[go: up one dir, main page]

JPH08298116A - Electrode material for secondary battery - Google Patents

Electrode material for secondary battery

Info

Publication number
JPH08298116A
JPH08298116A JP7127306A JP12730695A JPH08298116A JP H08298116 A JPH08298116 A JP H08298116A JP 7127306 A JP7127306 A JP 7127306A JP 12730695 A JP12730695 A JP 12730695A JP H08298116 A JPH08298116 A JP H08298116A
Authority
JP
Japan
Prior art keywords
electrode material
secondary battery
charge
artificial graphite
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7127306A
Other languages
Japanese (ja)
Inventor
Takahiko Ema
高彦 江間
Nobuo Kamimura
信夫 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP7127306A priority Critical patent/JPH08298116A/en
Publication of JPH08298116A publication Critical patent/JPH08298116A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To provide an electrode material for a secondary battery (particularly a negative electrode material for a lithium secondary battery) having an excellent charge/discharge capacity and charge/discharge efficiency. In more detail, to provide an electrode material for a secondary battery using very inexpensive specific artificial graphite powder capable of being manufactured in an industrially advantageous process and having a very excellent degree of graphitization. CONSTITUTION: A caking additive A1 which is the can residue obtained when the decompression distillation residue oil generated in a crude oil refining process is partially thermally decomposed by overheated steam is used as a raw material, and the caking additive A1 is coked at the cokable temperature to obtain a coked object A2. The coked object A2 is graphitized at the graphitizable temperature to obtain artificial graphite A3. The powder of the artificial graphite A3 is used as the electrode material for a secondary battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特定の炭素材を用いた
二次電池の電極材料、殊にリチウム二次電池用の負極材
料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery electrode material using a specific carbon material, and more particularly to a negative electrode material for a lithium secondary battery.

【0002】[0002]

【従来の技術】従来、二次電池(充放電可能な電池)の
電極材料の用途に供される炭素材として、石炭・石油等
を原料とするコークス類、天然黒鉛、人造黒鉛などが用
いられている。
2. Description of the Related Art Conventionally, coke made from coal, petroleum, etc., natural graphite, artificial graphite, etc. have been used as carbon materials used for electrode materials of secondary batteries (chargeable / dischargeable batteries). ing.

【0003】炭素材をリチウム二次電池用負極材料の用
途に供する場合は、黒鉛の完全結晶に近いものが充放電
容量および充放電効率の点で有利と考えられる。また、
電池を組み立てるときにはその炭素材を負極の銅板に塗
布するなどの操作が必要なため、炭素材を適切な粒度に
まで粉砕することが必要となる。
When a carbon material is used as a negative electrode material for a lithium secondary battery, a material close to a perfect crystal of graphite is considered to be advantageous in terms of charge / discharge capacity and charge / discharge efficiency. Also,
When assembling the battery, it is necessary to apply the carbon material to the copper plate of the negative electrode and the like, so it is necessary to crush the carbon material to an appropriate particle size.

【0004】天然黒鉛を用いたリチウム二次電池につい
ては、たとえば特開平6−290781号公報に記載が
ある。この公報の発明においては、1800℃以上の温
度で加熱処理された天然黒鉛をリチウムイオンを吸蔵放
出可能な負極材料として用いている。
A lithium secondary battery using natural graphite is described, for example, in JP-A-6-290781. In the invention of this publication, natural graphite heat-treated at a temperature of 1800 ° C. or higher is used as a negative electrode material capable of inserting and extracting lithium ions.

【0005】人造黒鉛については、その代表的な製品は
人造黒鉛電極である。典型的な人造黒鉛の製造法は次の
通りである(たとえば、「新・炭素工業」、株式会社近
代編集社発行、第2版発行日:昭和57年10月1日の
27〜40頁を参照)。 (1) 混ねつ(ニーディング) まず、石油コークスなどのフィラー(骨材)にピッチな
どのバインダー(結合材)を加えて加熱下に混ねつす
る。フィラー100部に対するバインダーの添加量は、
通常25〜50部である。混ねつ温度は、たとえば14
0〜170℃である。 (2) 成形(フォーミング) ついで上記の混ねつ物を所定の形状に成形する。成形に
は、押出し成形と型込め成形とがある。 (3) 焼成(ベイキング) 上記の成形品を、熱処理中の変形と酸化を防止するため
にコークス粉、ケイ砂などのパッキング材中に埋め、7
00〜1300℃に加熱してバインダーを炭素化させ
る。 (4) 含浸(インプリグネーション)、再焼成(リベーキ
ング) 上記の焼成工程でバインダーの30〜40%が揮散して
素材中に気孔を生ずるので、その気孔(および本来フィ
ラー中に存在している開気孔)に溶融ピッチなどの含浸
剤を充填して再焼成し、気孔率を減少させる。なお、こ
の含浸・再焼成工程を省略して次の黒鉛化工程に直接移
ることもある。 (5) 黒鉛化(グラファイタイゼーション) 焼成を終えたものを3000℃前後に加熱して熱処理す
る。これにより、不規則に配列していた微小な黒鉛結晶
が充分成長すると共に、秩序正しく配向する。この黒鉛
化工程では、通電加熱に2〜4日、冷却に1〜2週間要
する。これを加工することにより、黒鉛質の製品とな
る。
Regarding artificial graphite, a typical product thereof is an artificial graphite electrode. A typical method for producing artificial graphite is as follows (for example, "Shin Carbon Industry", published by Modern Editing Co., Ltd., 2nd edition: October 27, 1982, pages 27-40). reference). (1) Mixing (kneading) First, a binder (bonding material) such as pitch is added to a filler (aggregate) such as petroleum coke and mixed under heating. The amount of binder added to 100 parts of filler is
It is usually 25 to 50 parts. The mixing temperature is, for example, 14
It is 0 to 170 ° C. (2) Molding (forming) Next, the above-mentioned mixed material is molded into a predetermined shape. Molding includes extrusion molding and molding molding. (3) Baking (baking) The above molded product is embedded in a packing material such as coke powder or silica sand to prevent deformation and oxidation during heat treatment.
The binder is carbonized by heating at 00 to 1300 ° C. (4) Impregnation (Implantation), Re-baking (Re-baking) Since 30 to 40% of the binder is volatilized in the above baking step to generate pores in the material, the pores (and originally existing in the filler) The open porosity) is filled with an impregnating agent such as molten pitch and refired to reduce the porosity. The impregnation / rebaking step may be omitted and the process may directly proceed to the next graphitization step. (5) Graphitization (Graftification) The fired product is heated to around 3000 ° C to be heat-treated. As a result, the minute graphite crystals that are irregularly arranged grow sufficiently and are oriented in an orderly manner. In this graphitization step, it takes 2 to 4 days for heating by energization and 1 to 2 weeks for cooling. By processing this, it becomes a graphite product.

