,前記パティキュレート捕集手段における
パティキュレート堆積量が前記所定値を越え且つ排気温
度が前記所定値以下の場合に,膨張行程後半の後噴射を
実施せず,後噴射を膨張行程前半のみで行うようにす
る。
On the other hand, the sixth invention of the present application is based on the above-mentioned fourth and fifth inventions.
In the invention, when the particulate accumulation amount in the particulate collection means exceeds the predetermined value and the exhaust gas temperature is equal to or lower than the predetermined value, the post injection in the latter half of the expansion stroke is not performed, and the post injection is performed only in the first half of the expansion stroke. Try to do in.

【0020】なお,上記各発明において,後噴射を特定
の気筒あるいは特定のサイクルで行うようにすることが
好ましい。詳細を後述するように,後噴射をまとめて実
施することにより後噴射の量を多くすれば,電磁弁など
のアクチュエータの構成を安価にし且つ制御を容易にす
ることが出来るからである。
In each of the above inventions, it is preferable that the post-injection is performed in a specific cylinder or a specific cycle. This is because, as will be described in detail later, if the amount of post injection is increased by collectively performing post injection, the structure of an actuator such as a solenoid valve can be made inexpensive and control can be facilitated.

【0021】また,膨張行程前半での後噴射と,膨張行
程後半での後噴射を異なる気筒で行ったり,後噴射を実
施する気筒を順次切り換える等の方法により燃料噴射手
段の動作回数を均等化することが好ましい。燃料噴射手
段の動作が特定の気筒に集中しないようにし燃料噴射手
段の動作回数を均等化することにより,燃料噴射手段の
平均寿命を長くすることが出来るからである。また,排
気温度は,排気温度推定手段を用いないで排気温度検出
手段により直接検出することもできる。
Further, the post-injection in the first half of the expansion stroke and the post-injection in the latter half of the expansion stroke are performed in different cylinders, or the cylinders in which the post-injection is carried out are sequentially switched. Preferably. This is because the operation life of the fuel injection means is prevented from concentrating on a specific cylinder and the number of operations of the fuel injection means is equalized, whereby the average life of the fuel injection means can be lengthened. Further, the exhaust gas temperature can be directly detected by the exhaust gas temperature detecting means without using the exhaust gas temperature estimating means.

【0022】[0022]

【作用】上記の本願の第1発明によれば,機関出力発生
のための主燃料の噴射後の膨張行程前半に少量(たとえ
ば主噴射量の5〜20%)の燃料を,温度が高いシリン
ダ室内に後噴射する。これによって,後噴射した燃料が
燃焼し排気温度を上昇させることができる。一方,詳細
を後述する図2に示すように後噴射する時期,あるいは
図3に示すように後噴射する燃料の量により排気温度が
変わるため,この時期と量を制御することで排気温度の
制御が可能となる。
According to the first invention of the present application, a small amount of fuel (for example, 5 to 20% of the main injection amount) of fuel is injected in the first half of the expansion stroke after the injection of the main fuel for generating the engine output, and the high temperature cylinder is used. Post-inject into the room. This allows the post-injected fuel to burn and raise the exhaust temperature. On the other hand, since the exhaust temperature changes depending on the timing of post-injection as shown in FIG. 2 which will be described later in detail or the amount of fuel to be post-injected as shown in FIG. 3, control of the exhaust temperature by controlling this timing and amount. Is possible.

【0023】すなわち,図2に示すように後噴射を膨張
行程の前半(ATDC90度以前)で行う(図2の後噴
射a)と,シリンダ室内の温度が十分高いところへ燃料
を噴射するため,後噴射した燃料が燃焼し,そのぶん排
気温度が上昇する。その際,シリンダ室内のガスは排気
弁が開くまでピストンの下降とともに膨張することで温
度が低下し,排気弁が開いた後にシリンダ室内から出て
いくため,遅い時期に後噴射したほうが膨張による温度
低下が小さくなり,排気温度が高くなる。また膨張行程
前半で後噴射を行う場合は,図3に示すように後噴射量
が多いほど排気温度が高くなる。
That is, as shown in FIG. 2, when the post-injection is performed in the first half of the expansion stroke (before ATDC 90 degrees) (post-injection a in FIG. 2), the fuel is injected to a place where the temperature in the cylinder chamber is sufficiently high. The post-injected fuel burns and the exhaust temperature rises accordingly. At that time, the temperature of the gas in the cylinder chamber expands as the piston descends until the exhaust valve opens, and the temperature drops. After the exhaust valve opens, the gas exits the cylinder chamber. The decrease is small and the exhaust temperature is high. When post-injection is performed in the first half of the expansion stroke, the exhaust temperature increases as the post-injection amount increases, as shown in FIG.

【0024】一方,膨張行程の後半(ATDC90度以
後)で後噴射を実施する場合には(図2の後噴射b),
シリンダ室内の温度が低いところへ燃料を噴射するため
に,後噴射した燃料は燃焼せず余り排気温度は上昇しな
い。したがって,膨張行程の前半(ATDC90度以
前)において,後噴射する時期と量を制御することで,
排気温度の制御が可能である。なお,この他に排気温度
を上昇させる方法として,主燃料噴射時期を遅角する方
法や後噴射量を固定して噴射時期のみを変更する方法な
どがあるが,いずれも上記の方法と比較して燃費の点か
ら好ましくはない。
On the other hand, when the post-injection is performed in the latter half of the expansion stroke (after ATDC 90 degrees) (post-injection b in FIG. 2),
Since the fuel is injected to a place where the temperature inside the cylinder chamber is low, the post-injected fuel does not burn and the exhaust gas temperature does not rise so much. Therefore, by controlling the timing and amount of post-injection in the first half of the expansion stroke (before ATDC 90 degrees),
Exhaust temperature can be controlled. Other methods of raising the exhaust gas temperature include retarding the main fuel injection timing and fixing the post-injection amount and changing only the injection timing. It is not preferable in terms of fuel efficiency.

【0025】上記のように,排気温度を制御し,排気温
度が排気処理手段の作動に適した温度となるようにする
ことにより,その浄化効率を大きく向上させることがで
きる。なお,排気処理手段としては,たとえばパティキ
ュレート中の気体成分浄化用の酸化触媒,パティキュレ
ート捕集浄化用の触媒付フィルタ,NOx浄化用の還元
触媒,あるいはその他の排気中の有害成分を浄化する装
置などがある。
As described above, by controlling the exhaust gas temperature so that the exhaust gas temperature becomes a temperature suitable for the operation of the exhaust gas processing means, the purification efficiency can be greatly improved. As the exhaust treatment means, for example, an oxidation catalyst for purifying gas components in particulates, a filter with a catalyst for collecting and purifying particulates, a reduction catalyst for purifying NOx, or other harmful components in exhaust gas are purified. There are devices, etc.

【0026】また本願の第2発明によれば,パティキュ
レート捕集浄化用の触媒付フィルタにて排気中のパティ
キュレートを捕集する。そして,フィルタ上のパティキ
ュレートは,排気温度が高い運転状態において燃焼し,
フィルタが再生される。しかし,渋滞などで排気温度が
低い運転状態が長時間継続した場合はフィルタへのパテ
ィキュレート堆積量が所定値を越え,エンジン出力が低
下し燃費が悪化してしまう。
According to the second aspect of the present invention, the particulates in the exhaust gas are collected by the filter with catalyst for collecting and purifying particulates. And, the particulates on the filter burn in the operating state where the exhaust gas temperature is high,
The filter is played. However, if the operating state where the exhaust gas temperature is low due to traffic congestion continues for a long time, the amount of particulate accumulation on the filter exceeds a predetermined value, the engine output decreases, and fuel consumption deteriorates.

【0027】そこで,フィルタへのパティキュレート堆
積量が所定値を越え,かつ排気温度が所定値以下でフィ
ルタの再生が期待できない場合は,少量(たとえば主噴
射量の5〜20%)の燃料を,機関出力発生のための主
燃料の噴射後に,膨張行程前半の温度が高いシリンダ室
内に後噴射し,排気温度を上昇させる。その際に,後噴
射する時期と量を制御することにより,排気温度を触媒
によるパティキュレート燃焼に適した温度(たとえば4
00℃以上)とすることが可能であり,これによってフ
ィルタ上のパティキュレートが燃焼し,フィルタが再生
される。
Therefore, when the particulate accumulation amount on the filter exceeds a predetermined value and the exhaust gas temperature is below the predetermined value and regeneration of the filter cannot be expected, a small amount of fuel (for example, 5 to 20% of the main injection amount) is used. After the main fuel is injected to generate the engine output, it is post-injected into the high temperature cylinder chamber in the first half of the expansion stroke to raise the exhaust temperature. At this time, by controlling the timing and amount of post-injection, the exhaust gas temperature is adjusted to a temperature suitable for particulate combustion by the catalyst (for example, 4
The temperature can be set to 00 ° C. or higher), whereby particulates on the filter are burned and the filter is regenerated.

【0028】また上記の本願の第3発明によれば,排気
温度がNOx浄化用の還元触媒の活性温度である所定値
(たとえば250℃)より高い場合は,機関出力発生の
ための主燃料の噴射後に,極微量(たとえば主噴射量の
0.3〜5%)の燃料を,膨張行程後半の温度が低下し
たシリンダ室内に後噴射する。この場合,シリンダ室内
の温度が低いので後噴射分の燃料は燃焼することなく熱
分解して反応性が高い炭化水素が生成し,排気ガスにそ
の炭化水素を混合する。そして,この炭化水素の作用に
より,排気ガスに含まれるNOxを効果的に触媒上で還
元浄化することができる。
Further, according to the third invention of the present application, when the exhaust gas temperature is higher than a predetermined value (for example, 250 ° C.) which is the activation temperature of the reduction catalyst for NOx purification, the main fuel for generating engine output is After the injection, a very small amount (for example, 0.3 to 5% of the main injection amount) of fuel is post-injected into the cylinder chamber where the temperature has dropped in the latter half of the expansion stroke. In this case, since the temperature in the cylinder chamber is low, the fuel for the post-injection does not burn and is thermally decomposed to generate highly reactive hydrocarbons, and the hydrocarbons are mixed with the exhaust gas. Then, due to the action of this hydrocarbon, NOx contained in the exhaust gas can be effectively reduced and purified on the catalyst.

【0029】しかしながら,排気温度が所定値以下の場
合は触媒による浄化が不可能であるため,さらに少量
(たとえば主噴射量の5〜20%)の燃料を,膨張行程
前半の温度が高いシリンダ室内に後噴射する。この場合
には,後噴射した燃料が燃焼し排気温度が上昇する。こ
の際に,後噴射する時期と量を制御して排気温度を触媒
によるNOx浄化に適した温度(たとえば250℃以
上)とすることにより,排気中のNOxを還元浄化する
ことができる。
However, when the exhaust gas temperature is lower than a predetermined value, purification by a catalyst is impossible. Therefore, a smaller amount (for example, 5 to 20% of the main injection amount) of fuel is supplied to the cylinder chamber where the temperature in the first half of the expansion stroke is high. To post-inject. In this case, the post-injected fuel burns and the exhaust gas temperature rises. At this time, the NOx in the exhaust gas can be reduced and purified by controlling the timing and amount of the post-injection to set the exhaust gas temperature to a temperature (for example, 250 ° C. or higher) suitable for NOx purification by the catalyst.

【0030】またパティキュレート捕集手段と窒素酸化
物還元手段とを有する上記の本願の第4発明において
は,通常(フィルタへのパティキュレート堆積量が所定
値以下の場合)は機関出力発生のための主燃料の噴射後
に,極微量(たとえば主噴射量の0.3〜5%)の燃料
を,膨張行程後半の温度が低下したシリンダ室内に後噴
射する。この場合は,後噴射分の燃料は燃焼することな
く熱分解して反応性が高い炭化水素が生成し,排気ガス
にその炭化水素を混合することで,排気ガスに含まれる
NOxを触媒上で良好に還元浄化することができる。そ
れと同時に排気中のパティキュレートはフィルタにて捕
集される。そして,フィルタ上のパティキュレートは,
排気温度が高い運転状態になると燃焼し,フィルタが再
生される。
In the fourth invention of the present invention, which has the particulate trapping means and the nitrogen oxide reducing means, the engine output is usually generated (when the particulate deposit amount on the filter is less than a predetermined value). After the main fuel is injected, a very small amount (for example, 0.3 to 5% of the main injection amount) of fuel is post-injected into the cylinder chamber where the temperature has dropped in the latter half of the expansion stroke. In this case, the fuel for the post-injection is thermally decomposed without burning to generate highly reactive hydrocarbons, and by mixing the hydrocarbons with the exhaust gas, NOx contained in the exhaust gas is catalytically converted. It can be satisfactorily reduced and purified. At the same time, the particulates in the exhaust gas are collected by the filter. And the particulates on the filter are
When the exhaust temperature becomes high, the combustion occurs and the filter is regenerated.

【0031】一方,渋滞などで排気温度が低い運転が長
時間続いた場合はフィルタへのパティキュレート堆積量
が所定値を越えてしまい,エンジンの出力が低下し燃費
が悪化してしまう。そこで,本発明では,フィルタへの
パティキュレート堆積量が所定値を越え,かつ排気温度
が所定値以下でフィルタの再生が期待できない場合は,
少量(たとえば主噴射量の5〜20%)の燃料を,膨張
行程前半の温度が高いシリンダ室内に後噴射する。この
場合には,後噴射した燃料が燃焼し排気温度が大きく上
昇する。そして,後噴射する時期と量を制御することで
排気温度を触媒によるパティキュレート燃焼に適した温
度(たとえば400℃以上)として,フィルタ上のパテ
ィキュレートを燃焼させ,フィルタを再生することがで
きる。上記のように,第4発明によれば,格別に複雑な
部材を付加することなく簡素な構成でNOxとパティキ
ュレートの両方を効率よく浄化することができる。
On the other hand, when the exhaust temperature is low and the operation is continued for a long time due to traffic congestion or the like, the amount of particulates accumulated on the filter exceeds a predetermined value, the output of the engine is reduced, and the fuel efficiency is deteriorated. Therefore, in the present invention, when the amount of particulates deposited on the filter exceeds a predetermined value and the exhaust gas temperature is below the predetermined value and regeneration of the filter cannot be expected,
A small amount (for example, 5 to 20% of the main injection amount) of fuel is post-injected into the cylinder chamber having a high temperature in the first half of the expansion stroke. In this case, the post-injected fuel burns and the exhaust gas temperature rises significantly. Then, by controlling the timing and amount of post-injection, the exhaust gas temperature can be set to a temperature suitable for particulate combustion by the catalyst (for example, 400 ° C. or higher), the particulates on the filter can be burned, and the filter can be regenerated. As described above, according to the fourth aspect of the present invention, both NOx and particulates can be efficiently purified with a simple structure without adding a particularly complicated member.

【0032】また上記第5発明によれば,NOx触媒に
還元剤を供給するために膨張行程後半で行う後噴射の時
期を排気温度に応じて変更することで,いかなる排気温
度においても,最適な分解度合(還元剤として用いる炭
化水素の炭素数)の燃料を触媒に供給することができ,
NOx還元浄化効率を大幅に向上することができる。す
なわち,詳細を後述する図19に示すように,還元剤と
して炭化水素を供給した場合,触媒によるNOx還元浄
化効率はある温度でピークとなり,そのピーク浄化率が
得られる温度は,還元剤(炭化水素)の炭素数により異
なる。そして,その温度は炭素数が大きいほど高くな
る。したがって,たとえば温度T1(低温)では炭素数
が小さい炭化水素Aを還元剤として用いるほうが,炭素
数が大きいBを用いるよりNOxの還元浄化効率は高い
が,温度T2(T1<T2なる高温)では逆に炭素数が
大きいBを用いたほうが効率が高くなる。
According to the fifth aspect of the invention, the timing of the post-injection performed in the latter half of the expansion stroke to supply the reducing agent to the NOx catalyst is changed according to the exhaust gas temperature, so that the optimum exhaust gas temperature can be obtained. It is possible to supply the catalyst with fuel of the degree of decomposition (the number of carbon atoms of the hydrocarbon used as the reducing agent),
The NOx reduction purification efficiency can be significantly improved. That is, as shown in FIG. 19 which will be described in detail later, when hydrocarbon is supplied as the reducing agent, the NOx reduction purification efficiency by the catalyst reaches a peak at a certain temperature, and the temperature at which the peak purification rate is obtained is the reducing agent (carbonization). Hydrogen) depends on the carbon number. And, the temperature increases as the carbon number increases. Therefore, for example, at temperature T1 (low temperature), using hydrocarbon A having a small number of carbons as a reducing agent has a higher NOx reduction purification efficiency than using B having a large number of carbons, but at temperature T2 (high temperature where T1 <T2). On the contrary, the efficiency is higher when B having a large carbon number is used.

【0033】これに対して,従来装置で行われているよ
うに後噴射の時期を常に一定とすると,排気温度が高い
場合は,分解度合が大きく(炭素数が小さい)低温で高
いNOx浄化効率が得られる炭化水素のみが供給され,
排気温度が低い場合は,逆に(炭素数が大きい)高温で
高いNOx浄化効率が得られる炭化水素のみが供給され
る。したがって,それぞれの温度に適した分解度合の燃
料が供給できず,高いNOx還元浄化効率を得ることが
できない。
On the other hand, if the post-injection timing is always constant as is done in the conventional device, when the exhaust temperature is high, the decomposition degree is large (the carbon number is small) and the NOx purification efficiency is high at a low temperature. Is only supplied to obtain
On the contrary, when the exhaust gas temperature is low, only hydrocarbons that can obtain high NOx purification efficiency at high temperature (high carbon number) are supplied. Therefore, a fuel having a decomposition degree suitable for each temperature cannot be supplied, and high NOx reduction purification efficiency cannot be obtained.

【0034】一方,膨張行程後半での後噴射により得ら
れる,熱分解した燃料(炭化水素)の炭素数は図20に
示すように後噴射時期により異なることが知られてい
る。すなわち,噴射時期が遅いほどシリンダ室内の温度
が下がってから後噴射するため,燃料の熱分解の度合が
小さくなり,得られる炭化水素の炭素数が大きくなる。
そこで,第5発明では,排気温度によって後噴射する噴
射時期を変更し,排気温度が高いほど後噴射時期を遅ら
せて炭素数が大きな還元剤を供給するようにする。これ
により,排気温度によらず,常にNOx還元効率が高い
状態で触媒を使用できる。したがって,簡素な構成でN
Oxとパティキュレートの両方を効率よく浄化すること
ができる。
On the other hand, it is known that the number of carbon atoms of the thermally decomposed fuel (hydrocarbon) obtained by the post injection in the latter half of the expansion stroke varies depending on the post injection timing, as shown in FIG. That is, the later the injection timing, the lower the temperature in the cylinder chamber and the subsequent injection, so the degree of thermal decomposition of the fuel becomes small, and the number of carbon atoms of the obtained hydrocarbon becomes large.
Therefore, in the fifth aspect of the invention, the injection timing for post-injection is changed according to the exhaust gas temperature, and the higher the exhaust gas temperature, the later the post-injection timing is delayed to supply the reducing agent having a large carbon number. As a result, the catalyst can always be used in a state where the NOx reduction efficiency is high, regardless of the exhaust temperature. Therefore, with a simple configuration, N
Both Ox and particulates can be efficiently purified.

【0035】一方,第6発明は,第4,第5発明におい
て,パティキュレート堆積量が所定値を越え且つ排気温
度が所定値以下の場合における後噴射を膨張行程前半で
のみ実施する。その理由は以下のとうりである。運転条
件によっては,膨張行程前半での後噴射によって排気温
度が上昇した状態において,続いて膨張行程後半で後噴
射を実施すると,後噴射された燃料が燃焼してしまって
有効な還元剤である炭化水素が供給できなくなる。この
ような事態の回避を重視する場合には,本発明のように
膨張行程後半における燃料の後噴射を停止して膨張行程
前半の後噴射のみとすることが好ましい。
On the other hand, in the sixth aspect of the invention, in the fourth and fifth aspects of the invention, the post-injection is carried out only in the first half of the expansion stroke when the particulate deposit amount exceeds the predetermined value and the exhaust temperature is below the predetermined value. The reason is as follows. Depending on the operating conditions, when the post-injection in the first half of the expansion stroke raises the exhaust gas temperature and then the post-injection is carried out in the latter half of the expansion stroke, the post-injected fuel burns and is an effective reducing agent. The hydrocarbon cannot be supplied. When importance is placed on avoiding such a situation, it is preferable to stop the post-injection of the fuel in the latter half of the expansion stroke and only perform the post-injection in the first half of the expansion stroke as in the present invention.

【0036】また,上記各発明において後噴射をする際
に,全体の気筒(N気筒)のうち特定の気筒だけがN気
筒分の後噴射量をまとめて噴射するようにすれば,その
後噴射量がN倍になり噴射量を極微量とする必要がなく
なる。この結果,電磁弁等のアクチュエータは極めて高
い応答性が必要なくなり,且つ制御も容易となり,従来
と比較してコスト低減及びアクチュエータの容積縮小が
可能となる。さらに,極微量の噴射において顕著となる
各気筒のノズル間の噴射量のばらつきが吸収できる。そ
のうえ,噴射ノズルの着座回数を減らすことができるた
め,ノズルシート部の耐久性を大幅に向上させることが
できる。
In the above inventions, when the post-injection is performed, if only the specific cylinders of the entire cylinders (N cylinders) are made to collectively inject the post-injection amount for N cylinders, the post-injection amount Becomes N times, and it becomes unnecessary to make the injection amount extremely small. As a result, actuators such as solenoid valves do not require extremely high responsiveness, control is easy, and cost reduction and actuator volume reduction are possible compared to conventional cases. Further, it is possible to absorb the variation in the injection amount between the nozzles of each cylinder, which is noticeable in the case of a very small amount of injection. Moreover, since the number of times the injection nozzle is seated can be reduced, the durability of the nozzle seat can be greatly improved.

【0037】また,各気筒あるいは特定の気筒が,Mサ
イクル(M≧2)に1回の割合で,Mサイクル分の後噴
射量をまとめて噴射し,さらに後噴射をする気筒を順次
変更することで,噴射量のばらつきを吸収し,かつノズ
ルシート部の耐久性を向上させるさらなる効果を得るこ
とができる。また,後述する実施例によって知られるよ
うに,本願の各発明は,複雑な部材を新たに追加するこ
となく簡素な構成によって実現が可能である。
Further, each cylinder or a specific cylinder injects the post-injection amount for M cycles collectively at a rate of once in M cycles (M ≧ 2), and the cylinders to be post-injected are sequentially changed. As a result, it is possible to obtain the further effect of absorbing the variation in the injection amount and improving the durability of the nozzle sheet portion. Further, as will be known by the embodiments described later, each invention of the present application can be realized by a simple configuration without newly adding a complicated member.

【0038】[0038]

【発明の効果】上記のように,本願の発明によれば,簡
素な構成で,パティキュレート又は窒素酸化物を効率よ
く浄化することが可能なディーゼルエンジン等の内燃機
関の排気浄化装置を提供することができる。
As described above, according to the invention of the present application, there is provided an exhaust emission control device for an internal combustion engine such as a diesel engine, which is capable of efficiently purifying particulates or nitrogen oxides with a simple structure. be able to.

【0039】[0039]

【実施例】【Example】

実施例1 4気筒ディーゼルエンジンに適用した本発明の第1の実
施例を図1を用いて説明する。本例は,図1に示すよう
に,気筒毎に設けられた燃料噴射手段としてのフューエ
ルインジェクタ13および電磁弁14と,排気通路16
中に介装された排気処理装置17と,回転センサ30,
負荷センサ31及び圧力センサ32を用いて運転状態を
検出する運転状態検出手段としてのECU18と,運転
状態検出手段の情報に基づいて排気温度を推定する排気
温度推定手段としてのECU18と,推定した排気温度
を所定値と比較する温度比較手段としてのECU18
と,温度比較手段の結果に基づいて燃料噴射時期及び燃
料噴射量を決定し上記燃料噴射手段を作動させる燃料噴
射制御手段としてのECU18を有する内燃機関(ディ
ーゼルエンジン)10の排気浄化装置1である。燃料噴
射制御手段は,排気温度が所定値以下の場合には,機関
出力発生のための主燃料噴射後に燃料の後噴射を指令
し,これによって排気温度を排気処理手段17の作動に
適した温度範囲に制御する。
Example 1 A first example of the present invention applied to a 4-cylinder diesel engine will be described with reference to FIG. In this example, as shown in FIG. 1, a fuel injector 13 and a solenoid valve 14 as fuel injection means provided for each cylinder, and an exhaust passage 16 are provided.
An exhaust treatment device 17 interposed therein, a rotation sensor 30,
The ECU 18 as an operating state detecting means for detecting the operating state using the load sensor 31 and the pressure sensor 32, the ECU 18 as the exhaust temperature estimating means for estimating the exhaust temperature based on the information of the operating state detecting means, and the estimated exhaust gas ECU 18 as a temperature comparison means for comparing the temperature with a predetermined value
And an exhaust gas purification device 1 for an internal combustion engine (diesel engine) 10 having an ECU 18 as a fuel injection control means for determining the fuel injection timing and the fuel injection amount based on the result of the temperature comparison means and operating the fuel injection means. . When the exhaust gas temperature is equal to or lower than a predetermined value, the fuel injection control means commands the post-injection of fuel after the main fuel injection for generating the engine output, thereby making the exhaust gas temperature suitable for the operation of the exhaust gas processing means 17. Control in range.

【0040】それぞれについて,以下に詳説する。この
ディーゼルエンジン10と排気浄化装置1は,図1に示
すように,4個のシリンダボアを設けそれぞれにピスト
ンを往復摺動可能にはめ込んで,それぞれの内部にシリ
ンダ室をなしたシリンダブロック11,シリンダブロッ
ク11上に組付けられてそのシリンダ室のそれぞれを閉
じたシリンダヘッド12,そのピストンをコネクティン
グロッドで連結したクランクシャフト,吸気弁および排
気弁を開閉させる動弁機構,シリンダ室に対応してシリ
ンダヘッド12に設置された燃料噴射手段としての4個
のフューエルインジェクタ13,このフューエルインジ
ェクタ13に組付けられた4個の電磁弁14,図示しな
い燃料タンクからフューエルインジェクタ13に燃料を
供給するフィードポンプ15,排気通路16中に設けら
れた排気処理装置17,電磁弁14を開閉させてフュー
エルインジェクタ13に主燃料噴射および後燃料噴射を
行わせる燃料噴射制御部等を有するECU(中央制御装
置)18とを有する。
Each of these will be described in detail below. As shown in FIG. 1, the diesel engine 10 and the exhaust emission control device 1 are provided with four cylinder bores, in which pistons are fitted so as to be reciprocally slidable, and cylinder blocks 11 and cylinders each having a cylinder chamber are formed. A cylinder head 12 mounted on the block 11 and having its cylinder chambers closed, a crankshaft having its pistons connected by a connecting rod, a valve mechanism for opening and closing intake and exhaust valves, and a cylinder corresponding to the cylinder chambers. Four fuel injectors 13 as fuel injection means installed in the head 12, four solenoid valves 14 mounted on the fuel injector 13, and a feed pump 15 for supplying fuel from a fuel tank (not shown) to the fuel injector 13. Exhaust treatment provided in the exhaust passage 16 Location 17, and an ECU (central control unit) 18 having a fuel injection control unit to perform the main fuel injection and post-fuel injection in the fuel injector 13 by opening and closing the solenoid valve 14 or the like.

【0041】ECU18は,その入力回路に運転状態検
出手段を構成する回転センサ30,負荷センサ31,お
よび圧力センサ32接続し,その出力回路に電磁弁14
を電気的に接続する。そして,上記センサ30〜32で
検出されたエンジン回転数,エンジン負荷,および燃料
噴射圧がメモリに予め入力された燃料噴射パターンと照
合され,その結果に基づいて電磁弁14を開閉制御す
る。また,ECU18は,回転センサ30及び負荷セン
サ31の出力信号に基づいて排気温度を算出し,この値
を所定値と比較する比較回路を有している。回転センサ
30はクランクシャフトに,負荷センサ31は図示しな
いアクセルペダルに,圧力センサ32はフューエルヘッ
ダ22に,それぞれ配置されている。
The ECU 18 is connected to its input circuit with a rotation sensor 30, a load sensor 31, and a pressure sensor 32, which form an operating condition detecting means, and has its output circuit connected to the solenoid valve 14.
To be electrically connected. Then, the engine speed, the engine load, and the fuel injection pressure detected by the sensors 30 to 32 are collated with the fuel injection pattern previously input to the memory, and the solenoid valve 14 is opened / closed based on the result. The ECU 18 also has a comparison circuit that calculates the exhaust temperature based on the output signals of the rotation sensor 30 and the load sensor 31, and compares this value with a predetermined value. The rotation sensor 30 is arranged on the crankshaft, the load sensor 31 is arranged on an accelerator pedal (not shown), and the pressure sensor 32 is arranged on the fuel header 22.

【0042】また,フィードポンプ15は,フューエル
ヘッダ22を介してフューエルインジェクタ13に,燃
料配管21および23を経て接続されている。それ故,
配管21,23およびフューエルヘッダ22の内部はフ
ィードポンプ15の作動により常に高圧に保たれてい
る。そして,ECU18からの指令により,常時閉状態
にある電磁弁14が開いた場合のみ,フューエルインジ
ェクタ13よりシリンダ室内へ高圧燃料を噴射する。す
なわち,エンジン出力発生のための主噴射と浄化効率を
高めるための後噴射とは,共通の装置によって作動す
る。
The feed pump 15 is connected to the fuel injector 13 via a fuel header 22 via fuel pipes 21 and 23. Therefore,
The insides of the pipes 21 and 23 and the fuel header 22 are always kept at a high pressure by the operation of the feed pump 15. Then, in response to a command from the ECU 18, the high-pressure fuel is injected from the fuel injector 13 into the cylinder chamber only when the normally closed solenoid valve 14 is opened. That is, the main injection for generating the engine output and the post-injection for increasing the purification efficiency are operated by a common device.