【0006】人造黒鉛も二次電池の電極材料として重要
であるが、粉状の人造黒鉛については、それを目的とし
て上述の方法に準じて製造すると余りにコスト高になる
ので、上記人造黒鉛電極の製造に際しての規格外品を粉
砕して用いるのが通常である。
Artificial graphite is also important as an electrode material for a secondary battery, but powdery artificial graphite is too expensive if it is manufactured according to the above method for that purpose. It is usual to crush and use nonstandard products at the time of manufacture.

【0007】[0007]

【発明が解決しようとする課題】天然黒鉛から高純度の
粉状黒鉛を製造する方法は、原料源確保の問題や原料の
品質のばらつきの問題がある上、灰分を除去するためフ
ッ酸のような危険な薬剤で洗浄する工程が必要になると
いう不利がある。
The method for producing high-purity powdery graphite from natural graphite has problems of securing a raw material source and of variations in the quality of raw materials, and in addition to hydrofluoric acid for removing ash. It has the disadvantage of requiring a step of cleaning with various dangerous chemicals.

【0008】加えて、天然黒鉛の粉砕品をリチウム二次
電池の負極材料として用いる場合、2回目以降の充放電
容量、充放電効率(1回目の充電電気量に対する放電電
気量の百分率)などの基本的電池特性の点でなお改良の
余地がある。また天然黒鉛としては鱗片状のものを用い
るので、電解液やバインダーとの練り操作に時間がかか
ること、負極の銅板に対する密着性が必ずしも充分では
ないこと、電解液の使用量が多くなることなどの解決課
題が残る。
In addition, when a crushed product of natural graphite is used as a negative electrode material of a lithium secondary battery, charge and discharge capacity after the second time, charge and discharge efficiency (percentage of the discharged electricity amount with respect to the first charged electricity amount), etc. There is still room for improvement in terms of basic battery characteristics. Further, since the flaky one is used as the natural graphite, it takes time to knead with the electrolytic solution or the binder, the adhesion to the copper plate of the negative electrode is not always sufficient, the amount of the electrolytic solution used becomes large, etc. The problem to be solved remains.

【0009】人造黒鉛電極の製造に際しての規格外品を
粉砕して粉状の人造黒鉛にすることは、あくまで主たる
製品は人造黒鉛電極であってそれをできるだけ無駄なく
利用することから、一定量の粉状人造黒鉛を安定して確
保することが困難であり、また価格の変動も大きい。
When crushing a nonstandard product in the production of an artificial graphite electrode into powdery artificial graphite, since the main product is an artificial graphite electrode and it is used as little as possible, a certain amount of It is difficult to secure powdered artificial graphite stably, and the price fluctuates greatly.

【0010】そこで石油コークスなどから粉状の人造黒
鉛を製造することが考えられるが、その方法はかなりの
コスト高になる上、その方法により得た粉状人造黒鉛の
黒鉛化度は満足しうるものではなく、良質の天然黒鉛に
比し著しく見劣りするという問題点がある。
Therefore, it is conceivable to produce powdery artificial graphite from petroleum coke or the like, but the method is considerably high in cost, and the graphitization degree of the powdery artificial graphite obtained by the method is satisfactory. However, there is a problem in that it is significantly inferior to high quality natural graphite.

【0011】本発明者らは、かねてより原油精製工程で
発生した減圧蒸留残渣油を過熱水蒸気による部分的熱分
解したときの缶残である粘結材の有効利用につき鋭意検
討を行っていたが、この粘結材が、一度溶けた工程を経
ていることから、芳香族縮合環(層面)の選択的配向が
ある程度発達しており、易黒鉛化性炭素材になる可能性
があるであろうとの着想を抱いた。
The inventors of the present invention have long been keenly studying the effective use of a binder as a bottom of a can when a vacuum distillation residue oil generated in a crude oil refining step is partially pyrolyzed by superheated steam. Since this binder has undergone a melting process once, the selective orientation of the aromatic condensed ring (layer surface) has been developed to some extent, and it may be a graphitizable carbon material. I had the idea.

【0012】本発明は、このようなバックグラウンドに
おいて、すぐれた充放電容量および充放電効率を有する
二次電池の電極材料(殊にリチウム二次電池用負極材
料)、さらに詳しくは、極めて安価な原料を用いかつ工
業的に有利な工程で製造できるにもかかわらずすぐれた
黒鉛化度を有する特定の人造黒鉛の粉体を用いた二次電
池の電極材料を提供することを目的とするものである。
The present invention is directed to an electrode material of a secondary battery (particularly, a negative electrode material for a lithium secondary battery) which has an excellent charge / discharge capacity and charge / discharge efficiency in such a background, and more specifically, it is extremely inexpensive. It is an object of the present invention to provide an electrode material for a secondary battery using a specific artificial graphite powder having an excellent graphitization degree even though it can be produced using raw materials and industrially advantageous steps. is there.