【0043】排気処理装置17には,次のようなものが
ある。例えば,セラミック等の担体の表面にたとえばア
ルミナなどのウォッシュコート層を設けPtやPd,R
hなどの貴金属触媒を担持してパティキュレート中の気
体成分を浄化する酸化触媒がある。あるいは,セラミッ
ク等の多孔質部材からなるハニカム状格子により多数の
流路を形成し,その流路の入口と出口を封鎖材により交
互に閉塞し,その表面にたとえばアルミナなどのウォッ
シュコート層を設け,PtやPdなどの貴金属またはC
uなどの卑金属触媒を担持したパティキュレート捕集浄
化用の触媒付フィルタがある。あるいは,セラミック等
の担体に,たとえばCu−ゼオライトやPt−ゼオライ
トなど,還元剤の存在下でディーゼル排気中等の酸素過
剰雰囲気中でもNOxを還元浄化することの出来るもの
を担持したNOx触媒等がある。
The exhaust treatment device 17 includes the following. For example, a wash coat layer such as alumina is provided on the surface of a carrier such as ceramics, and Pt, Pd, R
There is an oxidation catalyst that carries a noble metal catalyst such as h to purify the gas component in the particulates. Alternatively, a large number of channels are formed by a honeycomb lattice made of a porous material such as ceramic, and the inlets and outlets of the channels are alternately closed by a blocking material, and a washcoat layer of alumina or the like is provided on the surface thereof. , Precious metals such as Pt and Pd or C
There is a filter with a catalyst for collecting and purifying particulates that carries a base metal catalyst such as u. Alternatively, there is a NOx catalyst or the like in which a carrier such as ceramics carrying, for example, Cu-zeolite or Pt-zeolite capable of reducing and purifying NOx in the presence of a reducing agent even in an oxygen excess atmosphere such as in diesel exhaust.

【0044】次に,本例の作用効果につき,説明する。
上記ように構成される排気浄化装置1において,ECU
18は,回転センサ30,負荷センサ31で検出した運
転条件から求めた排気温度が,排気処理装置17におけ
る触媒の活性温度以下の場合は,機関出力発生のための
燃料主噴射の後に膨張行程前半(たとえばATDC40
〜90度)に少量(たとえば,主噴射量の5〜20%)
の燃料を後噴射するよう指令する。そして,後噴射した
燃料が燃焼し排気温度を上昇させることができる。
Next, the function and effect of this example will be described.
In the exhaust emission control device 1 configured as described above, the ECU
When the exhaust temperature obtained from the operating conditions detected by the rotation sensor 30 and the load sensor 31 is equal to or lower than the activation temperature of the catalyst in the exhaust treatment device 17, 18 is the first half of the expansion stroke after the main fuel injection for engine output generation. (For example, ATDC40
A small amount (for example, 5 to 20% of the main injection amount)
Command to post-inject the fuel. Then, the post-injected fuel burns and the exhaust gas temperature can be raised.

【0045】そして,図2に示すように後噴射する時期
により,あるいは図3に示すように後噴射する量により
排気温度が変わるから,この時期と量を制御することに
よって排気温度の制御が可能である。すなわち,図2
(a)の符号aに示すように後噴射を膨張行程の前半
(ATDC90度以前)で行うと,シリンダ室内の温度
が十分高いところへ燃料を噴射するため,後噴射した燃
料が燃焼し,図2(b)に示すように排気温度が上昇す
る。その際,シリンダ室内のガスは排気弁が開くまでピ
ストンの下降とともに膨張して温度が低下し,排気弁が
開いた後にシリンダ室内から出ていくため,遅い時期に
後噴射したほうが膨張による温度低下が小さくなり,排
気温度が高くなる。
Since the exhaust temperature changes depending on the timing of post-injection as shown in FIG. 2 or the amount of post-injection as shown in FIG. 3, it is possible to control the exhaust temperature by controlling this timing and amount. Is. That is, FIG.
When the post-injection is performed in the first half of the expansion stroke (before ATDC 90 degrees) as indicated by the symbol a in (a), the fuel is injected to a place where the temperature inside the cylinder chamber is sufficiently high, so the post-injected fuel burns, and The exhaust gas temperature rises as shown in FIG. At that time, the gas in the cylinder chamber expands as the piston descends until the exhaust valve opens, and the temperature drops. After the exhaust valve opens, the gas exits from the cylinder chamber. Becomes smaller and the exhaust temperature becomes higher.

【0046】また,膨張行程の前半で後噴射を行う場合
は,図3に示すように後噴射量が多いほど排気温度が高
くなる。ところが,図2(a)の符号bに示すように膨
張行程の後半(ATDC90度以後)で後噴射する場合
は,シリンダ室内の温度が低いところへ燃料を噴射する
ために,後噴射した燃料は燃焼せず,従って排気温度は
上昇しない。それ故,膨張行程の前半(ATDC90度
以前)において,後噴射する時期と量を制御することに
より,排気温度の制御が可能である。そして,排気温度
を排気処理手段の作動に適した温度にすることにより,
その浄化効率を大きく向上させることができる。
When post-injection is performed in the first half of the expansion stroke, the exhaust temperature rises as the post-injection amount increases, as shown in FIG. However, when the post-injection is performed in the latter half of the expansion stroke (after ATDC 90 degrees) as indicated by the symbol b in FIG. 2 (a), the post-injected fuel is injected because the fuel is injected to a place where the temperature in the cylinder chamber is low. It does not burn, so the exhaust temperature does not rise. Therefore, in the first half of the expansion stroke (before ATDC 90 degrees), the exhaust temperature can be controlled by controlling the timing and amount of post-injection. Then, by setting the exhaust temperature to a temperature suitable for the operation of the exhaust processing means,
The purification efficiency can be greatly improved.

【0047】次に,上記排気浄化装置1における,後噴
射時期と量の制御方法を図5に示すフローチャートを用
いて説明する。本例では,回転センサ30,負荷センサ
31の出力をもとに求めた排気温度tに基づき,後噴射
時期と量をコントロールする場合を示したが,実施例2
に示すように排気温度を直接検出してもよい。まず,S
(ステップ)101において,回転センサ30,負荷セ
ンサ31の出力をもとにECU18にて求めた排気温度
tを読み込む。排気温度tは,たとえば図4に示すよう
にエンジン回転数,エンジン負荷により決まるため,こ
れを予めECU18内に記憶させておくことで排気温度
を求めることができる。
Next, a method of controlling the post-injection timing and amount in the exhaust purification system 1 will be described with reference to the flowchart shown in FIG. In this example, the case where the post-injection timing and amount are controlled based on the exhaust gas temperature t obtained based on the outputs of the rotation sensor 30 and the load sensor 31 has been described.
The exhaust temperature may be directly detected as shown in FIG. First, S
In (step) 101, the exhaust gas temperature t obtained by the ECU 18 is read based on the outputs of the rotation sensor 30 and the load sensor 31. Since the exhaust gas temperature t is determined by the engine speed and the engine load, as shown in FIG. 4, for example, the exhaust gas temperature can be obtained by storing it in the ECU 18 in advance.

【0048】そして,S102において,このtを触媒
の活性温度である設定値t1と比較する。排気温度tが
t1より大きい場合は,条件が満たされないのでS10
1へ戻る。一方,排気温度tが前記t1より小さい場合
は触媒による排気浄化が期待できないため,S103へ
進み,昇温のための後噴射時期と後噴射量を決定する。
この時期及び量は予めECU18内に記憶されており,
これに従って,各処理装置17の作動に適した排気温度
が得られるように燃料噴射時期と燃料噴射量が決定され
る。
Then, in S102, this t is compared with the set value t1 which is the activation temperature of the catalyst. If the exhaust temperature t is higher than t1, the condition is not satisfied, so S10
Return to 1. On the other hand, when the exhaust gas temperature t is lower than the above-mentioned t1, the exhaust gas purification by the catalyst cannot be expected. Therefore, the routine proceeds to S103, where the post injection timing and the post injection amount for temperature rise are determined.
The timing and amount are stored in advance in the ECU 18,
Accordingly, the fuel injection timing and the fuel injection amount are determined so that the exhaust temperature suitable for the operation of each processing device 17 is obtained.

【0049】そしてS104において,たとえば図6に
示すように機関出力発生のための燃料主噴射の後の膨張
行程前半に少量の燃料を後噴射し,S101へ戻る。し
かしながら,必要以上に後噴射を行うと燃費が悪化する
ため,上記サイクルをたとえば1秒に1回実行し,S1
02において排気温度が設定値t1より大きくなった場
合はS105においてただちに後噴射を中止するように
する。上記のように,本例によれば,排気温度を調整
し,パティキュレート又は窒素酸化物等を効率よく浄化
することが出来るディーゼルエンジンの排気浄化装置を
提供することができる。
In S104, a small amount of fuel is post-injected in the first half of the expansion stroke after the main fuel injection for engine output generation, for example, as shown in FIG. 6, and the process returns to S101. However, if post-injection is performed more than necessary, fuel efficiency will deteriorate, so the above cycle is executed once per second, for example, and S1
If the exhaust temperature becomes higher than the set value t1 in 02, the post-injection is immediately stopped in S105. As described above, according to this example, it is possible to provide an exhaust emission control device for a diesel engine that can control the exhaust temperature and efficiently purify particulates, nitrogen oxides, and the like.

【0050】実施例2 本例は図7に示すように,実施例1の構成を示す図1に
おいて,排気処理装置17よりも上流の排気管16内に
温度センサ33を設けたもう一つの実施例である。この
温度センサ33はECU18の入力回路に電気的に接続
される。すなわち,実施例1では回転センサ30,負荷
センサ31の出力をもとに排気温度tを求めたが,これ
に対し,本例では温度センサ33により直接排気温度を
検出する。これにより,エンジンの過渡状態などにおけ
る排気温度がより正確に把握できるため,さらに精度が
高い制御が可能となる。その他については実施例1と同
様である。
Embodiment 2 As shown in FIG. 7, this embodiment is another embodiment in which the temperature sensor 33 is provided in the exhaust pipe 16 upstream of the exhaust treatment device 17 in FIG. 1 showing the structure of the embodiment 1. Here is an example. The temperature sensor 33 is electrically connected to the input circuit of the ECU 18. That is, in the first embodiment, the exhaust temperature t is obtained based on the outputs of the rotation sensor 30 and the load sensor 31, but in the present embodiment, the temperature sensor 33 directly detects the exhaust temperature. As a result, the exhaust temperature in a transient state of the engine can be grasped more accurately, so that control with higher accuracy becomes possible. Others are the same as in the first embodiment.

【0051】実施例3 本例は,図8,図10に示すように,図1又は図7にお
ける排気処理装置17として,触媒付フィルタ171を
用いた例である。更に,図1の構成に加えてECU18
の入力回路に圧力センサ35を電気的に接続する。さら
に,ECU18は,それらのセンサ30,31,35で
検出されたエンジン回転数,エンジン負荷,フィルタ上
流の圧力をもとに触媒付フィルタ171へのパティキュ
レート堆積量を計算して所定値と比較し,その結果と検
出又は推定した排気温度をもとに電磁弁14を開閉制御
する。圧力センサ35は触媒付フィルタ171よりも上
流の排気管16内に配置される。
Embodiment 3 This embodiment is an example in which a filter with catalyst 171 is used as the exhaust treatment device 17 in FIG. 1 or 7 as shown in FIG. 8 and FIG. Furthermore, in addition to the configuration of FIG.
The pressure sensor 35 is electrically connected to the input circuit. Further, the ECU 18 calculates the amount of particulate accumulation on the catalyst-equipped filter 171 based on the engine speed, the engine load, and the pressure upstream of the filter detected by the sensors 30, 31, and 35, and compares it with a predetermined value. Then, the solenoid valve 14 is opened / closed based on the result and the detected or estimated exhaust gas temperature. The pressure sensor 35 is arranged in the exhaust pipe 16 upstream of the filter 171 with catalyst.

【0052】触媒付フィルタ171はセラミック等の多
孔質部材からなるハニカム状格子により,多数の流路を
形成したものであり,その流路の入口と出口が封鎖材に
より交互に閉塞されている。そして,その表面には,た
とえばアルミナのウォッシュコート層を設け,PtやP
dなどの貴金属あるいはCuなどの卑金属触媒を担持し
ている。これにより,フィルタ再生時におけるパティキ
ュレート燃焼温度を低下させることができる。
The catalyst-equipped filter 171 has a large number of channels formed by a honeycomb lattice made of a porous material such as ceramics, and the inlets and outlets of the channels are alternately closed by a blocking material. Then, a washcoat layer of alumina, for example, is provided on the surface of the Pt or P layer.
It carries a noble metal such as d or a base metal catalyst such as Cu. As a result, the particulate combustion temperature during filter regeneration can be lowered.

【0053】次に,本例の作用効果につき,説明する。
このように構成される排気浄化装置1において,触媒付
フィルタ171にパティキュレートが堆積すると流路に
目詰まりを起こすため,圧力センサ35にて検出される
圧力が大きくなる。この圧力センサ35の出力と回転セ
ンサ30,負荷センサ31の出力に基づき,上記ECU
18にて触媒付フィルタ171におけるパティキュレー
ト堆積量が計算される。
Next, the function and effect of this example will be described.
In the exhaust emission control device 1 configured as described above, when particulates are deposited on the filter 171 with catalyst, the flow path is clogged, and the pressure detected by the pressure sensor 35 increases. Based on the outputs of the pressure sensor 35 and the rotation sensor 30 and the load sensor 31, the ECU
At 18, the particulate deposition amount in the filter with catalyst 171 is calculated.

【0054】そして,その堆積量を所定値と比較し,パ
ティキュレートの燃焼除去が必要となる設定値(たとえ
ば10g)を越え,かつ回転センサ30,負荷センサ3
1で検出した運転条件からECU18にて求めた排気温
度が触媒によるパティキュレート燃焼温度(たとえば4
00℃)以下の場合は,触媒付フィルタ171を強制的
に再生するために,機関出力発生のための燃料主噴射の
後の膨張行程前半(たとえばATDC40〜90度)に
少量(例えば,主噴射量の5〜20%)の燃料を後噴射
する。この場合,後噴射した燃料がまだ温度が高いシリ
ンダ室内で燃焼し排気温度が大きく上昇するため,フィ
ルタ上のパティキュレートが燃焼し,触媒付フィルタ1
71が再生される。
Then, the accumulated amount is compared with a predetermined value, exceeds a set value (for example, 10 g) that requires combustion removal of particulates, and the rotation sensor 30 and the load sensor 3
The exhaust gas temperature obtained by the ECU 18 from the operating condition detected in 1 is the particulate combustion temperature by the catalyst (for example, 4
If the temperature is lower than 00 ° C), in order to forcibly regenerate the filter 171 with catalyst, a small amount (for example, main injection) in the first half of the expansion stroke (for example, ATDC 40 to 90 degrees) after main fuel injection for generating engine output is performed. 5-20% of the fuel amount) is post-injected. In this case, the post-injected fuel burns in the cylinder chamber where the temperature is still high and the exhaust gas temperature rises significantly, so the particulates on the filter burn and the filter with catalyst 1
71 is reproduced.

【0055】なお,車両の高速走行時には排気温度が高
いため,この膨張行程前半における後噴射なしでも触媒
付フィルタ171を再生することが出来る。次に,上記
排気浄化装置における,後噴射時期と量の制御方法を図
9に示すフローチャートを用いて説明する。本例では,
ECU18において計算した触媒付フィルタ171にお
けるパティキュレート堆積量m及び排気温度tに基づ
き,後噴射の時期と量をコントロールする例を示す。
Since the exhaust gas temperature is high when the vehicle is traveling at high speed, the catalyst-equipped filter 171 can be regenerated without post-injection in the first half of the expansion stroke. Next, a method of controlling the post injection timing and amount in the above exhaust purification device will be described with reference to the flowchart shown in FIG. In this example,
An example in which the timing and amount of post-injection are controlled based on the particulate matter accumulation amount m in the filter with catalyst 171 and the exhaust gas temperature t calculated by the ECU 18 will be described.

【0056】まず,S(ステップ)201において,E
CU18において計算した触媒付フィルタ171におけ
るパティキュレート堆積量mを読み込む。次に,S20
2において,このmをパティキュレートの除去が必要と
なる設定値m1(たとえば10g)と比較し,m1より
小さければ触媒付フィルタ171を再生する必要がない
ためS201へ戻る。一方,パティキュレート堆積量m
が前記m1より大きい場合は,S203へ進み,回転セ
ンサ30,負荷センサ31の出力をもとにECU18に
て求めた排気温度tを読み込む。
First, in S (step) 201, E
The particulate deposition amount m in the filter with catalyst 171 calculated in the CU 18 is read. Next, S20
In 2, the m is compared with a set value m1 (for example, 10 g) that requires the removal of particulates. If it is smaller than m1, it is not necessary to regenerate the filter with catalyst 171 and the process returns to S201. On the other hand, the amount of particulate accumulation m
Is larger than the above-mentioned m1, the routine proceeds to S203, where the exhaust temperature t obtained by the ECU 18 is read based on the outputs of the rotation sensor 30 and the load sensor 31.

【0057】そして,S204において,このtを触媒
によるパティキュレート燃焼可能温度である設定値t2
(たとえば400℃)と比較する。排気温度tがt2よ
り大きい場合は,高温の排気により触媒付フィルタ17
1上のパティキュレートが燃焼するため,S201へ戻
る。一方,排気温度tが前記t2より小さい場合は,S
205へ進み,後噴射の時期と後噴射量を決定する。こ
の値は,予めECU18内に記憶されており,これに従
って,触媒によるパティキュレート燃焼温度(たとえば
400℃)が得られるような値に決定される。
Then, in S204, this t is set to the set value t2 which is the temperature at which particulate combustion by the catalyst is possible.
(For example, 400 ° C.). When the exhaust gas temperature t is higher than t2, the high temperature exhaust gas causes the filter with catalyst 17
Since the particulates above 1 burn, the process returns to S201. On the other hand, when the exhaust temperature t is lower than the above t2, S
The routine proceeds to 205, where the timing of the post injection and the post injection amount are determined. This value is stored in the ECU 18 in advance and is determined to be a value that allows the particulate combustion temperature (for example, 400 ° C.) by the catalyst to be obtained in accordance with this value.

【0058】そしてS206において,機関出力発生の
ための燃料主噴射の後の膨張行程前半に,少量の燃料を
たとえば図6に示すように後噴射することにより排気温
度を昇温し,触媒付フィルタ171上のパティキュレー
トを燃焼させる。そして,S207において,フィルタ
上のパティキュレート堆積量mを再度読み込み,S20
8において,フィルタ再生完了の基準となるパティキュ
レート堆積量の設定値m2(たとえば0.5g)と比較
し,フィルタ再生が不充分である場合には,前記S20
6へ戻り,再生が終了した場合は,S209において後
噴射を中止してS201へ戻る。以上のサイクルをたと
えば1秒に1回実行する。なお,本例においても前記実
施例2と同様に,温度センサ33により排気温度を直接
検出して制御してもよい。この場合には,図10に示す
ように触媒付きフィルタ171の上流に温度センサ33
が配置される。
In step S206, the exhaust temperature is raised by post-injecting a small amount of fuel in the first half of the expansion stroke after main fuel injection for generating engine output, for example, as shown in FIG. Burn the particulates on 171. Then, in S207, the particulate deposition amount m on the filter is read again, and S20
In step S8, a comparison is made with a set value m2 (for example, 0.5 g) of the particulate accumulation amount that is a reference for completion of filter regeneration, and if the filter regeneration is insufficient, the above S20 is performed.
Returning to step 6, when the regeneration is completed, the post injection is stopped in step S209, and the process returns to step S201. The above cycle is executed once per second, for example. In the present embodiment, the exhaust temperature may be directly detected and controlled by the temperature sensor 33 as in the second embodiment. In this case, as shown in FIG. 10, the temperature sensor 33 is provided upstream of the filter 171 with catalyst.
Is arranged.

【0059】実施例4 本例は,図11に示すように,図1に示す構成における
排気処理装置17としてNOx触媒172を用いたもう
一つの実施例である。NOx触媒172はセラミック等
の担体に,たとえばCu−ゼオライトやPt−ゼオライ
トなど,還元剤の存在下でディーゼル排気中等の酸素過
剰雰囲気中でもNOxを還元浄化可能な触媒を担持して
いる。そして還元剤を供給することによってNOxを浄
化することができる。
Embodiment 4 As shown in FIG. 11, this embodiment is another embodiment in which a NOx catalyst 172 is used as the exhaust treatment device 17 in the configuration shown in FIG. The NOx catalyst 172 carries a catalyst such as Cu-zeolite or Pt-zeolite capable of reducing and purifying NOx in the presence of a reducing agent in an oxygen excess atmosphere such as diesel exhaust in the presence of a reducing agent. Then, by supplying the reducing agent, NOx can be purified.

【0060】次に,本例の作用効果につき,説明する。
排気温度が触媒の活性温度である所定値(たとえば25
0℃)より高い場合は,機関出力発生のための主燃料の
噴射後に,極微量(たとえば主噴射量の0.3〜5%)
の燃料を,膨張行程後半(たとえばATDC90〜13
0度)の温度が低下したシリンダ室内に後噴射する。こ
の場合,後噴射分の燃料は,シリンダ室内の温度が低い
ため燃焼することなく熱分解して反応性が高い炭化水素
が生成し,排気ガスにその炭化水素が混合される。その
ため,排気ガスに含まれるNOxを触媒上で還元浄化す
ることができる。
Next, the function and effect of this example will be described.
Exhaust temperature is a certain value (eg 25
Higher than 0 ° C), after injection of the main fuel to generate engine output, a very small amount (for example, 0.3 to 5% of the main injection amount)
Fuel of the latter half of the expansion stroke (for example, ATDC 90-13
Post-injection into the cylinder chamber where the temperature (0 degree) has decreased. In this case, the fuel for the post-injection is pyrolyzed without combustion because the temperature in the cylinder chamber is low to generate highly reactive hydrocarbons, and the hydrocarbons are mixed with the exhaust gas. Therefore, NOx contained in the exhaust gas can be reduced and purified on the catalyst.

【0061】しかしながら,排気温度が所定値以下の場
合は触媒による浄化が不可能であるため,さらに少量
(たとえば主噴射量の5〜20%)の燃料を,膨張行程
前半(たとえばATDC40〜90度)の温度が高いシ
リンダ室内に後噴射する。この場合は,後噴射した燃料
が燃焼し排気温度が上昇する。そして,後噴射する時期
と量を制御することで排気温度を触媒によるNOx浄化
に適した温度(たとえば250℃以上)とすることが可
能となり,排気中のNOxを効率的に還元浄化すること
ができる。
However, if the exhaust temperature is lower than a predetermined value, purification by a catalyst is impossible, and therefore a smaller amount (for example, 5 to 20% of the main injection amount) of fuel is used in the first half of the expansion stroke (for example, ATDC 40 to 90 degrees). ) Is post-injected into the cylinder chamber whose temperature is high. In this case, the post-injected fuel burns and the exhaust gas temperature rises. Then, by controlling the timing and amount of post-injection, it becomes possible to set the exhaust temperature to a temperature suitable for NOx purification by a catalyst (for example, 250 ° C. or higher), and it is possible to efficiently reduce and purify NOx in the exhaust. it can.

【0062】次に,上記排気浄化装置における,後噴射
時期の制御方法を図12に示すフローチャートを用いて
説明する。本例では,回転センサ30,負荷センサ31
の出力をもとに求めた排気温度tに基づき,後噴射時期
と量をコントロールする場合を示す。まず,S(ステッ
プ)301において,機関出力発生のための主燃料の噴
射後に,極微量の燃料を,たとえば図13に示すように
膨張行程後半で後噴射する(図13の後噴射c)。
Next, a method of controlling the post injection timing in the above exhaust purification device will be described with reference to the flowchart shown in FIG. In this example, the rotation sensor 30, the load sensor 31
The case where the post injection timing and amount are controlled based on the exhaust temperature t obtained based on the output of First, in S (step) 301, after injection of the main fuel for generating the engine output, a very small amount of fuel is post-injected in the latter half of the expansion stroke as shown in FIG. 13 (post-injection c in FIG. 13).

【0063】次にS302において,回転センサ30,
負荷センサ31の出力をもとにECU18にて求めた排
気温度tを読み込む。そしてS303において,このt
を触媒の活性温度である設定値t3と比較する。排気温
度tがt3より大きい場合は,S302へ戻る。一方,
排気温度tが前記t3より小さい場合は触媒による排気
浄化が期待できないため,S304へ進み,後噴射時期
と量を決定する。この値は,予めECU18内に記憶さ
れており,これに従って,触媒の活性温度(たとえば2
50℃)が得られるように後噴射時期と量が決定され
る。
Next, in S302, the rotation sensor 30,
The exhaust gas temperature t obtained by the ECU 18 is read based on the output of the load sensor 31. Then, in S303, this t
Is compared with a set value t3 which is the activation temperature of the catalyst. If the exhaust temperature t is higher than t3, the process returns to S302. on the other hand,
If the exhaust gas temperature t is lower than the above-mentioned t3, exhaust gas purification by the catalyst cannot be expected, so the routine proceeds to S304, where the post injection timing and amount are determined. This value is stored in advance in the ECU 18, and the activation temperature of the catalyst (for example, 2
The post-injection timing and amount are determined so as to obtain (50 ° C.).

【0064】そして,S305において,たとえば図1
4に示すように,機関出力発生のための燃料主噴射後の
膨張行程前半にさらに少量の燃料を後噴射し(図14の
後噴射d),S302へ戻る。なお,必要以上に後噴射
を行うと燃費が悪化するため,S303において排気温
度が設定値t3より大きくなった場合はS306にて膨
張行程前半の後噴射を中止してS302へ戻るようにす
る。以上のサイクルをたとえば1秒に1回実行する。な
お,本例においても前記と同様に,温度センサ33によ
り排気温度を直接検出して制御してもよい。この場合の
構成を図15に示す。
Then, in S305, for example, as shown in FIG.
As shown in FIG. 4, a smaller amount of fuel is post-injected in the first half of the expansion stroke after the main fuel injection for generating engine output (post-injection d in FIG. 14), and the process returns to S302. It should be noted that if post-injection is performed more than necessary, fuel efficiency deteriorates. Therefore, if the exhaust gas temperature exceeds the set value t3 in S303, the post-injection in the first half of the expansion stroke is stopped in S306 and the process returns to S302. The above cycle is executed once per second, for example. In this example as well, similarly to the above, the temperature sensor 33 may directly detect the exhaust temperature and control it. The configuration in this case is shown in FIG.

【0065】実施例5 本例の浄化装置1は,図8に示す実施例3と同様の構成
から成り,図16に示すようにその制御アルゴリズムを
変更したもう一つの実施例である。また,触媒付フィル
タ171はセラミック等の多孔質部材からなるハニカム
状格子により,多数の流路が形成されたもので,その流
路の入口と出口が封鎖材により交互に閉塞されている。
そして,その表面には,たとえばアルミナやゼオライト
の層を設け,PtやPdなどの貴金属あるいはCuなど
の卑金属触媒を担持しており,これに炭化水素を還元剤
として供給することにより,酸素過剰雰囲気中でNOx
の還元浄化ができ,かつフィルタ再生時のパティキュレ
ートの燃焼温度を低下させることができる。
Embodiment 5 The purifying apparatus 1 of this embodiment has the same construction as that of Embodiment 3 shown in FIG. 8, and is another embodiment in which the control algorithm is changed as shown in FIG. The catalyst-equipped filter 171 has a large number of channels formed by a honeycomb lattice made of a porous material such as ceramic, and the inlets and outlets of the channels are alternately closed by a blocking material.
A layer of alumina or zeolite, for example, is provided on the surface thereof, and a precious metal such as Pt or Pd or a base metal catalyst such as Cu is supported on the surface of the catalyst. NOx in
Can be reduced and purified, and the combustion temperature of particulates at the time of filter regeneration can be lowered.

【0066】次に,本例の作用効果につき,説明する。
上記のように構成される排気浄化装置において,触媒付
フィルタ171へのパティキュレート堆積量が少なくフ
ィルタ再生の必要がない場合は,実施例4と同様に機関
出力発生のための主燃料の噴射後に,極微量(たとえば
主噴射量の0.3〜5%)の燃料を,膨張行程後半(た
とえばATDC90〜130度)で後噴射する。これに
よりNOxを触媒上で還元浄化することができる。
Next, the function and effect of this example will be described.
In the exhaust emission control device configured as described above, when the amount of particulates accumulated on the catalyst-equipped filter 171 is small and there is no need to regenerate the filter, after injection of main fuel for engine output generation as in the fourth embodiment. A very small amount (for example, 0.3 to 5% of the main injection amount) of fuel is post-injected in the latter half of the expansion stroke (for example, ATDC 90 to 130 degrees). As a result, NOx can be reduced and purified on the catalyst.

【0067】それに対し,堆積量がパティキュレートの
燃焼除去が必要となる設定値(たとえば10g)を越
え,かつ回転センサ30,負荷センサ31で検出した運
転条件からECU18にて求めた排気温度が触媒による
パティキュレート燃焼温度(たとえば400℃)以下の
場合は,触媒付フィルタ171を強制的に再生するため
実施例3と同様に,膨張行程前半(たとえばATDC4
0〜90度)に少量(例えば,主噴射量の5〜20%)
の燃料を後噴射する。これにより排気温度が上昇するた
め,フィルタ上のパティキュレートが燃焼し,触媒付フ
ィルタ171が再生される。
On the other hand, the amount of accumulation exceeds the set value (for example, 10 g) that requires the combustion and removal of particulates, and the exhaust temperature obtained by the ECU 18 from the operating conditions detected by the rotation sensor 30 and the load sensor 31 is the catalyst. If the particulate combustion temperature is lower than the particulate combustion temperature (for example, 400 ° C.) due to, the catalyst-equipped filter 171 is forcibly regenerated, similarly to the third embodiment, the first half of the expansion stroke (for example, ATDC4).
0 to 90 degrees) in a small amount (for example, 5 to 20% of the main injection amount)
Post-inject the fuel. As a result, the exhaust gas temperature rises, so that the particulates on the filter burn and the catalyst-equipped filter 171 is regenerated.