【0013】[0013]

【課題を解決するための手段】本発明の二次電池の電極
材料は、原油精製工程で発生した減圧蒸留残渣油を過熱
水蒸気により部分的に熱分解したときの缶残である粘結
材(A1)を原料とし、該粘結材(A1)をコークス化可能な温
度でコークス化してコークス化物(A2)となし、さらにそ
のコークス化物(A2)を黒鉛化可能な温度で黒鉛化するこ
とにより得た人造黒鉛(A3)の粉体を、二次電池の電極材
料として用いてなるものである。
The electrode material of the secondary battery of the present invention is a binder that is a residue of a can when the vacuum distillation residue oil generated in the crude oil refining step is partially pyrolyzed by superheated steam ( A1) as a raw material, the binder (A1) is coked at a coking temperature to form a coke product (A2), and the coking product (A2) is graphitized at a graphitizable temperature. The obtained artificial graphite (A3) powder is used as an electrode material of a secondary battery.

【0014】以下本発明を詳細に説明する。The present invention will be described in detail below.

【0015】本発明においては、原料として、原油精製
工程で発生した減圧蒸留残渣油を過熱水蒸気により部分
的に熱分解したときの缶残である粘結材(A1)を用いる。
この粘結材(A1)は、原油精製工程で副生するものであり
ながら、事実上製鉄用コークスの粘結材以外の用途がな
いことから、従来は処置に窮していたものであり、極め
て安価に入手できる。なお減圧蒸留残渣油の過熱水蒸気
による部分的熱分解の生産物は、分解ガスが約5%、分
解油(軽質油、重質油)が約65%、缶残である粘結材
が約30%である。
In the present invention, as a raw material, a binder (A1), which is a bottom of a can when the vacuum distillation residue oil generated in the crude oil refining step is partially pyrolyzed by superheated steam, is used.
This binder (A1) is a by-product of the crude oil refining process, but since there is practically no use other than the binder for coke for iron making, it was something that was conventionally difficult to treat. It is available at a very low price. The product of partial thermal decomposition of the vacuum distillation residue oil with superheated steam is about 5% of cracked gas, about 65% of cracked oil (light oil, heavy oil), and about 30% of binders in the bottoms. %.

【0016】そして本発明においては、上記の粘結材(A
1)をコークス化可能な温度でコークス化してコークス化
物(A2)となし、さらにそのコークス化物(A2)を黒鉛化可
能な温度で黒鉛化することにより人造黒鉛(A3)となす。
コークス化は、原料粘結材(A1)中の揮発分が大きいの
で、完全なコークス化を図るための工程である。得られ
たコークス化物(A2)は、良質の人造黒鉛(A3)を得るた
め、黒鉛化に供する前に3mm篩下、殊に100メッシュ
前後まで粉砕するのが通常である。粉砕は、たとえば、
ジョークラッシャー、ロールクラッシャー、ヘンシェル
ミキサーなどの粉砕機による粉砕方法を適宜組み合わせ
ることにより行われる。そして黒鉛化工程を実施するこ
とにより、コークス化物(A2)に含まれる灰分や硫黄分が
飛び去ると共に、高純度の人造黒鉛(A3)が得られる。
In the present invention, the above binder (A
The coke product (A2) is formed by coking 1) at a coking temperature, and the coke product (A2) is graphitized at a graphitizing temperature to produce artificial graphite (A3).
The coking is a step for achieving complete coking because the volatile content in the raw material binder (A1) is large. In order to obtain high quality artificial graphite (A3), the obtained coke product (A2) is usually ground under a 3 mm sieve, especially around 100 mesh, before being subjected to graphitization. Grinding, for example,
It is carried out by appropriately combining crushing methods using a crusher such as a jaw crusher, a roll crusher and a Henschel mixer. Then, by performing the graphitization step, ash and sulfur contained in the coke product (A2) fly away, and high-purity artificial graphite (A3) is obtained.

【0017】上記のコークス化および黒鉛化にあたって
は、従来のようなバインダーの配合や添加剤の配合は必
須でなく(つまり単味でよく)、従ってそれらの添加に
伴なう煩雑な配合工程および混ねつ工程を省略すること
ができるのみならず、それらの工程のための制御および
エネルギーも不要となり、工業的に著しく有利となる。
In the coking and graphitization described above, it is not necessary to mix the binder and the additive as in the conventional case (that is, the compounding may be simple), and therefore the complicated mixing process and the addition of the additives are required. Not only can the kneading steps be omitted, but the control and energy for those steps are also unnecessary, which is a great industrial advantage.

【0018】上記のコークス化は、不活性ガス雰囲気下
に温度500〜1200℃(好ましくは600〜110
0℃)で行う。500℃未満ではコークス化の程度が不
足し、1200℃を越えるときは、コークス化用として
特殊な炉が必要となるのでコスト高になる。黒鉛化は、
不活性ガス雰囲気下に温度2300〜3000℃(好ま
しくは2500〜3000℃、特に好ましくは2600
〜2900℃)で行う。2300℃未満では黒鉛化の程
度が不足し、3000℃を越えるときは設備面および所
要電力の点でコスト高となる。
The above coking is carried out in an inert gas atmosphere at a temperature of 500 to 1200 ° C. (preferably 600 to 110).
0 ° C). When the temperature is lower than 500 ° C, the degree of coking is insufficient, and when the temperature is higher than 1200 ° C, a special furnace is required for coking, resulting in high cost. Graphitization is
The temperature is 2300 to 3000 ° C. (preferably 2500 to 3000 ° C., particularly preferably 2600) under an inert gas atmosphere.
~ 2900 ° C). If it is less than 2300 ° C, the degree of graphitization is insufficient, and if it exceeds 3000 ° C, the cost is high in terms of equipment and required power.