【0068】次に,上記排気浄化装置1における,後噴
射時期と噴射量の制御方法を図16に示すフローチャー
トを用いて説明する。本例では,ECU18において計
算した触媒付フィルタ171におけるパティキュレート
堆積量m及び排気温度tに基づき,後噴射時期と量をコ
ントロールする場合を示す。まず,S(ステップ)40
1において,機関出力発生のための燃料主噴射の後の膨
張行程後半に極微量の燃料を後噴射する。
Next, a method of controlling the post injection timing and the injection amount in the exhaust gas purification device 1 will be described with reference to the flow chart shown in FIG. In this example, a case is shown in which the post-injection timing and amount are controlled based on the particulate matter accumulation amount m in the filter with catalyst 171 and the exhaust gas temperature t calculated by the ECU 18. First, S (step) 40
In No. 1, a very small amount of fuel is post-injected in the latter half of the expansion stroke after the main fuel injection for generating engine output.

【0069】そして,S402へ進み,ECU18にお
いて計算した触媒付フィルタ171におけるパティキュ
レート堆積量mを読み込む。次に,S403において,
このmをパティキュレートの燃焼除去が必要となる設定
値m1(たとえば10g)と比較し,m1より小さけれ
ば触媒付フィルタ171を再生する必要がないためS4
01へ戻る。一方,パティキュレート堆積量mが前記m
1より大きい場合はS404へ進み,回転センサ30,
負荷センサ31の出力をもとにECU18にて求めた排
気温度tを読み込む。
Then, the process proceeds to S402, and the particulate matter accumulation amount m in the filter with catalyst 171 calculated by the ECU 18 is read. Next, in S403,
This m is compared with a set value m1 (for example, 10 g) that requires combustion removal of particulates. If it is smaller than m1, it is not necessary to regenerate the filter with catalyst 171 so that S4 is performed.
Return to 01. On the other hand, the particulate deposition amount m is
If it is greater than 1, the process proceeds to S404, where the rotation sensor 30,
The exhaust gas temperature t obtained by the ECU 18 is read based on the output of the load sensor 31.

【0070】そしてS405において,排気温度tを触
媒によるパティキュレート燃焼温度である設定値t1
(たとえば400℃)と比較する。排気温度tがt1よ
り大きい場合は,高温の排気により触媒付フィルタ17
1上のパティキュレートが燃焼するため,そのままS4
01へ戻る。一方,排気温度tが前記t1より小さい場
合は,S406において,機関出力発生のための燃料主
噴射の後の膨張行程前半に少量の燃料を後噴射する。そ
して,これによって排気温度を昇温し,触媒付フィルタ
171上のパティキュレートを燃焼させる。
In step S405, the exhaust temperature t is set to the set value t1 which is the particulate combustion temperature by the catalyst.
(For example, 400 ° C.). When the exhaust temperature t is higher than t1, the high temperature exhaust causes the filter 17 with catalyst.
Since the particulates above 1 burn, S4 remains
Return to 01. On the other hand, when the exhaust temperature t is lower than the above-mentioned t1, in S406, a small amount of fuel is post-injected in the first half of the expansion stroke after the main fuel injection for generating the engine output. Then, the exhaust gas temperature is raised by this, and the particulates on the filter 171 with catalyst are burned.

【0071】続くS407において,フィルタ上のパテ
ィキュレート堆積量mを再度読み込み,S408におい
て,フィルタの再生を終了するパティキュレート堆積量
の設定値m2(たとえば0.5g)と比較し,フィルタ
再生がまだ終了していなければ,S406へ戻り,再生
が終了した場合は,S409において膨張行程前半の後
噴射を中止してS401へ戻る。以上のサイクルをたと
えば1秒に1回実行する。なお,本例においても前記と
同様に,温度センサ33により排気温度を直接検出して
制御してもよい。この場合の構成は図10で示したのと
同様になる。
In subsequent S407, the particulate accumulation amount m on the filter is read again, and in S408, the particulate accumulation amount set value m2 (for example, 0.5 g) for ending the regeneration of the filter is compared, and the filter regeneration is not completed yet. If it has not ended, the process returns to S406, and if the regeneration has ended, in S409, the post injection in the first half of the expansion stroke is stopped and the process returns to S401. The above cycle is executed once per second, for example. In this example as well, similarly to the above, the temperature sensor 33 may directly detect the exhaust temperature and control it. The configuration in this case is similar to that shown in FIG.

【0072】実施例6 本例は,図17に示すように,実施例5において,触媒
付きフィルタ174とNOx触媒173の二つの排気処
理手段を設けたもう一つの実施例である。すなわち,実
施例5では,NOxの還元浄化とパティキュレートの捕
集・焼却浄化の両方を触媒付フィルタ171において行
っていた。それに対し本例では,NOxの還元浄化はN
Ox触媒173で行い,パティキュレートの捕集・焼却
浄化はNOx触媒173の下流に設けた触媒付フィルタ
174で行う。
Embodiment 6 This embodiment is another embodiment in which, as shown in FIG. 17, two exhaust treatment means of the filter with catalyst 174 and the NOx catalyst 173 are provided in Embodiment 5. That is, in Example 5, both the reduction purification of NOx and the collection / incineration purification of particulates were performed in the filter 171 with catalyst. On the other hand, in this example, the reduction purification of NOx is N
The Ox catalyst 173 is used to collect and incinerate particulates by a filter with catalyst 174 provided downstream of the NOx catalyst 173.

【0073】触媒コンバータ173はセラミック等の担
体に,たとえばCu−ゼオライトやPt−ゼオライトな
ど,還元剤の存在下でディーゼル排気中等の酸素過剰雰
囲気中でもNOxを還元浄化可能な触媒を担持したもの
である。一方,触媒付フィルタ174はセラミック等の
多孔質部材からなるハニカム状格子により,多数の流路
が形成されたもので,その流路の入口と出口が封鎖材に
より交互に閉塞されている。その表面には,たとえばア
ルミナのウォッシュコート層を設け,PtやPdなどの
貴金属あるいはCuなどの卑金属触媒を担持している。
The catalytic converter 173 is made of a carrier such as ceramic, and a catalyst such as Cu-zeolite or Pt-zeolite capable of reducing and purifying NOx even in an oxygen excess atmosphere such as diesel exhaust in the presence of a reducing agent. . On the other hand, the catalyst-equipped filter 174 has a large number of channels formed by a honeycomb lattice made of a porous material such as ceramic, and the inlets and outlets of the channels are alternately closed by a blocking material. A washcoat layer of alumina, for example, is provided on the surface thereof, and carries a noble metal such as Pt or Pd or a base metal catalyst such as Cu.

【0074】これにより,NOxの還元とパティキュレ
ートの酸化というそれぞれの目的に,より適した触媒1
73,174を使用することができ,両成分の一段と効
率よい浄化が可能となる。なお,本例においても前記と
同様に,温度センサ33により排気温度を直接検出して
制御してもよい。この場合の構成は図18のようにな
る。その他は,実施例5と同様である。
As a result, the catalyst 1 more suitable for the respective purposes of NOx reduction and particulate oxidation.
73 and 174 can be used, and more efficient purification can be achieved for both components. In this example as well, similarly to the above, the temperature sensor 33 may directly detect the exhaust temperature and control it. The configuration in this case is as shown in FIG. Others are the same as in the fifth embodiment.

【0075】実施例7 本例は,図11,図15に示した実施例4,図8,図1
0に示した実施例5,あるいは図17,図18に示した
実施例6と同様の構成において,触媒へNOx浄化用の
還元剤としての炭化水素(熱分解した燃料)を供給する
ための,膨張行程後半で実施する後噴射の時期を,温度
推定手段又は温度センサ33で検出した排気温度に応じ
て変更するようにしたもう一つの実施例である。図19
の破線又は実線の曲線に示すように,還元剤として炭化
水素を供給した場合,触媒によるNOx還元浄化効率は
ある温度でピークとなり,それより高温でも低温でも浄
化効率は低下してしまう。
Example 7 This example is the same as Example 4 shown in FIGS. 11 and 15 and FIGS.
In the same configuration as the fifth embodiment shown in FIG. 0 or the sixth embodiment shown in FIGS. 17 and 18, for supplying hydrocarbon (pyrolysis fuel) as a reducing agent for NOx purification to the catalyst, This is another embodiment in which the timing of the post-injection performed in the latter half of the expansion stroke is changed according to the exhaust gas temperature detected by the temperature estimation means or the temperature sensor 33. FIG.
As shown by the broken line or the solid curve, the NOx reduction purification efficiency by the catalyst peaks at a certain temperature when hydrocarbon is supplied as the reducing agent, and the purification efficiency decreases at higher or lower temperatures.

【0076】また,ピーク浄化率が得られる温度は,還
元剤(炭化水素)の炭素数により異なり,炭素数が大き
いほど高くなる。したがって,温度T1(たとえば35
0℃)では炭素数が小さい炭化水素A(たとえば炭素数
5以下)を還元剤として用いるほうが,炭素数が大きい
B(たとえば炭素数10以上)を用いるよりNOxの還
元浄化効率は高いが,温度T2(たとえば400℃)で
は逆に炭素数が大きいBを用いたほうが効率が高くな
る。これに対し,従来装置のように後噴射時期を常に一
定とすると,排気温度が高い場合は分解度合が大きく
(炭素数が小さい)低温で高いNOx浄化効率が得られ
る炭化水素のみが供給され,排気温度が低い場合は逆に
(炭素数が大きい)高温で高いNOx浄化効率が得られ
る炭化水素のみが供給される。
The temperature at which the peak purification rate is obtained depends on the carbon number of the reducing agent (hydrocarbon), and becomes higher as the carbon number increases. Therefore, the temperature T1 (for example, 35
At 0 ° C., using hydrocarbon A having a small carbon number (for example, having 5 or less carbon atoms) as a reducing agent has higher NOx reduction purification efficiency than using B having a large carbon number (for example, having 10 or more carbon atoms), but temperature On the contrary, at T2 (for example, 400 ° C.), the efficiency becomes higher when B having a large carbon number is used. On the other hand, if the post-injection timing is always constant as in the conventional device, when the exhaust temperature is high, the degree of decomposition is large (the carbon number is small), and only hydrocarbons that provide high NOx purification efficiency at low temperatures are supplied, On the contrary, when the exhaust gas temperature is low, only hydrocarbons that can obtain high NOx purification efficiency at high temperature (high carbon number) are supplied.

【0077】したがって,それぞれの温度に適した分解
度合の燃料が供給できず,高いNOx還元浄化効率を得
ることができない。一方,膨張行程後半での後噴射によ
り得られる,熱分解した燃料(炭化水素)の炭素数は図
20に示すように後噴射時期により異なる。すなわち,
噴射時期が遅いほどシリンダ室内の温度が下がってから
後噴射するため,燃料の熱分解の度合が小さくなり,得
られる炭化水素の炭素数が大きくなる。そこで,本例で
は,排気温度に応じてそれぞれ触媒のNOx還元浄化効
率を最大にする炭素数の炭化水素(熱分解した燃料)を
還元剤として供給するようにする。
Therefore, a fuel having a decomposition degree suitable for each temperature cannot be supplied, and a high NOx reduction purification efficiency cannot be obtained. On the other hand, the carbon number of the thermally decomposed fuel (hydrocarbon) obtained by the post injection in the latter half of the expansion stroke varies depending on the post injection timing as shown in FIG. That is,
The later the injection timing, the lower the temperature in the cylinder chamber and the subsequent injection, so the degree of thermal decomposition of the fuel decreases and the number of carbon atoms in the obtained hydrocarbon increases. Therefore, in this example, a hydrocarbon having a carbon number (thermally decomposed fuel) that maximizes the NOx reduction purification efficiency of the catalyst according to the exhaust temperature is supplied as the reducing agent.

【0078】すなわち,排気温度により最適な還元剤の
炭素数が異なるため,排気温度に応じて後噴射する噴射
時期を変更し,排気温度が高いほど後噴射時期を遅らせ
て炭素数が大きな還元剤を供給するようにする。これに
より,排気温度が低い場合には,低温で触媒のNOx還
元浄化効率が高い,炭素数が小さい(たとえば5以下)
炭化水素を供給し,また,排気温度が高い場合には,高
温で触媒のNOx還元浄化効率が高い,炭素数が大きい
(たとえば10以上)炭化水素を供給する。
That is, since the optimum carbon number of the reducing agent varies depending on the exhaust temperature, the injection timing of the post-injection is changed according to the exhaust temperature, and the post-injection timing is delayed as the exhaust temperature becomes higher, and the reducing agent having a large carbon number is changed. To supply. As a result, when the exhaust temperature is low, the NOx reduction purification efficiency of the catalyst is high at low temperatures, and the carbon number is small (for example, 5 or less).
When the exhaust gas temperature is high, hydrocarbons having a high carbon number (for example, 10 or more) with high NOx reduction purification efficiency of the catalyst at high temperature are supplied.

【0079】また,その際の後噴射の時期は,排気温度
に対して多段階あるいは連続的に変更するようにする。
これにより,排気温度によらず,常にNOx還元効率が
高い状態で触媒を使用でき,触媒のNOx還元浄化効率
を大幅に向上できる。なお本例における,各排気温度に
対する最適な後噴射のパターンは,予めECU18内に
記憶されており,排気温度をもとにECU18内にて決
定される。その他は実施例4,実施例5,あるいは実施
例6と同様である。
Further, the timing of the post-injection at that time is changed in multiple steps or continuously with respect to the exhaust gas temperature.
As a result, the catalyst can always be used in a state where the NOx reduction efficiency is high regardless of the exhaust temperature, and the NOx reduction purification efficiency of the catalyst can be greatly improved. The optimum post-injection pattern for each exhaust gas temperature in this example is stored in advance in the ECU 18, and is determined in the ECU 18 based on the exhaust gas temperature. Others are the same as in Example 4, Example 5, or Example 6.

【0080】次に,上記排気浄化装置における後噴射時
期の制御方法を,図8に示した実施例5に適用した例
を,図21に示すフローチャートを用いて説明する。こ
のフローチャートにおいては,ECU18において計算
した触媒付フィルタ171におけるパティキュレート堆
積量m及び排気温度tに基づき,後噴射時期と量をコン
トロールする例を示した。
Next, an example in which the method for controlling the post-injection timing in the above exhaust purification system is applied to the fifth embodiment shown in FIG. 8 will be described with reference to the flowchart shown in FIG. In this flowchart, an example is shown in which the post injection timing and amount are controlled based on the particulate matter accumulation amount m in the filter 171 with catalyst and the exhaust gas temperature t calculated by the ECU 18.

【0081】まず,S(ステップ)501において,回
転センサ30,負荷センサ31の出力をもとにECU1
8にて求めた排気温度tを読み込み,たとえば図22に
示すように排気温度をもとにECU18において後噴射
時期を決定する。S502においてそれに基づき,機関
出力発生のための燃料主噴射の後の膨張行程後半に極微
量の燃料を後噴射する。そして,S503へ進み,EC
U18において計算した触媒付フィルタにおけるパティ
キュレート堆積量mを読み込む。
First, at S (step) 501, the ECU 1 based on the outputs of the rotation sensor 30 and the load sensor 31.
The exhaust temperature t obtained in 8 is read, and the post injection timing is determined in the ECU 18 based on the exhaust temperature as shown in FIG. 22, for example. Based on this, in S502, an extremely small amount of fuel is post-injected in the latter half of the expansion stroke after the main fuel injection for generating the engine output. Then, the process proceeds to S503 and EC
The particulate deposit amount m in the filter with catalyst calculated in U18 is read.

【0082】次に,S504において,このmをパティ
キュレートの燃焼除去が必要となる設定値m1(たとえ
ば10g)と比較し,m1より小さければ触媒付フィル
タを再生する必要がないためS501へ戻る。一方,パ
ティキュレート堆積量mが前記m1より大きい場合はS
505へ進み,S501において読み込んだ排気温度t
を触媒によるパティキュレート燃焼温度である設定値t
1(たとえば400℃)と比較する。排気温度tがt1
より大きい場合は,高温の排気により触媒付フィルタ上
のパティキュレートが燃焼するため,そのままS501
へ戻る。
Next, in S504, this m is compared with a set value m1 (for example, 10 g) that requires combustion removal of particulates. If it is smaller than m1, it is not necessary to regenerate the filter with catalyst, and the process returns to S501. On the other hand, if the particulate deposition amount m is larger than the above m1, S
505, the exhaust gas temperature t read in S501
Is a set value t which is the particulate combustion temperature by the catalyst
1 (for example, 400 ° C.). Exhaust temperature t is t1
If it is larger, the particulate matter on the filter with catalyst burns due to the high temperature exhaust gas, and therefore, as it is in S501.
Return to.

【0083】一方,排気温度tが前記t1より小さい場
合は,S506において,機関出力発生のための燃料主
噴射の後の膨張行程前半に少量(たとえば主噴射量の5
〜20%)の燃料を後噴射することにより排気温度を昇
温し,触媒付フィルタ171上のパティキュレートを燃
焼させる。そして,S507において,フィルタ上のパ
ティキュレート堆積量mを再度読み込み,S508にお
いて,フィルタ再生を終了するパティキュレート堆積量
の設定値m2(たとえば0.5g)と比較し,フィルタ
再生がまだ終了していなければ,S506へ戻り,再生
が終了した場合は,S509において膨張行程前半の後
噴射を中止してS501へ戻る。以上のサイクルをたと
えば1秒に1回実行する。
On the other hand, when the exhaust gas temperature t is lower than the above t1, in S506, a small amount (for example, the main injection amount of 5
(~ 20%) fuel is post-injected to raise the exhaust gas temperature and burn the particulates on the catalyst-equipped filter 171. Then, in step S507, the particulate accumulation amount m on the filter is read again, and in step S508, the particulate accumulation amount set value m2 (for example, 0.5 g) for ending the filter regeneration is compared, and the filter regeneration is still completed. If not, the process returns to S506, and if the regeneration is completed, the post injection in the first half of the expansion stroke is stopped in S509, and the process returns to S501. The above cycle is executed once per second, for example.

【0084】なお,上記の制御を図17に示した実施例
6に適用すれば,さらに効率よくNOxとパティキュレ
ートを浄化することが可能となる。なお,本例において
も同様に,温度センサ33(図10,図15,図18)
により排気温度を直接検出して制御してもよい。この場
合の効果は前記の通りである。
If the above control is applied to the sixth embodiment shown in FIG. 17, it becomes possible to more efficiently purify NOx and particulates. Note that the temperature sensor 33 (FIGS. 10, 15, and 18) is similarly used in this example.
The exhaust gas temperature may be directly detected and controlled by. The effect in this case is as described above.

【0085】実施例8 本例は,実施例5,実施例6,及び実施例7において,
パティキュレート堆積量が所定値を越え且つ排気温度が
所定値以下の場合に,膨張行程後半における後噴射を停
止し,膨張行程前半においてのみ後噴射を実施するよう
にしたもう一つの実施例である。すなわち,実施例5,
実施例6,及び実施例7においては,パティキュレート
堆積量が設定値を越え,かつ排気温度が設定値以下の場
合は,膨張行程後半での極微量の後噴射に加え,膨張行
程前半に少量の燃料を後噴射する(図14参照)。それ
に対して,本例では,この場合は膨張行程後半での極微
量の後噴射を中止して,膨張行程前半でのみ少量の燃料
を後噴射するようにする(図6参照)。
Example 8 This example is the same as Example 5, Example 6, and Example 7.
This is another embodiment in which the post-injection is stopped in the latter half of the expansion stroke and the post-injection is carried out only in the first half of the expansion stroke when the particulate accumulation amount exceeds the predetermined value and the exhaust gas temperature is below the predetermined value. . That is, Example 5,
In Example 6 and Example 7, when the particulate deposition amount exceeds the set value and the exhaust temperature is equal to or less than the set value, in addition to the extremely small amount of post-injection in the latter half of the expansion stroke, a small amount in the first half of the expansion stroke is used. Is post-injected (see FIG. 14). On the other hand, in this example, in this case, the extremely small amount of post-injection in the latter half of the expansion stroke is stopped and a small amount of fuel is post-injected only in the first half of the expansion stroke (see FIG. 6).

【0086】これは,膨張行程前半での後噴射により排
気温度が上昇したシリンダ室内に,続けて膨張行程後半
での後噴射を行うと,運転条件によっては膨張行程後半
での後噴射分も排気温度上昇により燃焼して,NOx触
媒に対して有効な還元剤を供給できない場合があるため
である。したがって,このような機関運転を懸念する場
合には,燃費悪化抑制を優先して図6に示すように,膨
張行程前半での燃後噴射のみを行うようにする。
This is because when the post-injection in the latter half of the expansion stroke is continuously performed in the cylinder chamber where the exhaust gas temperature has risen due to the post-injection in the first half of the expansion stroke, the post-injection portion in the latter half of the expansion stroke is also exhausted depending on the operating conditions. This is because combustion may occur due to the temperature rise and an effective reducing agent may not be supplied to the NOx catalyst. Therefore, when there is a concern about such engine operation, priority is given to suppression of deterioration of fuel consumption, and as shown in FIG. 6, only post-fuel injection in the first half of the expansion stroke is performed.

【0087】次に,上記排気浄化装置における,後噴射
時期の制御方法を図23に示す。これは,実施例5,及
び実施例6における図16のフローチャートのS405
とS406の間にS601を追加したものである。な
お,本例を実施例7に適用する場合には,図21のS5
05とS5O6の間にS601を追加する。そして,S
601において膨張行程後半における後噴射を停止す
る。なお,本例においても前記と同様に,温度センサ3
3により排気温度を直接検出するようにしてもよい。
Next, FIG. 23 shows a method of controlling the post-injection timing in the above exhaust purification device. This is S405 of the flowchart of FIG. 16 in the fifth and sixth embodiments.
S601 is added between S406 and S406. When this example is applied to the seventh embodiment, S5 in FIG.
S601 is added between 05 and S5O6. And S
At 601, the post injection in the latter half of the expansion stroke is stopped. In this example as well, the temperature sensor 3
Alternatively, the exhaust temperature may be directly detected by 3.

【0088】実施例9 本例は,実施例1〜実施例8において,後噴射を特定の
気筒においてのみ実施するようにしたもう一つの実施例
である。すなわち,実施例1〜実施例8においては,排
気温度制御あるいは触媒への還元剤供給のための後噴射
を全気筒で常時行うのに対し,本例ではこれを特定の気
筒のみで行うようにする。
Embodiment 9 This embodiment is another embodiment of Embodiments 1 to 8 in which the post-injection is carried out only in a specific cylinder. That is, in Examples 1 to 8, the post-injection for controlling the exhaust gas temperature or supplying the reducing agent to the catalyst is always performed in all cylinders, whereas in this example, this is performed only in a specific cylinder. To do.

【0089】以下,NOx触媒へ還元剤を供給するため
の膨張行程後半における後噴射を例に説明すると,従来
装置は図29に示すように,主噴射終了後に,極微量の
燃料(たとえば主噴射量の0.3〜3%)を後噴射とし
て,全気筒において常時噴射していた。この後噴射は,
触媒へ還元剤としての炭化水素(熱分解した燃料)を供
給するためのものであるため,触媒において排気中のN
Oxを還元浄化するためには不可欠であるが,後噴射に
用いた燃料分は燃費が悪化してしまうため,その量を極
微量で精度良く制御することが非常に重要になる。
The post-injection in the latter half of the expansion stroke for supplying the reducing agent to the NOx catalyst will be described below as an example. As shown in FIG. 29, the conventional device has an extremely small amount of fuel (for example, main injection) after the main injection is completed. (0.3-3% of the amount) was post-injected and was constantly injected in all cylinders. After this injection,
Since it is for supplying hydrocarbons (thermally decomposed fuel) as a reducing agent to the catalyst, N
Although it is indispensable for reducing and purifying Ox, the fuel amount used for the post-injection deteriorates the fuel efficiency, so it is very important to control the amount thereof with a very small amount with high accuracy.

【0090】したがって,従来はその極微量の後噴射を
制御するために,極めて応答性が良い電磁弁が必要であ
った。そのため,電磁弁のコストおよび体積が増大して
いた。これに対し,本例では,後噴射をたとえば図24
に示すように,第1気筒のみで行うようにする。すなわ
ち,4気筒分の後噴射を第1気筒のみで行うことによ
り,後噴射量を従来の方法における第1気筒の後噴射量
の4倍とすることができる。したがって,従来と比較し
て,極微量の後噴射量を制御する必要がないため,電磁
弁14に対して,極めて速い応答性は要求されず,コス
トおよびサイズの大幅な低減が可能である。
Therefore, in the past, an electromagnetic valve having an extremely high response was required to control the extremely small amount of after injection. Therefore, the cost and volume of the solenoid valve have increased. On the other hand, in this example, the post-injection is performed as shown in FIG.
As shown in, the operation is performed only in the first cylinder. That is, by performing the post-injection for four cylinders only in the first cylinder, the post-injection amount can be made four times the post-injection amount in the first cylinder in the conventional method. Therefore, it is not necessary to control an extremely small amount of post-injection as compared with the conventional case, so that extremely fast responsiveness is not required for the solenoid valve 14, and the cost and size can be greatly reduced.

【0091】さらに,極微量の噴射の制御において顕著
となる各気筒のノズル間の噴射量のばらつきを吸収でき
るため安定した性能を得ることができる。また,後噴射
を行わない第2〜4気筒においては,噴射ノズルの着座
回数を従来と比較して低減できるため,ノズルシート部
の耐久性を大幅に向上させることができる。以上,第1
気筒のみで後噴射する場合を例に説明したが,これはそ
れ以外の1気筒あるいは複数の気筒で行ってもよい。
Further, since it is possible to absorb the variation in the injection amount between the nozzles of each cylinder, which becomes remarkable in the control of the injection of a very small amount, it is possible to obtain stable performance. Further, in the second to fourth cylinders that do not perform the post injection, the number of seats of the injection nozzle can be reduced as compared with the conventional case, so that the durability of the nozzle seat portion can be significantly improved. Above, the first
The case where the post-injection is performed only in the cylinder has been described as an example, but this may be performed in one cylinder or a plurality of cylinders other than that.

【0092】また,上記においては,NOx浄化に必要
な還元剤を供給する場合の膨張行程後半における後噴射
を例に説明したが,これは,排気温度を上昇させて触媒
付フィルタ上のパティキュレートを燃焼させる場合など
の膨張行程前半の後噴射においても適用できることはい
うまでもない。
In the above description, the post-injection in the latter half of the expansion stroke in the case of supplying the reducing agent necessary for NOx purification has been described as an example. This is because the exhaust temperature is raised and the particulate matter on the filter with catalyst is increased. It goes without saying that the present invention can also be applied to the post-injection in the first half of the expansion stroke, such as in the case of burning.

【0093】その場合,たとえば実施例5の場合では,
パティキュレート堆積量が設定値を越え,かつ排気温度
が設定値以下の場合には,膨張行程後半での極微量の後
噴射と膨張行程前半での少量の後噴射の両者を第1気筒
のみで図14に示すパターンで行う方法の他に,たとえ
ば膨張行程後半での極微量の後噴射は第1気筒で図13
に示すパターンで行い,膨張行程前半での少量の後噴射
は第2気筒で図6に示すパターンで行ってもよい。
In that case, for example, in the case of the fifth embodiment,
When the particulate accumulation amount exceeds the set value and the exhaust temperature is below the set value, both the very small amount of post-injection in the latter half of the expansion stroke and the small amount of post-injection in the first half of the expansion stroke are performed only by the first cylinder. In addition to the method performed in the pattern shown in FIG. 14, for example, a very small amount of post-injection in the latter half of the expansion stroke is performed in the first cylinder in FIG.
Alternatively, the small amount of post-injection in the first half of the expansion stroke may be performed in the second cylinder in the pattern shown in FIG.

【0094】これにより第1気筒の噴射ノズルの着座回
数を低減できるため,ノズルシート部の耐久性を大幅に
向上させることができる。これは,他の実施例に適用す
る場合も同様である。上記は第1気筒あるいは第2気筒
のみで後噴射する場合を例に説明したが,それ以外の1
気筒あるいは複数の気筒で行ってもよい。
As a result, the number of times the injection nozzle of the first cylinder is seated can be reduced, and the durability of the nozzle seat portion can be greatly improved. This is also the case when applied to other embodiments. In the above description, the case where the post-injection is performed only in the first cylinder or the second cylinder has been described.
It may be performed in a cylinder or a plurality of cylinders.

【0095】実施例10 本例は,図25に示すように,実施例9においては全サ
イクルで行った後噴射を,Mサイクル(M≧2,たとえ
ば4)毎に1回行うようにした例である。すなわち,第
1気筒において,Mサイクルに1回ずつまとめて従来の
M×4回分の後噴射を行う。これにより,実施例1で説
明した電磁弁14に対する応答性の要求をさらに低下さ
せることができる。以上,第1気筒のみで後噴射する場
合を例に説明したが,これはそれ以外の1気筒あるいは
複数の気筒で行ってもよい。また,実施例9と同様に,
膨張行程後半での後噴射と膨張行程前半での後噴射をそ
れぞれ異なる1気筒あるいは複数の気筒で行ってもよ
い。
Embodiment 10 In this embodiment, as shown in FIG. 25, in the embodiment 9, the post-injection is performed once every M cycles (M ≧ 2, for example, 4). Is. That is, in the first cylinder, the conventional M × 4 post-injections are collectively performed once every M cycles. As a result, the requirement for responsiveness to the solenoid valve 14 described in the first embodiment can be further reduced. Although the case where the post-injection is performed only in the first cylinder has been described above as an example, this may be performed in one cylinder or a plurality of other cylinders. Also, as in Example 9,
The post-injection in the latter half of the expansion stroke and the post-injection in the first half of the expansion stroke may be performed in different cylinders or a plurality of cylinders.