【0019】人造黒鉛(A3)を得る工程はこのようにシン
プルであるにかかわらず、得られた粉状の人造黒鉛(A3)
は極めて高品質であり、天然黒鉛の理論的な層間距離d
(002)= 3.354オングストロームにごく近い 3.360±0.00
6 オングストロームのものを工業的規模で得ることがで
きる。また、黒鉛の特徴である結晶子サイズLc(002)も
1000オングストローム前後と大きく、黒鉛化度の高
いものとなる。
Although the process of obtaining the artificial graphite (A3) is simple in this way, the obtained powdery artificial graphite (A3) is obtained.
Is of very high quality and the theoretical interlayer distance d of natural graphite
(002) = 3.354 very close to angstrom 3.360 ± 0.00
6 angstroms can be obtained on an industrial scale. Further, the crystallite size Lc (002), which is a characteristic of graphite, is as large as about 1000 angstroms, and the degree of graphitization is high.

【0020】このようにして得られた粉状の人造黒鉛(A
3)は、所定の粒度、通常は1〜100μm 、好ましくは
2〜50μm 、さらに好ましくは3〜30μm にまで粉
砕される。このときの粉砕方式は摩擦圧潰を伴なわない
ジェットミル方式が最適であるが、ディスクミル方式な
ど他の粉砕方式を採用することもできる。
The powdered artificial graphite (A
3) is ground to a predetermined particle size, usually 1 to 100 μm, preferably 2 to 50 μm, more preferably 3 to 30 μm. The crushing method at this time is optimally a jet mill method without frictional crushing, but other crushing methods such as a disc mill method can also be adopted.

【0021】そして本発明においては、上記で得た人造
黒鉛(A3)の粉体を、二次電池の電極材料、殊にリチウム
二次電池の負極材料として用いる。リチウム二次電池の
負極材料のほか、ポリマーフィルム電池(ペーパー電
池)などの電極材料としても用いることができる。
In the present invention, the artificial graphite (A3) powder obtained above is used as an electrode material for secondary batteries, particularly as a negative electrode material for lithium secondary batteries. In addition to the negative electrode material for lithium secondary batteries, it can also be used as an electrode material for polymer film batteries (paper batteries) and the like.

【0022】なお、リチウム二次電池における正極材料
としては、改質MnO2、LiCoO2、LiNiO2、LiNi1-yCoyO2
LiMnO2、LiMn2O4 、LiFeO2などが用いられる。電解液と
しては、エチレンカーボネートなどの有機溶媒や、該有
機溶媒とジメチルカーボネート、ジエチルカーボネー
ト、1,2−ジメトキシエタン、1,2−ジエトキシメ
タン、エトキシメトキシエタンなどの低沸点溶媒との混
合溶媒に、LiPF6 、LiBF4 、LiClO4、LiCF3SO3などの電
解液溶質を溶解した溶液が用いられる。
As the positive electrode material in the lithium secondary battery, modified MnO 2 , LiCoO 2 , LiNiO 2 , LiNi 1-y Co y O 2 ,
LiMnO 2, LiMn 2 O 4, LiFeO 2 and the like are used. As the electrolytic solution, an organic solvent such as ethylene carbonate, or a mixed solvent of the organic solvent and a low boiling point solvent such as dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxymethane, or ethoxymethoxyethane. In addition, a solution in which an electrolyte solute such as LiPF 6 , LiBF 4 , LiClO 4 , LiCF 3 SO 3 is dissolved is used.

【0023】[0023]

【作用】リチウム二次電池の充放電反応は下記の式1の
通りであり、リチウムイオンが正極と負極の間を行き来
する。この反応はCが完全結晶に近い黒鉛の結晶構造の
ときに安定しており、充放電容量および充放電効率の安
定的な向上が期待される。
The charging / discharging reaction of the lithium secondary battery is represented by the following formula 1, and lithium ions move back and forth between the positive electrode and the negative electrode. This reaction is stable when C has a crystal structure of graphite close to a perfect crystal, and a stable improvement in charge / discharge capacity and charge / discharge efficiency is expected.

【0024】[0024]

【式1】 (Equation 1)

【0025】一般にリチウム二次電池用負極材料の要求
性能に関しては、2回目以降の充放電容量が200mAh/
g 以上あると良好であるとされているが、上記粘結材(A
1)由来の人造黒鉛(A3)からなる本発明の二次電池の電極
材料は、後述の実施例のように2回目以降の充放電容量
が280mAh/g 以上、さらには290mAh/g 以上であ
り、300mAh/g 以上とすることもできる。
Generally, regarding the required performance of the negative electrode material for the lithium secondary battery, the charge / discharge capacity after the second time is 200 mAh /
It is considered to be good if it is g or more, but the above binder (A
The electrode material of the secondary battery of the present invention composed of the artificial graphite (A3) derived from 1) has a charge / discharge capacity after the second time of 280 mAh / g or more, and further 290 mAh / g or more as in Examples described later. , 300 mAh / g or more.

【0026】本発明においてこのようにすぐれた作用効
果が得られるのは、原料として用いた粘結材(A1)が、一
度溶けた工程を経ているため芳香族縮合環(層面)の選
択的配向がかなり発達した易黒鉛化の炭素材であり、得
られた粉状の人造黒鉛(A3)が理想的な黒鉛結晶に近い黒
鉛化度を有する高品質のものとなっているためと考えら
れる。
In the present invention, such excellent action and effect are obtained because the binder (A1) used as a raw material has undergone a step of once melting, so that the aromatic condensed ring (layer surface) is selectively oriented. It is thought that this is because the graphitized carbon material that has been considerably developed is obtained, and the obtained artificial graphite powder (A3) is of high quality having a graphitization degree close to that of an ideal graphite crystal.

【0027】加えて上記の人造黒鉛(A3)からなる本発明
の二次電池の電極材料は、鱗片状の天然黒鉛からなるそ
れに比し、電解液やバインダーとの馴染みが良く、負極
の銅板に対する密着性も良好であるので、ハンドリング
面で有利であり、また電解液の使用量が2/3程度で済
むという利点もある。
In addition, the electrode material of the secondary battery of the present invention composed of the above-mentioned artificial graphite (A3) has better compatibility with the electrolytic solution and the binder as compared with that composed of scale-like natural graphite, and is suitable for the copper plate of the negative electrode. Since it has good adhesion, it is advantageous in terms of handling and also has an advantage that the amount of electrolyte used can be about 2/3.

【0028】そして本発明においては、上記のように極
めて安価な特定の粘結材(A1)を原料としている上、バイ
ンダーおよび添加剤のいずれをも配合することなく単味
で粉状の人造黒鉛(A3)が得られため工程がシンプル化さ
れ、原料コストおよび製造コストにおいても大幅なコス
ト減が図られる。
In the present invention, the extremely inexpensive specific binder (A1) is used as a raw material as described above, and a plain and powdery artificial graphite is added without adding any binder or additive. Since (A3) is obtained, the process is simplified and the raw material cost and the manufacturing cost are significantly reduced.

【0029】[0029]

【実施例】次に実施例をあげて本発明をさらに説明す
る。
EXAMPLES The present invention will be further described with reference to examples.

【0030】〈試験方法〉供試黒鉛と約4重量%のポリ
テトラフルオロエチレン(PTFE)とを混練後、ステ
ンレスメッシュに塗布した。これを150℃で12時間
真空乾燥したものを試験極とした。試験には、金属リチ
ウムシートをステンレス板に圧着したものを対極とした
2極式セルを用いた。組み立ては、水分値20ppm 以下
に調整したドライボックス内で行い、電解液としては 1
M-LiClO4/(EC+DME(1:1))、すなわちエチレンカーボネー
トと1,2−ジメトキシエタンとの容積比で1:1の混
合溶媒にLiClO4を1Mの割合で溶解したものを用いた。
<Test Method> The test graphite and about 4% by weight of polytetrafluoroethylene (PTFE) were kneaded and then applied to a stainless mesh. This was vacuum-dried at 150 ° C. for 12 hours and used as a test electrode. In the test, a bipolar cell was used in which a metal lithium sheet was pressure-bonded to a stainless steel plate as a counter electrode. Assemble in a dry box adjusted to a water content of 20 ppm or less, and
M-LiClO 4 / (EC + DME (1: 1)), that is, LiClO 4 dissolved at a 1M ratio in a mixed solvent of ethylene carbonate and 1,2-dimethoxyethane at a volume ratio of 1: 1 is used. I was there.

【0031】〈負極材料の調製と充放電性能〉 実施例1 (原料の準備)原油精製工程で発生した減圧蒸留残渣油
を過熱水蒸気により部分的に熱分解し、さらに減圧蒸留
したときの缶残である粘結材(A1)を原料として用いた。
この粘結材は、たとえば現在は富士石油株式会社から
「ASP」、「ユリカ」または「ユリカASP」の商品
名で製造販売されているものである。
<Preparation of Negative Electrode Material and Charge / Discharge Performance> Example 1 (Preparation of Raw Material) The residue of vacuum distillation generated in the crude oil refining step was partially pyrolyzed by superheated steam, and the bottoms of the bottom after further vacuum distillation were carried out. The binder (A1) was used as a raw material.
This binder is currently manufactured and sold by Fuji Oil Co., Ltd. under the trade name of “ASP”, “Yurika” or “Yurika ASP”.

【0032】(コークス化および黒鉛化)上述の粘結材
(A1)を窒素ガス雰囲気下に温度800℃で2時間加熱処
理することにより炭化処理(コークス化処理)した後、
得られたコークス化物(A2)を、ジョークラッシャー、ロ
ールクラッシャー、ヘンシェルミキサーを用いて順次粉
砕し、約100メッシュ程度の粒度とした。
(Coke and Graphitization) The binder described above.
After carbonizing (coking) by heating (A1) in a nitrogen gas atmosphere at a temperature of 800 ° C. for 2 hours,
The obtained coke product (A2) was sequentially pulverized using a jaw crusher, a roll crusher, and a Henschel mixer to obtain a particle size of about 100 mesh.

【0033】ついでこの粉砕物を黒鉛ルツボに入れ、ア
チソン炉にて窒素ガス雰囲気下におよそ30℃/hrの速
度で2800℃まで昇温してから約2時間置き、以後長
時間かけてゆっくりと放冷することにより黒鉛化して、
人造黒鉛(A3)となした。
Then, this pulverized product was put into a graphite crucible and heated in an Atchison furnace to 2800 ° C. at a rate of about 30 ° C./hr in a nitrogen gas atmosphere and left for about 2 hours, and then slowly over a long period of time. It is graphitized by allowing it to cool,
Made with artificial graphite (A3).

【0034】(灰分、揮発分、全硫黄分)原料粘結材(A
1)、コークス化物(A2)および人造黒鉛(A3)の工業分析値
は、次の通りであった。なお、灰分の分析はJIS K 8812
4、揮発分の分析はJIS K 8812 5による。 原料粘結材(A1) 灰分:0.20%、揮発分:38.4% コークス化物(A2) 灰分:0.48%、揮発分:2.48% 人造黒鉛(A3) 灰分:0.01%、揮発分:0.01%以下
(Ash content, volatile content, total sulfur content) Raw material binder (A
The industrial analysis values of 1), coke compound (A2) and artificial graphite (A3) were as follows. The analysis of ash content is based on JIS K 8812.
4. Volatile content analysis is based on JIS K 8812 5. Raw material Binder (A1) Ash: 0.20%, Volatile: 38.4% Coke (A2) Ash: 0.48%, Volatile: 2.48% Artificial graphite (A3) Ash: 0.01%, Volatile: 0.01% or less

【0035】また、原料粘結材(A1)、コークス化物(A2)
および人造黒鉛(A3)の元素分析値のうち、全硫黄分(JI
S K 8813 5.3)は、 原料粘結材(A1): 5.50% コークス化物(A2):5.04% 人造黒鉛(A3): 0.001%以下 であった。なお原料粘結材(A1)の元素分析値のうち炭
素、水素、窒素、酸素は、それぞれ、85.5%、 5.7%、
1.7%、 1.4%であった。
Further, raw material binder (A1), coke product (A2)
And elemental analysis values of artificial graphite (A3), total sulfur content (JI
SK 8813 5.3) had a raw material binder (A1): 5.50% coke (A2): 5.04% artificial graphite (A3): 0.001% or less. Of the elemental analysis values of the raw binder (A1), carbon, hydrogen, nitrogen, and oxygen were 85.5%, 5.7%, and
It was 1.7% and 1.4%.

【0036】この結果から、黒鉛化製品である人造黒鉛
(A3)は灰分および硫黄分が充分に除去されており、該人
造黒鉛(A3)が高純度、高機能であることがわかる。
From these results, artificial graphite, which is a graphitized product,
Ash content and sulfur content were sufficiently removed from (A3), which shows that the artificial graphite (A3) has high purity and high function.

【0037】(人造黒鉛(A3)のd値および結晶子サイ
ズ)上記で得た人造黒鉛(A3)の黒鉛化度を、X線回折装
置により測定(管電圧:40kV、管電流:40mA、
スキャンスピード: 0.250゜/min)したところ、黒鉛の
特徴である(002) 面および(110) 面のピークが強く出て
いた。この人造黒鉛(A3)のd値および結晶子サイズは、 d(002) 3.358オングストローム Lc (002) 1020 オングストローム La (110) 7098 オングストローム であり、黒鉛化が高度に発達していることがわかった。
なお、天然黒鉛の理論的な層間距離d(002) は 3.354オ
ングストロームである。
(D Value and Crystallite Size of Artificial Graphite (A3)) The degree of graphitization of the artificial graphite (A3) obtained above was measured by an X-ray diffractometer (tube voltage: 40 kV, tube current: 40 mA,
When the scan speed was 0.250 ° / min), the peaks of (002) plane and (110) plane, which are characteristic of graphite, were strongly observed. The d value and crystallite size of this artificial graphite (A3) were d (002) 3.358 angstrom Lc (002) 1020 angstrom La (110) 7098 angstrom, and it was found that graphitization was highly developed.
The theoretical interlayer distance d (002) of natural graphite is 3.354 angstroms.

【0038】(二次電池としての性能)上記で得た人造
黒鉛(A3)をアルピネ製カウンター式ジェットミルにて1
0μmまで粉砕した。この粉砕黒鉛を、充放電電流0.5 m
A(0.17 mA/cm2)、充放電電圧0.02〜0.5 V の条件で充
放電試験したところ、1回目の充放電効率は82%、2
回目以降の充放電容量は320mAh/g であり、その後の
充放電効率は99.8%以上で推移した。なお、この人造黒
鉛(A3)を用いたときの電解液とのスラリー化は容易であ
り、かつ金属板との結着性も良好であった。
(Performance as a Secondary Battery) The artificial graphite (A3) obtained above was used in a counter-type jet mill manufactured by Alpine for 1
It was ground to 0 μm. Charge and discharge current 0.5 m
A charge and discharge test was conducted under the conditions of A (0.17 mA / cm 2 ), charge and discharge voltage 0.02 to 0.5 V, and the first charge and discharge efficiency was 82%, 2
The charge / discharge capacity after the first time was 320 mAh / g, and the charge / discharge efficiency after that was 99.8% or more. In addition, when this artificial graphite (A3) was used, it was easy to form a slurry with the electrolytic solution, and the binding property with the metal plate was good.

【0039】またこの破砕黒鉛を用いたときは、後述の
比較例1の鱗片状の天然黒鉛を用いた場合に比し、電解
液やバインダーとの馴染みが良く、負極の銅板に対する
密着性も良好であり、ハンドリング面で有利であった。
電解液の使用量も2/3程度で足りた。
When this crushed graphite was used, it was more compatible with the electrolytic solution and the binder and had better adhesion to the copper plate of the negative electrode, as compared with the case where scaly natural graphite of Comparative Example 1 described later was used. It was advantageous in terms of handling.
The amount of electrolyte used was about 2/3.

【0040】実施例2 実施例1で得た人造黒鉛(A3)をホソカワミクロン製ミク
ロンジェットミルにて10μm まで粉砕した。この粉砕
黒鉛を、充放電電流0.5 mA(0.17 mA/cm2)、充放電電圧
0.02〜0.5 V の条件で充放電試験したところ、1回目の
充放電効率は81%、2回目以降の充放電容量は315
mAh/g であり、その後の充放電効率は99.8%以上で推移
した。なお、この人造黒鉛(A3)を用いたときの電解液と
のスラリー化は容易であり、かつ金属板との結着性も良
好であった。
Example 2 The artificial graphite (A3) obtained in Example 1 was pulverized to 10 μm with a Hosokawa Micron Micron Jet Mill. Charge and discharge current 0.5 mA (0.17 mA / cm 2 ), charge and discharge voltage
When the charge and discharge test was conducted under the condition of 0.02 to 0.5 V, the first charge and discharge efficiency was 81%, and the second and subsequent charge and discharge capacities were 315.
It was mAh / g, and the charge / discharge efficiency after that remained at 99.8% or higher. In addition, when this artificial graphite (A3) was used, it was easy to form a slurry with the electrolytic solution, and the binding property with the metal plate was good.

【0041】実施例3 実施例1で得た人造黒鉛(A3)をディスクミルにて10μ
m まで粉砕した。この粉砕黒鉛を、充放電電流0.5 mA
(0.17 mA/cm2)、充放電電圧0.02〜0.5 V の条件で充放
電試験したところ、1回目の充放電効率は78%、2回
目以降の充放電容量は295mAh/g であり、その後の充
放電効率は99.8%以上で推移した。なお、この人造黒鉛
(A3)を用いたときの電解液とのスラリー化は容易であ
り、かつ金属板との結着性も良好であった。
Example 3 The artificial graphite (A3) obtained in Example 1 was used in a disc mill at 10 μm.
crushed to m. Charge and discharge current 0.5 mA
(0.17 mA / cm 2 ), the charge and discharge voltage was 0.02 to 0.5 V. When the charge and discharge test was conducted, the charge and discharge efficiency at the first time was 78%, and the charge and discharge capacity after the second time was 295 mAh / g. Charge / discharge efficiency remained above 99.8%. In addition, this artificial graphite
When (A3) was used, it was easy to form a slurry with the electrolytic solution, and the binding property with the metal plate was good.

【0042】比較例1 中国産の鱗片状黒鉛(粒度100メッシュ90%以上通
過、純度99%以上)をボールミルにて7μm まで粉砕
した。この破砕黒鉛を、充放電電流0.5 mA(0.17 mA/cm
2)、充放電電圧0.02〜0.5 V の条件で充放電試験したと
ころ、2回目以降の充放電容量は200mAh/g を下回っ
ていた。
Comparative Example 1 Flake graphite produced in China (particle size: 100 mesh, 90% or more, purity: 99% or more) was pulverized with a ball mill to 7 μm. This crushed graphite was charged and discharged at a current of 0.5 mA (0.17 mA / cm
2 ) When a charge / discharge test was conducted under the condition of charge / discharge voltage of 0.02 to 0.5 V, the charge / discharge capacity after the second time was less than 200 mAh / g.

【0043】比較例2 代表的な人造黒鉛である平均粒径が約8μm のロンザ黒
鉛「KS−15」を、充放電電流0.5 mA(0.17 mA/c
m2)、充放電電圧0.02〜0.5 V の条件で充放電試験した
ところ、1回目の充放電効率49%、2回目以降の充放
電容量は245mAh/g にすぎなかった。
Comparative Example 2 Lonza graphite “KS-15” having a mean particle size of about 8 μm, which is a typical artificial graphite, was charged and discharged at a current of 0.5 mA (0.17 mA / c).
When a charge / discharge test was conducted under the conditions of m 2 ), charge / discharge voltage of 0.02 to 0.5 V, the charge / discharge efficiency at the first time was 49%, and the charge / discharge capacity at the second time and thereafter was only 245 mAh / g.

【0044】比較例3 コールタールピッチを300〜450℃に加温して球晶
を発生させ、これを溶剤抽出または遠心分離により精製
した平均粒径が約20μm のメソフェーズの小球体を温
度2800℃で黒鉛化して得た人造黒鉛を、充放電電流
0.5 mA(0.17 mA/cm2)、充放電電圧0.02〜0.5 V の条件
で充放電試験したところ、1回目の充放電効率は84
%、2回目以降の充放電容量は275mAh/g であり、充
放電効率は良好であったが、充放電容量は不足してい
た。
Comparative Example 3 Coal tar pitch was heated to 300 to 450 ° C. to generate spherulites, which were purified by solvent extraction or centrifugation to obtain mesophase small spheres having an average particle size of about 20 μm at a temperature of 2800 ° C. Artificial graphite obtained by graphitizing with
A charge / discharge test was conducted under the conditions of 0.5 mA (0.17 mA / cm 2 ) and charge / discharge voltage of 0.02 to 0.5 V. The first charge / discharge efficiency was 84.
%, The charge and discharge capacity after the second time was 275 mAh / g, and the charge and discharge efficiency was good, but the charge and discharge capacity was insufficient.

【0045】比較例4 カーボンブラックを実施例1の場合と同様にアチソン炉
にて加熱処理して、X線回折で黒鉛化度を測定した。測
定結果は、d(002) は 3.420オングストローム、Lc(00
2)は61.7オングストローム、La(110)は 0.0オングスト
ロームであり、黒鉛化度が著しく低いものであった。
Comparative Example 4 Carbon black was heat treated in an Acheson furnace in the same manner as in Example 1, and the degree of graphitization was measured by X-ray diffraction. The measurement result shows that d (002) is 3.420 angstrom and Lc (00
2) was 61.7 angstroms and La (110) was 0.0 angstroms, and the degree of graphitization was extremely low.

【0046】[0046]

【発明の効果】上記粘結材(A1)由来の人造黒鉛(A3)から
なる本発明の二次電池の電極材料は、これをリチウム二
次電池用負極材料として用いた場合、2回目以降の充放
電容量が極めて高く、2回目以降の充放電効率も100
%に近い値で推移する。
EFFECT OF THE INVENTION The electrode material of the secondary battery of the present invention comprising the artificial graphite (A3) derived from the above binder (A1) is used as the negative electrode material for a lithium secondary battery after the second and subsequent times. The charge / discharge capacity is extremely high and the charge / discharge efficiency after the second time is 100.
It changes to a value close to%.

【0047】加えて上記の人造黒鉛(A3)からなる本発明
の二次電池の電極材料は、鱗片状の天然黒鉛からなるそ
れに比し、電解液やバインダーとの馴染みが良く、負極
の銅板に対する密着性も良好であるので、ハンドリング
面で有利であり、また電解液の使用量が2/3程度で済
むという利点もある。
In addition, the electrode material of the secondary battery of the present invention composed of the above-mentioned artificial graphite (A3) has a better compatibility with the electrolytic solution and the binder as compared with that composed of scale-like natural graphite, and is suitable for the copper plate of the negative electrode. Since it has good adhesion, it is advantageous in terms of handling and also has an advantage that the amount of electrolyte used can be about 2/3.

【0048】加えて、その電極材料として使用する人造
黒鉛は、従来は製鉄用コークスの粘結材以外の用途がな
いことから処置に窮していた特定の粘結材を原料とする
ものであるので、そのような粘結材の有効利用が図られ
る。またそのような極めて安価な粘結材を原料としてい
る上、バインダーおよび添加剤のいずれをも配合するこ
となく単味で粉状の人造黒鉛が得られため製造工程もシ
ンプル化され、従来の粉状の人造黒鉛の製造法に比し大
幅なコスト減が図られる。
In addition, the artificial graphite used as the electrode material is made of a specific binder which has been difficult to treat because it has no other application than the binder for iron coke. Therefore, effective use of such a binder is achieved. In addition to using such an extremely cheap binder as a raw material, a simple powdery artificial graphite can be obtained without adding any binder or additive, so the manufacturing process is simplified and the conventional powder The cost can be drastically reduced as compared with the artificial graphite manufacturing method.

【0049】よって本発明の二次電池の電極材料は、性
能、コスト、資源の有効利用の点で実用性の高いもので
ある。
Therefore, the electrode material of the secondary battery of the present invention is highly practical in terms of performance, cost and effective utilization of resources.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】原油精製工程で発生した減圧蒸留残渣油を
過熱水蒸気により部分的に熱分解したときの缶残である
粘結材(A1)を原料とし、該粘結材(A1)をコークス化可能
な温度でコークス化してコークス化物(A2)となし、さら
にそのコークス化物(A2)を黒鉛化可能な温度で黒鉛化す
ることにより得た人造黒鉛(A3)の粉体を、二次電池の電
極材料として用いてなる二次電池の電極材料。
1. A coke (A1) is used as a raw material, and the coke (A1) is a coke as a raw material when the vacuum distillation residue oil generated in the crude oil refining step is partially pyrolyzed by superheated steam. A coke product (A2) is formed by coking at a temperature that can be converted into a coke product (A2), and the coke product (A2) is graphitized at a temperature at which it can be graphitized. A secondary battery electrode material used as an electrode material.
【請求項2】人造黒鉛(A3)のd(002) が 3.360±0.006
オングストロームである請求項1記載の二次電池の電極
材料。
2. The artificial graphite (A3) has a d (002) of 3.360 ± 0.006.
The electrode material for a secondary battery according to claim 1, which is angstrom.
【請求項3】充放電電圧0.02〜0.5 V の条件で充放電試
験したときの2回目以降の充放電容量が280mAh/g 以
上である請求項1記載の二次電池の電極材料。
3. The electrode material for a secondary battery according to claim 1, which has a charge / discharge capacity of 280 mAh / g or more after the second time when the charge / discharge test is performed under the condition of a charge / discharge voltage of 0.02 to 0.5 V.
【請求項4】リチウム二次電池用の負極材料である請求
項1記載の二次電池の電極材料。
4. The electrode material for a secondary battery according to claim 1, which is a negative electrode material for a lithium secondary battery.
JP7127306A 1995-04-26 1995-04-26 Electrode material for secondary battery Pending JPH08298116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7127306A JPH08298116A (en) 1995-04-26 1995-04-26 Electrode material for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7127306A JPH08298116A (en) 1995-04-26 1995-04-26 Electrode material for secondary battery

Publications (1)

Publication Number Publication Date
JPH08298116A true JPH08298116A (en) 1996-11-12

Family

ID=14956692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7127306A Pending JPH08298116A (en) 1995-04-26 1995-04-26 Electrode material for secondary battery

Country Status (1)

Country Link
JP (1) JPH08298116A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001053200A1 (en) * 2000-01-17 2001-07-26 Leonid Dmitrievich Bilenko Method for producing artificial powder graphite
JP5960052B2 (en) * 2010-08-05 2016-08-02 昭和電工株式会社 Graphite negative electrode active material for lithium secondary battery
EP2602851A4 (en) * 2010-08-05 2016-12-21 Showa Denko Kk Anode active material for lithium secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001053200A1 (en) * 2000-01-17 2001-07-26 Leonid Dmitrievich Bilenko Method for producing artificial powder graphite
JP5960052B2 (en) * 2010-08-05 2016-08-02 昭和電工株式会社 Graphite negative electrode active material for lithium secondary battery
EP2602851A4 (en) * 2010-08-05 2016-12-21 Showa Denko Kk Anode active material for lithium secondary battery
EP2602850A4 (en) * 2010-08-05 2016-12-21 Showa Denko Kk Graphite active anode material for a lithium secondary battery

Similar Documents

Publication Publication Date Title
JP6703988B2 (en) Anode materials for lithium-ion batteries and their applications
KR101524883B1 (en) Method for manufacturing active material for use in secondary electrochemical cell
US9059467B2 (en) Method for producing electrode material for lithium ion batteries
KR102411555B1 (en) Galvanic cells and (partially) lithiated lithium battery anodes with increased capacity, and method for producing synthetic graphite intercalation connections
US8920765B2 (en) Graphite material, method for producing same, carbon material for battery electrodes, and battery
US9284192B2 (en) Method for producing electrode material for lithium ion batteries
JP3803866B2 (en) Double-layer carbon material for secondary battery and lithium secondary battery using the same
WO2007066673A1 (en) Graphite material, carbon material for battery electrode and battery
JP2976299B2 (en) Anode material for lithium secondary battery
JP2018006270A (en) Graphite carbon material for lithium ion secondary battery negative electrode, method for manufacturing the same, and negative electrode or battery arranged by use thereof
JPH03252053A (en) Non-aqueous electrolyte secondary battery
JP4233800B2 (en) Lithium secondary battery negative electrode material and manufacturing method thereof
KR20190143620A (en) Negative electrode material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
JP2000182617A (en) Carbon material for lithium secondary battery electrode and its manufacture, and lithium secondary battery
JP7009049B2 (en) Lithium-ion secondary battery Carbon material for negative electrode, its intermediate, its manufacturing method, and negative electrode or battery using it
WO2020129879A1 (en) All-solid lithium ion battery negative electrode mixture and all-solid lithium ion battery
JP3091949B2 (en) Method for producing silicon-containing carbon particles and negative electrode comprising the carbon particles
JP2022029465A (en) All-solid-state lithium-ion battery
JP2976300B1 (en) Method for producing negative electrode material for lithium secondary battery
JPH10241679A (en) Electrode material for secondary battery
JPH08298116A (en) Electrode material for secondary battery
JP2005200276A (en) Method for producing graphite-amorphous carbon composite material, graphite-amorphous carbon composite material, negative electrode for battery, and battery
US20230261174A1 (en) A method for producing a carbon-silicon composite material powder, and a carbon-silicon composite material powder
JP4195179B2 (en) Method for producing negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
KR20200034692A (en) Negative electrode material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031022