【0096】実施例11 本例は,図26に示すように,上記実施例9および実施
例10において,第1気筒あるいは特定の気筒のみで行
った後噴射を,その他の気筒でも順次切り換えて実施す
るようにした例である。すなわち,たとえば第1〜4気
筒がそれぞれ4サイクルに1回ずつまとめて4気筒分の
後噴射を行い,この後噴射を行う気筒を,たとえば第
1,第2,第4,第3気筒というように1サイクル毎に
順次変更していくようにする。
Embodiment 11 In this embodiment, as shown in FIG. 26, in the above-mentioned Embodiments 9 and 10, the post-injection carried out only in the first cylinder or a specific cylinder is carried out by sequentially switching to other cylinders. This is an example of doing so. That is, for example, the first to fourth cylinders collectively carry out post-injection for four cylinders once every four cycles, and the cylinders that perform this post-injection are called the first, second, fourth, and third cylinders, for example. To be changed sequentially for each cycle.

【0097】これにより,上記実施例10で説明した効
果に加え,第1気筒の噴射ノズルシート部の耐久性を向
上させることができる。なお,後噴射する気筒を順次変
更する方法としては,図26に示す方法以外に,たとえ
ば4気筒エンジンであれば,図27,図28に示すよう
に,気筒によらず2回あるいは4回の主噴射だけの噴射
を行ったら,その次に噴射する気筒は主噴射と後噴射を
行うようにして後噴射する気筒を順次変更してもよい。
As a result, in addition to the effect described in the tenth embodiment, the durability of the injection nozzle sheet portion of the first cylinder can be improved. As a method of sequentially changing the cylinders to be post-injected, in addition to the method shown in FIG. 26, for example, in the case of a 4-cylinder engine, as shown in FIG. 27 and FIG. After the injection of only the main injection is performed, the cylinders to be injected next may perform the main injection and the post-injection, and the cylinders to be post-injected may be sequentially changed.

【0098】以上は,1サイクル中1気筒のみで後噴射
する場合を例に説明したが,後噴射は複数の気筒で行っ
てもよい。また,実施例9,実施例10と同様に,膨張
行程後半での後噴射と膨張行程前半での後噴射をそれぞ
れ異なる1気筒あるいは複数の気筒で行ってもよい。
In the above, the case where the post-injection is performed in only one cylinder in one cycle has been described, but the post-injection may be performed in a plurality of cylinders. Further, as in the ninth and tenth embodiments, the post-injection in the latter half of the expansion stroke and the post-injection in the first half of the expansion stroke may be performed in different cylinders or a plurality of cylinders.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の排気浄化装置のシステム構成図。FIG. 1 is a system configuration diagram of an exhaust emission control device according to a first embodiment.

【図2】実施例1の排気浄化装置における後噴射時期と
噴射量(a)および排気温度(b)の関係を示す図。
FIG. 2 is a diagram showing a relationship between a post-injection timing and an injection amount (a) and an exhaust temperature (b) in the exhaust emission control device of the first embodiment.

【図3】実施例1において後噴射量と排気温度の関係を
示す図。
FIG. 3 is a diagram showing a relationship between a post injection amount and an exhaust temperature in the first embodiment.

【図4】実施例1においてエンジン回転数とエンジント
ルクに対する排気温度の関係を示す図。
FIG. 4 is a graph showing a relationship between engine speed and exhaust temperature with respect to engine torque in the first embodiment.

【図5】実施例1の排気浄化装置の制御フローチャー
ト。
FIG. 5 is a control flowchart of the exhaust emission control device according to the first embodiment.

【図6】実施例1におけるクランク角度と燃料噴射量の
関係を示す図。
FIG. 6 is a diagram showing a relationship between a crank angle and a fuel injection amount in the first embodiment.

【図7】実施例2の排気浄化装置のシステム構成図。FIG. 7 is a system configuration diagram of an exhaust emission control device according to a second embodiment.

【図8】実施例3の排気浄化装置のシステム構成図。FIG. 8 is a system configuration diagram of an exhaust emission control device according to a third embodiment.

【図9】実施例3の排気浄化装置の制御フローチャー
ト。
FIG. 9 is a control flowchart of the exhaust emission control device of the third embodiment.

【図10】実施例3の排気浄化装置の他のシステム構成
図。
FIG. 10 is another system configuration diagram of the exhaust emission control device of the third embodiment.

【図11】実施例4の排気浄化装置のシステム構成図。FIG. 11 is a system configuration diagram of an exhaust emission control device according to a fourth embodiment.

【図12】実施例4の排気浄化装置の制御フローチャー
ト。
FIG. 12 is a control flowchart of the exhaust emission control device of the fourth embodiment.

【図13】実施例4におけるクランク角度と燃料噴射量
の関係を示す図(排気温度が所定値より高い場合)。
FIG. 13 is a diagram showing a relationship between a crank angle and a fuel injection amount in Embodiment 4 (when the exhaust temperature is higher than a predetermined value).

【図14】実施例4におけるクランク角度と燃料噴射量
の関係を示す図(排気温度が所定値以下の場合)。
FIG. 14 is a diagram showing a relationship between a crank angle and a fuel injection amount in a fourth embodiment (when the exhaust temperature is below a predetermined value).

【図15】実施例4の排気浄化装置の他のシステム構成
図。
FIG. 15 is another system configuration diagram of the exhaust emission control device of the fourth embodiment.

【図16】実施例5の排気浄化装置の制御フローチャー
ト。
FIG. 16 is a control flowchart of the exhaust emission control device of the fifth embodiment.

【図17】実施例6の排気浄化装置のシステム構成図。FIG. 17 is a system configuration diagram of an exhaust emission control device according to a sixth embodiment.

【図18】実施例6の排気浄化装置の他のシステム構成
図。
FIG. 18 is another system configuration diagram of the exhaust emission control device of the sixth embodiment.

【図19】実施例7において触媒温度と窒素酸化物浄化
率の関係を示す図。
FIG. 19 is a graph showing the relationship between catalyst temperature and nitrogen oxide purification rate in Example 7.

【図20】実施例7において後噴射の時期と発生する炭
化水素の炭素数の関係を示す図。
FIG. 20 is a diagram showing the relationship between the timing of post-injection and the carbon number of hydrocarbons generated in Example 7.

【図21】実施例7の排気浄化装置の制御フローチャー
ト。
FIG. 21 is a control flowchart of the exhaust emission control device of the seventh embodiment.

【図22】実施例7において排気温度と後噴射の時期の
関係を示す図。
FIG. 22 is a diagram showing the relationship between the exhaust temperature and the timing of post injection in the seventh embodiment.

【図23】実施例8の排気浄化装置の制御フローチャー
ト。
FIG. 23 is a control flowchart of the exhaust emission control device of the eighth embodiment.

【図24】実施例9において各気筒の燃料噴射の発生タ
イミングと噴射量の関係を示す図。
FIG. 24 is a diagram showing the relationship between the fuel injection generation timing and the injection amount of each cylinder in the ninth embodiment.

【図25】実施例10において各気筒の燃料噴射の発生
タイミングと噴射量の関係を示す図。
FIG. 25 is a diagram showing the relationship between the fuel injection generation timing and the injection amount of each cylinder in the tenth embodiment.

【図26】実施例11において各気筒の燃料噴射の発生
タイミングと噴射量の関係を示す図。
FIG. 26 is a diagram showing the relationship between the generation timing of fuel injection and the injection amount of each cylinder in the eleventh embodiment.

【図27】実施例11において各気筒の燃料噴射の発生
タイミングと噴射量の関係を示す他の図(その1)。
FIG. 27 is another diagram (part 1) showing the relationship between the fuel injection generation timing and the injection amount of each cylinder in the eleventh embodiment.

【図28】実施例11において各気筒の燃料噴射の発生
タイミングと噴射量の関係を示す他の図(その2)。
FIG. 28 is another diagram (part 2) showing the relationship between the fuel injection generation timing and the injection amount of each cylinder in the eleventh embodiment.

【図29】従来装置において各気筒の燃料噴射の発生タ
イミングと噴射量の関係を示す他の図。
FIG. 29 is another diagram showing the relationship between the generation timing of fuel injection and the injection amount of each cylinder in the conventional apparatus.

【符号の説明】[Explanation of symbols]

1...排気浄化装置, 17...排気処理手段(装置), 18...燃料噴射制御手段(ECU), 1. . . Exhaust gas purification device, 17. . . Exhaust treatment means (device), 18. . . Fuel injection control means (ECU),

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大畑 耕一 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koichi Ohata 1-1, Showa-cho, Kariya city, Aichi Nihon Denso Co., Ltd.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 気筒毎に設けられた燃料噴射手段と,排
気通路中に介装された排気処理手段と,運転状態検出手
段と,この運転状態検出手段からの出力により排気温度
を推定する排気温度推定手段と,この排気温度推定手段
の出力を所定値と比較する温度比較手段と,この温度比
較手段の出力に基づいて上記燃料噴射手段における燃料
噴射時期と燃料噴射量とを決定し上記燃料噴射手段を作
動させる燃料噴射制御手段とを有する内燃機関の排気浄
化装置において,上記燃料噴射制御手段は,排気温度が
上記所定値以下の場合には,機関出力発生のための主燃
料噴射後に燃料の後噴射を指令し,これによって機関の
排気温度を上記排気処理手段の作動に適した温度範囲に
制御することを特徴とする内燃機関の排気浄化装置。
1. A fuel injection means provided for each cylinder, an exhaust treatment means interposed in an exhaust passage, an operating state detecting means, and an exhaust gas for estimating an exhaust temperature from an output from the operating state detecting means. The temperature estimating means, the temperature comparing means for comparing the output of the exhaust temperature estimating means with a predetermined value, and the fuel injection timing and the fuel injection amount in the fuel injecting means are determined based on the output of the temperature comparing means. In an exhaust gas purifying apparatus for an internal combustion engine, comprising: a fuel injection control unit that operates an injection unit, the fuel injection control unit, when the exhaust gas temperature is equal to or lower than the predetermined value, supplies fuel after main fuel injection for engine output generation. An exhaust gas purifying apparatus for an internal combustion engine, characterized in that after-injection is commanded to control the exhaust gas temperature of the engine within a temperature range suitable for the operation of the exhaust gas processing means.
【請求項2】 請求項1において,前記後噴射を機関の
膨張行程前半で行うことを特徴とする内燃機関の排気浄
化装置。
2. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the post-injection is performed in the first half of an expansion stroke of the engine.
【請求項3】 気筒毎に設けられた燃料噴射手段と,排
気通路中に介装されたパティキュレート捕集手段と,パ
ティキュレート捕集手段の入口側に設けた圧力検出手段
と,運転状態検出手段と,この運転状態検出手段からの
出力により排気温度を推定する排気温度推定手段と,こ
の排気温度推定手段の出力を所定値と比較する温度比較
手段と,上記運転状態検出手段と圧力検出手段の出力に
基づいてパティキュレート捕集手段におけるパティキュ
レート堆積量を算出する堆積量演算手段と,この堆積量
演算手段の出力を所定値と比較する堆積量比較手段と,
上記温度比較手段と堆積量比較手段の出力に基づいて上
記燃料噴射手段における燃料噴射時期と燃料噴射量とを
決定し燃料噴射手段を作動させる燃料噴射制御手段とを
有する内燃機関の排気浄化装置において,上記燃料噴射
制御手段は,パティキュレート捕集手段におけるパティ
キュレート堆積量が所定値を越え,かつ排気温度が所定
値以下の場合には,機関出力発生のための主燃料噴射の
後に,機関の膨張行程前半における燃料の後噴射の実施
を指令することを特徴とする内燃機関の排気浄化装置。
3. A fuel injection means provided for each cylinder, a particulate collection means interposed in the exhaust passage, a pressure detection means provided on the inlet side of the particulate collection means, and an operating state detection. Means, an exhaust temperature estimating means for estimating the exhaust temperature from the output from the operating state detecting means, a temperature comparing means for comparing the output of the exhaust temperature estimating means with a predetermined value, the operating state detecting means and the pressure detecting means. A deposition amount calculation means for calculating the amount of particulate accumulation in the particulate collection means based on the output of, and a deposition amount comparison means for comparing the output of the deposition amount calculation means with a predetermined value,
An exhaust gas purification apparatus for an internal combustion engine, comprising: a fuel injection control unit that determines a fuel injection timing and a fuel injection amount in the fuel injection unit based on the outputs of the temperature comparison unit and the deposition amount comparison unit to operate the fuel injection unit. The fuel injection control means, when the amount of particulate accumulation in the particulate collection means exceeds a predetermined value and the exhaust temperature is less than the predetermined value, after the main fuel injection for generating the engine output, An exhaust emission control device for an internal combustion engine, which commands execution of post-injection of fuel in the first half of an expansion stroke.
【請求項4】 気筒毎に設けられた燃料噴射手段と,排
気通路中に介装された窒素酸化物還元手段と,運転状態
検出手段と,この運転状態検出手段からの出力により排
気温度を推定する排気温度推定手段と,この排気温度推
定手段からの出力を所定値と比較する温度比較手段と,
この温度比較手段の出力により上記燃料噴射手段におけ
る燃料噴射時期と燃料噴射量とを決定し燃料噴射手段を
作動させる燃料噴射制御手段とを有する内燃機関の排気
浄化装置において,上記燃料噴射制御手段は,排気温度
が所定値以上の場合には,機関出力発生のための主燃料
噴射後に燃料の後噴射を膨張行程後半で実施し,排気温
度が所定値以下の場合には,それに加えて後噴射を膨張
行程前半でも実施するよう指令することを特徴とする内
燃機関の排気浄化装置。
4. A fuel injection means provided for each cylinder, a nitrogen oxide reducing means interposed in an exhaust passage, an operating state detecting means, and an exhaust temperature estimated from an output from the operating state detecting means. Exhaust temperature estimating means, and temperature comparing means for comparing the output from the exhaust temperature estimating means with a predetermined value,
In the exhaust gas purifying apparatus for an internal combustion engine, which has a fuel injection control means for operating the fuel injection means by determining the fuel injection timing and the fuel injection amount in the fuel injection means based on the output of the temperature comparison means, the fuel injection control means When the exhaust temperature is higher than the specified value, post-injection of fuel is performed in the latter half of the expansion stroke after main fuel injection to generate engine output, and when the exhaust temperature is lower than the specified value, additional injection is performed. The exhaust emission control device for an internal combustion engine, wherein an instruction is made to perform the same even in the first half of the expansion stroke.
【請求項5】 気筒毎に設けられた燃料噴射手段と,排
気通路中に介装されたパティキュレート捕集手段と,排
気通路中に介装された窒素酸化物還元手段と,パティキ
ュレート捕集手段の入口側に設けた圧力検出手段と,運
転状態検出手段と,この運転状態検出手段からの出力に
より排気温度を推定する排気温度推定手段と,この排気
温度推定手段からの出力を所定値と比較する温度比較手
段と,前記運転状態検出手段と圧力検出手段からの出力
によりパティキュレート捕集手段におけるパティキュレ
ート堆積量を算出する堆積量演算手段と,この堆積量演
算手段からの出力を所定値と比較する堆積量比較手段
と,前記温度比較手段と堆積量比較手段からの出力によ
り前記燃料噴射手段における燃料噴射時期と燃料噴射量
とを決定し燃料噴射手段を作動させる燃料噴射制御手段
とを有する内燃機関の排気浄化装置において,上記燃料
噴射制御手段は,パティキュレート捕集手段におけるパ
ティキュレート堆積量が所定値以下の場合には,機関出
力発生のための主燃料噴射後の後噴射を膨張行程後半で
実施し,パティキュレート捕集手段へのパティキュレー
ト堆積量が所定値を越え,かつ排気温度が所定値以下の
場合にはそれに加えて,後噴射を膨張行程前半でも実施
するよう指令することを特徴とする内燃機関の排気浄化
装置。
5. A fuel injection means provided for each cylinder, a particulate collection means provided in the exhaust passage, a nitrogen oxide reduction means provided in the exhaust passage, and a particulate collection. A pressure detecting means provided on the inlet side of the means, an operating state detecting means, an exhaust temperature estimating means for estimating an exhaust temperature from an output from the operating state detecting means, and an output from the exhaust temperature estimating means as a predetermined value. A temperature comparing means for comparing, a deposit amount calculating means for calculating the particulate deposit amount in the particulate collecting means by the outputs from the operating condition detecting means and the pressure detecting means, and an output from the deposit amount calculating means to a predetermined value. And a fuel injection timing and a fuel injection amount in the fuel injection means are determined by outputs from the temperature comparison means and the deposition quantity comparison means. In an exhaust gas purifying apparatus for an internal combustion engine having fuel injection control means for operating a stage, the fuel injection control means generates engine output when the amount of particulate accumulation in the particulate trapping means is below a predetermined value. After the main fuel injection, the post-injection is performed in the latter half of the expansion stroke, and if the particulate accumulation amount on the particulate trap exceeds the predetermined value and the exhaust temperature is below the predetermined value, the post-injection The exhaust emission control device for an internal combustion engine, wherein an instruction is made to perform the same even in the first half of the expansion stroke.
【請求項6】 気筒毎に設けられた燃料噴射手段と,排
気通路中に介装されたパティキュレート捕集手段と,排
気通路中に介装された窒素酸化物還元手段と,パティキ
ュレート捕集手段の入口側に設けた圧力検出手段と,運
転状態検出手段と,この運転状態検出手段の出力に基づ
いて排気温度を推定する排気温度推定手段と,この排気
温度推定手段の出力に基づいて燃料噴射時期を補正変更
する燃料噴射時期補正手段と,前記排気温度推定手段の
出力を所定値と比較する温度比較手段と,上記運転状態
検出手段と圧力検出手段の出力に基づいてパティキュレ
ート捕集手段におけるパティキュレート堆積量を算出す
る堆積量演算手段と,この堆積量演算手段の出力を所定
値と比較する堆積量比較手段と,上記温度比較手段と堆
積量比較手段の出力に基づいて上記燃料噴射手段におけ
る燃料噴射時期と燃料噴射量とを決定し燃料噴射手段を
作動させる燃料噴射制御手段とを有する内燃機関の排気
浄化装置において,上記燃料噴射制御手段は,上記パテ
ィキュレート捕集手段におけるパティキュレート堆積量
が所定値以下の場合には,機関出力発生のための主燃料
噴射後に,燃料の後噴射を機関の膨張行程後半で実施す
るよう指令し,パティキュレート捕集手段におけるパテ
ィキュレート堆積量が所定値を越え,かつ排気温度が所
定値以下の場合には,それに加えて燃料の後噴射を膨張
行程前半でも実施するよう指令し,かつ,パティキュレ
ート堆積量が所定値以下の場合における膨張行程後半で
の上記後噴射の噴射時期を排気温度推定手段の出力に基
づいて変更し,排気温度が高温になるほど後噴射時期を
設定時期より遅らせるよう指令することを特徴とする内
燃機関の排気浄化装置。
6. A fuel injection means provided for each cylinder, a particulate collection means provided in the exhaust passage, a nitrogen oxide reduction means provided in the exhaust passage, and a particulate collection. Pressure detecting means provided on the inlet side of the means, operating state detecting means, exhaust temperature estimating means for estimating the exhaust temperature based on the output of the operating state detecting means, and fuel based on the output of the exhaust temperature estimating means. Fuel injection timing correcting means for correcting and changing the injection timing, temperature comparing means for comparing the output of the exhaust temperature estimating means with a predetermined value, and particulate collecting means based on the outputs of the operating state detecting means and the pressure detecting means. Amount calculation means for calculating the amount of particulate accumulation in the above, an accumulation amount comparison means for comparing the output of the accumulation amount calculation means with a predetermined value, and outputs of the temperature comparison means and the accumulation amount comparison means. In the exhaust gas purifying apparatus for an internal combustion engine, which has a fuel injection control means for operating the fuel injection means by determining a fuel injection timing and a fuel injection amount in the fuel injection means on the basis of the fuel injection control means, When the amount of particulate accumulation in the collecting means is less than or equal to a predetermined value, after the main fuel injection for generating the engine output, a command is given to perform post-injection of fuel in the latter half of the expansion stroke of the engine, and the particulate collecting means. If the particulate matter accumulation amount in the above condition exceeds the predetermined value and the exhaust gas temperature is less than the predetermined value, in addition to this, it is instructed to carry out the post-injection of fuel also in the first half of the expansion stroke, and the particulate matter accumulation amount is the predetermined value. In the following cases, the injection timing of the post-injection in the latter half of the expansion stroke is changed based on the output of the exhaust temperature estimation means, and the exhaust temperature becomes high. Exhaust purification system of an internal combustion engine, characterized by a command to delay from timing setting the throat post-injection timing.
【請求項7】 請求項5又は請求項6において,前記パ
ティキュレート捕集手段におけるパティキュレート堆積
量が前記所定値を越え,かつ排気温度が前記所定値以下
の場合には,膨張行程後半における後噴射を実施せず,
膨張行程前半における後噴射のみを実施することを特徴
とする内燃機関の排気浄化装置。
7. The method according to claim 5 or 6, wherein when the particulate accumulation amount in the particulate trapping means exceeds the predetermined value and the exhaust gas temperature is equal to or lower than the predetermined value, the latter half of the expansion stroke is performed. Without performing injection,
An exhaust emission control device for an internal combustion engine, which performs only post-injection in the first half of an expansion stroke.
【請求項8】 請求項1〜7のいずれか1項において,
前記燃料の後噴射は,特定の気筒対してのみ行わせるこ
とを特徴とする内燃機関の排気浄化装置。
8. The method according to any one of claims 1 to 7,
An exhaust emission control device for an internal combustion engine, wherein the post-injection of the fuel is performed only for a specific cylinder.
【請求項9】 請求項1〜7のいずれか1項において,
後噴射を膨張行程前半において行なわせる気筒と,後噴
射を膨張行程後半で行なわせる気筒とが異なっているこ
とを特徴とする内燃機関の排気浄化装置。
9. The method according to claim 1, wherein
An exhaust emission control device for an internal combustion engine, characterized in that a cylinder that performs post injection in the first half of the expansion stroke and a cylinder that performs post injection in the second half of the expansion stroke are different.
【請求項10】 請求項8又は請求項9において,複数
サイクルに対する後噴射の噴射量をまとめて一度に実施
し,後噴射の回数を少なくしたことを特徴とする内燃機
関の排気浄化装置。
10. The exhaust emission control device for an internal combustion engine according to claim 8 or 9, wherein the injection amount of post-injection for a plurality of cycles is collectively performed at one time, and the number of post-injections is reduced.
【請求項11】 請求項8〜10のいずれか1項におい
て,後噴射を行なわせる気筒を順次切り換えて変更する
ことを特徴とする内燃機関の排気浄化装置。
11. An exhaust emission control system for an internal combustion engine according to claim 8, wherein cylinders to be subjected to post-injection are sequentially switched and changed.
【請求項12】 請求項1〜11のいずれか1項におい
て,前記排気温度推定手段に換えて,温度検出手段によ
って排気温度を直接検出するようにしたことを特徴とす
る内燃機関の排気浄化装置。
12. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the exhaust gas temperature estimating means is replaced by a temperature detecting means for directly detecting the exhaust gas temperature. .
JP12927295A 1995-04-28 1995-04-28 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP3671455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12927295A JP3671455B2 (en) 1995-04-28 1995-04-28 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12927295A JP3671455B2 (en) 1995-04-28 1995-04-28 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH08303290A true JPH08303290A (en) 1996-11-19
JP3671455B2 JP3671455B2 (en) 2005-07-13

Family

ID=15005491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12927295A Expired - Fee Related JP3671455B2 (en) 1995-04-28 1995-04-28 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3671455B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11200933A (en) * 1997-10-25 1999-07-27 Robert Bosch Gmbh Fuel injection method to combustion chamber in air compression type self ignition internal combustion engine
US6173571B1 (en) 1997-03-31 2001-01-16 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust purifying apparatus for an in-cylinder injection type internal combustion engine
US6370869B1 (en) 1999-07-28 2002-04-16 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of an engine
US6381952B1 (en) 1999-10-26 2002-05-07 Toyota Jidosha Kabushiki Kaisha Exhaust temperature raising apparatus and method for internal combustion engine
JP2002295287A (en) * 2001-03-30 2002-10-09 Mazda Motor Corp Spark ignition type direct injection engine equipped with turbo supercharger
JP2002541373A (en) * 1999-04-06 2002-12-03 プジョー・シトロエン・オトモビル・ソシエテ・アノニム Regeneration device for exhaust gas particulate filter of diesel engine
US6634167B1 (en) 1999-11-08 2003-10-21 Toyota Jidosha Kabushiki Kaisha Exhaust temperature raising apparatus and method for internal combustion engine
US6668548B1 (en) 1999-05-07 2003-12-30 Toyota Jidosha Kabushiki Kaisha Exhaust emission control device of internal combustion engine
US6711892B2 (en) 2001-02-26 2004-03-30 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust gas purifier for internal combustion engines
WO2006092946A1 (en) 2005-02-28 2006-09-08 Yanmar Co., Ltd. Exhaust emission control device and internal combustion engine equipped with the exhaust emission control device and particulate filter regenerating method
JP2007040221A (en) * 2005-08-04 2007-02-15 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device
JP2010121505A (en) * 2008-11-19 2010-06-03 Nissan Motor Co Ltd Fuel injection control device for internal combustion engine
CN102787891A (en) * 2011-05-16 2012-11-21 株式会社电装 Exhaust purification control device
DE102004025093B4 (en) * 2003-05-22 2020-12-17 Denso Corporation Exhaust gas cleaning system of an internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5045482B2 (en) * 2008-02-14 2012-10-10 日産自動車株式会社 Exhaust purification device and exhaust purification method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6173571B1 (en) 1997-03-31 2001-01-16 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust purifying apparatus for an in-cylinder injection type internal combustion engine
JPH11200933A (en) * 1997-10-25 1999-07-27 Robert Bosch Gmbh Fuel injection method to combustion chamber in air compression type self ignition internal combustion engine
JP2002541373A (en) * 1999-04-06 2002-12-03 プジョー・シトロエン・オトモビル・ソシエテ・アノニム Regeneration device for exhaust gas particulate filter of diesel engine
US6668548B1 (en) 1999-05-07 2003-12-30 Toyota Jidosha Kabushiki Kaisha Exhaust emission control device of internal combustion engine
US6370869B1 (en) 1999-07-28 2002-04-16 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of an engine
US6381952B1 (en) 1999-10-26 2002-05-07 Toyota Jidosha Kabushiki Kaisha Exhaust temperature raising apparatus and method for internal combustion engine
EP1096126A3 (en) * 1999-10-26 2002-09-25 Toyota Jidosha Kabushiki Kaisha Exhaust temperature raising apparatus and method for internal combustion engine
US6634167B1 (en) 1999-11-08 2003-10-21 Toyota Jidosha Kabushiki Kaisha Exhaust temperature raising apparatus and method for internal combustion engine
US6711892B2 (en) 2001-02-26 2004-03-30 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust gas purifier for internal combustion engines
JP2002295287A (en) * 2001-03-30 2002-10-09 Mazda Motor Corp Spark ignition type direct injection engine equipped with turbo supercharger
DE102004025093B4 (en) * 2003-05-22 2020-12-17 Denso Corporation Exhaust gas cleaning system of an internal combustion engine
WO2006092946A1 (en) 2005-02-28 2006-09-08 Yanmar Co., Ltd. Exhaust emission control device and internal combustion engine equipped with the exhaust emission control device and particulate filter regenerating method
JP2007040221A (en) * 2005-08-04 2007-02-15 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device
JP2010121505A (en) * 2008-11-19 2010-06-03 Nissan Motor Co Ltd Fuel injection control device for internal combustion engine
CN102787891A (en) * 2011-05-16 2012-11-21 株式会社电装 Exhaust purification control device

Also Published As

Publication number Publication date
JP3671455B2 (en) 2005-07-13

Similar Documents

Publication Publication Date Title
CA2415296C (en) Exhaust gas purification apparatus
US7775037B2 (en) Exhaust gas temperature control method, exhaust gas temperature control apparatus, and internal combustion engine system
US8186148B2 (en) Exhaust gas purifying method and purifier
EP1400664B1 (en) Exhaust gas purifying method and exhaust gas purifying system
JP2009057964A (en) Method of regenerating particulate filter and device having the particulate filter
WO2007026809A1 (en) Method for regenerating particulate filter
JPH08303290A (en) Exhaust gas purifying device for internal combustion engine
KR100721321B1 (en) Exhaust emission control device of internal combustion engine
US6823661B2 (en) Diesel engine exhaust purifying device
JP3572439B2 (en) Diesel engine exhaust purification system
JP2004251230A (en) Activity determining device for oxidation catalyst for engine and exhaust emission control device of engine
JP3663663B2 (en) Nitrogen oxide purification device for internal combustion engine
JP4012043B2 (en) Particulate filter regeneration method
CN101939517B (en) Method and apparatus for exhaust aftertreatment in a spark-ignition direct-injection internal combustion engine
GB2500925A (en) Method of operating a lean NOx trap
JP2010249076A (en) Exhaust gas purification device for internal combustion engine
JP2004028030A (en) Exhaust emission control device for internal combustion engine
JP2009299617A (en) Exhaust emission control device for internal combustion engine
JP2004239197A (en) Engine exhaust fine particulate reduction device
JP2004251138A (en) Filtering device for engine exhaust particulate purification and engine exhaust particulate purifying device
JP4236896B2 (en) Exhaust purification equipment
JP6855811B2 (en) Exhaust purification device for internal combustion engine
JP2010196704A (en) Method for regenerating exhaust gas post-treatment device
JP2005201142A (en) Particulate filter regeneration processing control device
JP2005351093A (en) Exhaust gas post-treatment device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees