[go: up one dir, main page]

JPH08283909A - Cold rolled steel sheet with excellent workability uniformity and method for producing the same - Google Patents

Cold rolled steel sheet with excellent workability uniformity and method for producing the same

Info

Publication number
JPH08283909A
JPH08283909A JP7091180A JP9118095A JPH08283909A JP H08283909 A JPH08283909 A JP H08283909A JP 7091180 A JP7091180 A JP 7091180A JP 9118095 A JP9118095 A JP 9118095A JP H08283909 A JPH08283909 A JP H08283909A
Authority
JP
Japan
Prior art keywords
temperature
rolled
hot
cold
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7091180A
Other languages
Japanese (ja)
Inventor
Natsuko Hashimoto
夏子 橋本
Naoki Yoshinaga
直樹 吉永
Kazuo Koyama
一夫 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7091180A priority Critical patent/JPH08283909A/en
Priority to KR1019960705921A priority patent/KR100210866B1/en
Priority to EP95942317A priority patent/EP0767247A4/en
Priority to CN95192729A priority patent/CN1074054C/en
Priority to US08/737,107 priority patent/US5954896A/en
Priority to PCT/JP1995/002768 priority patent/WO1996026300A1/en
Publication of JPH08283909A publication Critical patent/JPH08283909A/en
Priority to CN01117920.1A priority patent/CN1128241C/en
Priority to CN01117921.XA priority patent/CN1128243C/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

(57)【要約】 【目的】 本発明は、Nb添加極低炭素鋼を素材にし
て、コイル長手方向の材質の均一性にきわめて優れた冷
延鋼板を提供することを目的とする。 【構成】 1)Sを積極的に活用し、2)Nb,S量と
の比を適正化し、さらに3)Mn量を低減させることに
より、γ域で効率よくNb含有炭硫化物を析出させる。
これにより熱延板の端部において巻取温度とその時間が
充分に確保されなくても、加工性が確保される。
(57) [Summary] [Object] An object of the present invention is to provide a cold-rolled steel sheet which is made of Nb-added ultra-low carbon steel as a raw material and is extremely excellent in uniformity of the material in the longitudinal direction of the coil. [Structure] 1) Actively utilizing S, 2) Optimizing the ratio with the amounts of Nb and S, and 3) Reducing the amount of Mn to precipitate Nb-containing carbosulfide efficiently in the γ region. .
As a result, workability is ensured even if the winding temperature and the time therefor are not sufficiently secured at the end of the hot-rolled sheet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コイル内における加工
性のばらつきが極めて少ない冷延鋼板およびその製造方
法に関わり、この鋼板の用途は、自動車、家電、建材等
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold-rolled steel sheet having very little variation in workability in a coil and a method for producing the cold-rolled steel sheet.

【0002】[0002]

【従来の技術】特開昭58−185752号公報に開示
されているように、極低炭素鋼板は優れた加工性を有す
るため、自動車などの用途に広く用いられている。ま
た、極低炭素鋼の成分や製造方法を規定することによっ
て、加工性をさらに改善するための工夫がなされてき
た。
2. Description of the Related Art As disclosed in Japanese Patent Application Laid-Open No. 58-185752, an ultra-low carbon steel sheet has excellent workability and is therefore widely used in applications such as automobiles. Further, by defining the composition and manufacturing method of the ultra-low carbon steel, measures have been taken to further improve the workability.

【0003】例えば、特開平3−130323号公報、
特開平4−143228号公報および特開平4−116
124号公報では、Tiを添加した極低炭素鋼中のC、
Mn、P等の量を極力低減させることによって、優れた
加工性が得られることが開示されている。しかしなが
ら、これらの発明においては、コイルの幅および長手方
向における端部での歩留りを向上させるという観点から
の記載はなく、また本発明のようなNb炭硫化物を積極
的に活用する技術でもない。
For example, Japanese Patent Laid-Open No. 3-130323,
JP-A-4-143228 and JP-A-4-116.
In Japanese Patent No. 124, C in ultra low carbon steel containing Ti,
It is disclosed that excellent workability can be obtained by reducing the amounts of Mn, P and the like as much as possible. However, in these inventions, there is no description from the viewpoint of improving the width of the coil and the yield at the end in the longitudinal direction, and it is not the technique of positively utilizing Nb carbosulfide as in the present invention. .

【0004】また、材質のばらつきを低減するという観
点からは、特開平3−170618号公報および特開平
4−52229号公報記載のものがある。しかしなが
ら、これらの発明では、仕上熱延での圧下率を大きくし
たり、熱延後の巻取温度を高める必要があり、熱延工程
に大きな負荷をかけることとなる。
Further, from the viewpoint of reducing variations in materials, there are those disclosed in Japanese Patent Laid-Open Nos. 3-170618 and 4-52229. However, in these inventions, it is necessary to increase the rolling reduction in finishing hot rolling and to raise the winding temperature after hot rolling, which imposes a heavy load on the hot rolling process.

【0005】[0005]

【発明が解決しようとする課題】Nb添加極低炭素鋼に
おいては、熱延後の高温巻取によってCをNbCとして
析出せしめ、固溶Cを低減させることにより、冷延、焼
鈍後の材質を確保することが通常の方法となっていた。
しかしながら、熱延コイルの幅端部および長手方向の端
部においては、巻取り時および巻取り後の冷却が著しく
速く進行するためNbCの析出が充分でなく、これらの
部分では材質が劣化してしまうという問題があった。従
って、実際には、熱延板あるいは冷延板の端部は切り捨
てられることが多く、これが極低炭素鋼の製造コストを
上昇させる原因となっていた。
In the Nb-added ultra-low carbon steel, C is precipitated as NbC by high temperature winding after hot rolling, and the solid solution C is reduced, so that the material after cold rolling and annealing is Ensuring was the usual method.
However, at the width end and the lengthwise end of the hot-rolled coil, the NbC precipitation is not sufficient because the cooling during and after winding progresses remarkably quickly, and the material deteriorates in these portions. There was a problem of being lost. Therefore, in practice, the ends of the hot-rolled sheet or the cold-rolled sheet are often cut off, which has been a cause of increasing the manufacturing cost of the ultra-low carbon steel.

【0006】本発明は、コイルの幅および長手方向端部
における材質劣化が極めて少ない加工性に優れた冷延鋼
板およびその製造方法を提供することを目的とするもの
である。
An object of the present invention is to provide a cold-rolled steel sheet excellent in workability in which the deterioration of the material in the width and the end portion in the longitudinal direction of the coil is extremely small and a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明者らは、極低炭素鋼中においてSを積極的
に活用するとともに、Mn量を規定することにより特定
の炭化物を析出せしめ、加工性の均一性に優れた冷延鋼
板を得るために鋭意検討した。その結果、S≧0.00
4%、かつMn≦0.15%とすることが有効であるこ
とを見出した。
In order to solve the above-mentioned problems, the inventors of the present invention positively utilize S in ultra-low carbon steel and specify a specific carbide by defining the Mn content. In order to obtain a cold-rolled steel sheet which has been deposited and has excellent workability uniformity, the present inventors conducted extensive studies. As a result, S ≧ 0.00
It was found that 4% and Mn ≦ 0.15% are effective.

【0008】さらに、熱延後の巻取りの後に、全Sのう
ちMnSとして析出するSの割合K=(S% as M
nS)/(全S%)がK≦0.2を満たすことが材質の
均一性を得る上で極めて重要であること、材質が均一で
あるためには全C量のうちNb含有炭硫化物として析出
するC量の割合L=(C% as 炭硫化物)/(全C
%)がL≧0.7であることが必要なことが判明した。
これは、以下のような機構に基づくものと考えられる。
すなわち、全S量のうちMnSとして析出する量を極力
低減せしめ、Nb含有炭硫化物を積極的に析出させるこ
とによって仕上熱延までに固溶Cを低減させるものであ
る。これによって熱延後の巻取り時にコイルの端部が急
速に冷却されても、巻取り以前に固溶Cが充分に固定さ
れているために、コイル端部で固溶Cが多量に残存した
り、微細炭化物が析出することによる材質の劣化が軽減
されるためと考えられる。
Furthermore, after winding after hot rolling, the proportion of S precipitated as MnS in all S is K = (S% as M
nS) / (total S%) satisfying K ≦ 0.2 is extremely important for obtaining the uniformity of the material, and in order for the material to be uniform, Nb-containing carbosulfide in the total amount of C Of the amount of C that precipitates as L = (C% as carbosulfide) / (total C
%) Has been found to be L ≧ 0.7.
This is considered to be based on the following mechanism.
That is, the amount of MnS precipitated out of the total amount of S is reduced as much as possible, and Nb-containing carbosulfide is positively precipitated to reduce the solid solution C before the hot rolling for finishing. As a result, even if the coil end is rapidly cooled during winding after hot rolling, a large amount of solid solution C remains at the coil end because the solid solution C is sufficiently fixed before winding. It is considered that deterioration of the material due to precipitation of fine carbide is reduced.

【0009】また、本発明者らは、Ti添加極低炭素鋼
においてTi4 2 2 を積極的に析出させることでコ
イル端部の材質劣化を軽減させる方法を以前に見出して
いる。しかし、さらに鋭意研究を重ねた結果、Nb添加
極低炭素鋼では、熱延中にTi4 2 2 に相当するN
b含有炭硫化物が析出すること、すなわちNb添加極低
炭素鋼においてもNb含有炭硫化物を熱延中に積極的に
析出させることによって固溶C量が低減され、コイル内
の材質のばらつきが軽減されて巻取温度依存性が少なく
なることを新たに見出した。また、本発明ではTiを添
加する必要がないため耐パウダリング性に優れており、
次のように定義するr値の異方性Δrも0.2以下と極
めて小さい。
Further, the inventors of the present invention have previously found a method of reducing the material deterioration of the coil end by positively depositing Ti 4 C 2 S 2 in the Ti-added ultra-low carbon steel. However, as a result of further diligent research, in Nb-added ultra-low carbon steel, N equivalent to Ti 4 C 2 S 2 was obtained during hot rolling.
Precipitation of b-containing carbosulfide, that is, even in Nb-added ultra-low carbon steel, the amount of solute C is reduced by positively precipitating Nb-containing carbosulfide during hot rolling, and variation in material in the coil It has been newly found that the winding temperature is reduced and the winding temperature dependency is reduced. Further, in the present invention, since it is not necessary to add Ti, it has excellent powdering resistance,
The r-value anisotropy Δr defined as follows is also extremely small at 0.2 or less.

【0010】Δr=(rL +rC )/2−rDL :伸び15%の時の圧延方向のr値 rC :伸び15%の時の圧延方向に垂直な方向のr値 rD :伸び15%の時の圧延方向に対して45°方向の
r値 すなわち、本発明の要旨とするところは下記のとおりで
ある。
Δr = (r L + r C ) / 2−r D r L : r value in the rolling direction when the elongation is 15% r C : r value in the direction perpendicular to the rolling direction when the elongation is 15% r D : R value in the direction of 45 ° with respect to the rolling direction when the elongation is 15%, that is, the gist of the present invention is as follows.

【0011】(1)重量%で、C:0.0005〜0.
007%、Mn:0.01〜0.15%、Si:0.0
05〜0.8%、Al:0.005〜0.1%、P:
0.2%以下、S:0.004〜0.02%、N:0.
007%以下、Nb:0.005〜0.1%を含有し、
残部は鉄および不可避的不純物よりなり、さらに全S量
のうちMnSとして析出するS量の割合K=(S% a
s MnS)/(全S%)がK≦0.2であり、かつ全
C量のうちNb含有炭硫化物として析出するC量の割合
L=(C% as 炭硫化物)/(全C%)がL≧0.
7であることを特徴とする加工性の均一性に優れた冷延
鋼板。
(1) C: 0.0005 to 0.
007%, Mn: 0.01 to 0.15%, Si: 0.0
05-0.8%, Al: 0.005-0.1%, P:
0.2% or less, S: 0.004 to 0.02%, N: 0.
007% or less, containing Nb: 0.005-0.1%,
The balance consists of iron and unavoidable impurities, and the ratio of the amount of S precipitated as MnS in the total amount of S K = (S% a
s MnS) / (total S%) is K ≦ 0.2, and the ratio of the amount of C precipitated as Nb-containing carbosulfide in the total C amount L = (C% as carbosulfide) / (total C) %) Is L ≧ 0.
7. A cold-rolled steel sheet excellent in workability uniformity, which is No. 7.

【0012】(2)B:0.0001〜0.0030%
を含有する前項(1)記載の加工性の均一性に優れた冷
延鋼板。 (3)前項(1)または(2)記載の成分を有する鋼を
加熱温度≦1250℃、仕上温度≧(Ar3 −100)
℃の熱間圧延を施し、室温から800℃の温度範囲で巻
取り、次いで圧下率≧60%の冷間圧延を施し、さらに
再結晶温度以上で焼鈍することを特徴とする加工性の均
一性に優れた冷延鋼板の製造方法。
(2) B: 0.0001 to 0.0030%
A cold-rolled steel sheet containing the above-described item (1), which is excellent in workability uniformity. (3) Heating temperature of steel having the components described in (1) or (2) above ≦ 1250 ° C., finishing temperature ≧ (Ar 3 −100)
Uniformity of workability characterized by hot rolling at ℃, winding at room temperature to 800 ℃, cold rolling at a rolling reduction ≧ 60%, and annealing at recrystallization temperature or higher. Excellent cold rolled steel sheet manufacturing method.

【0013】(4)前項(1)または(2)記載の成分
を有する鋼を加熱温度≦1250℃、仕上温度≧(Ar
3 −100)℃の熱間圧延を施し、室温から800℃の
温度範囲で巻取り、次いで圧下率≧60%の冷間圧延を
施した後、ライン内焼鈍炉を有する連続溶融亜鉛メッキ
ラインで再結晶温度以上で焼鈍を施し、冷却過程中に亜
鉛メッキを施すことを特徴とする加工性の均一性に優れ
た溶融亜鉛メッキ冷延鋼板の製造方法。
(4) A steel having the composition described in (1) or (2) above is heated at a heating temperature of ≤1250 ° C and a finishing temperature of ≥ (Ar.
3 -100) subjected to hot rolling ° C., coiling at a temperature range of 800 ° C. from room temperature, and then was subjected to rolling reduction ≧ 60% cold rolling, a continuous galvanizing line having a line within the annealing furnace A method for producing a hot-dip galvanized cold-rolled steel sheet having excellent workability uniformity, which comprises performing annealing at a recrystallization temperature or higher and galvanizing during a cooling process.

【0014】(5)前項(1)または(2)2記載の成
分を有する鋼を加熱温度≦1250℃、仕上温度≧(A
3 −100)℃の熱間圧延を施し、室温から800℃
の温度範囲で巻取り、次いで圧下率≧60%の冷間圧延
を施した後、ライン内焼鈍炉を有する連続溶融亜鉛メッ
キラインで再結晶温度以上で焼鈍を施し、冷却過程中に
亜鉛メッキを施し、その後、400〜600℃の温度範
囲で合金化処理を行うことを特徴とする加工性の均一性
に優れた合金化溶融亜鉛メッキ冷延鋼板の製造方法。
(5) A steel having the composition described in (1) or (2) 2 above is heated at a temperature of ≦ 1250 ° C. and a finishing temperature of ≧ (A
r 3 -100) ° C hot rolling, room temperature to 800 ° C
, Then cold rolling with a rolling reduction of ≧ 60%, followed by annealing at a recrystallization temperature or higher in a continuous hot dip galvanizing line with an in-line annealing furnace, and galvanizing during the cooling process. A method for producing an alloyed hot-dip galvanized cold-rolled steel sheet having excellent workability uniformity, which comprises performing an alloying treatment in a temperature range of 400 to 600 ° C.

【0015】[0015]

【作用】本発明における冷延鋼板およびその製造方法
は、S量、Mn量、Nb量と特定の硫化物および炭硫化
物の量を限定し、熱延後の巻取り以前にCを充分に析出
させることによって、コイルの長手方向および幅方向の
加工性の均一性に優れた冷延鋼板を提供するものであ
る。以下にその限定理由を述べる。
The cold-rolled steel sheet and the method for producing the same according to the present invention limit the amounts of S, Mn, Nb and the amounts of specific sulfides and carbosulfides, and ensure that C is sufficiently added before winding after hot rolling. By precipitating, a cold-rolled steel sheet excellent in workability uniformity in the longitudinal direction and the width direction of the coil is provided. The reasons for the limitation will be described below.

【0016】先ず、本発明における化学成分の限定理由
を述べる。Cはその量が増加するに従い、それを固定す
るためのNb等の炭化物形成元素量を増大させねばなら
ないことからコスト高となり、また熱延コイルの端部に
おいて固溶Cが残存したり、NbC等の微細炭化物が粒
内に数多く析出するため、粒成長性を妨げ加工性が劣化
する。従って、Cは0.007%以下とするが、好まし
くは、0.003%以下がよい。また、真空脱ガス処理
コストの観点から0.0005%を下限とする。
First, the reasons for limiting the chemical components in the present invention will be described. As the amount of C increases, the amount of carbide-forming elements such as Nb for fixing it must be increased, resulting in high cost. Also, solid solution C remains at the end of the hot-rolled coil or NbC Since a large amount of fine carbides and the like precipitate in the grains, the grain growth property is hindered and the workability deteriorates. Therefore, the C content is 0.007% or less, preferably 0.003% or less. The lower limit is 0.0005% from the viewpoint of vacuum degassing treatment cost.

【0017】Siは安価な高強度化元素として有効であ
るので、目的とする強度レベルに応じて活用する。ただ
し、Si量が0.8%を超えるとYPが急激に上昇し、
伸びが低下し、メッキ性を著しく損なうので0.8%以
下とする。溶融亜鉛メッキ用としては、メッキ性の観点
から0.3%以下とすることが好ましい。高強度(TS
で350MPa以上)を必要としない場合には、0.1
%以下がさらに好ましい。下限は製鋼コストの観点から
0.005%とする。
Since Si is effective as an inexpensive strengthening element, it is used depending on the intended strength level. However, when the Si content exceeds 0.8%, YP rapidly rises,
The elongation is lowered and the plating property is significantly impaired, so the content is made 0.8% or less. For hot dip galvanizing, it is preferably 0.3% or less from the viewpoint of plating property. High strength (TS
350 MPa or more) is required, 0.1
% Or less is more preferable. The lower limit is 0.005% from the viewpoint of steelmaking cost.

【0018】Mnは本発明において極めて重要な元素の
1つである。すなわち、Mnが0.15%を超えるとM
nSの析出量が増加し、結果としてNb含有炭硫化物の
析出量が低下するため、たとえ高温巻取を行ったとして
も、熱延コイルの端部では、冷却速度が速いために固溶
Cが多量に残存したり、微細炭化物が多数析出するため
に著しく材質が劣化する。従って、Mnは0.15%以
下とし、さらには0.10%未満とすることが好まし
い。一方、Mnを0.01%未満としても格別の効果は
得られず、製鋼コストの上昇を招くので下限を0.01
%とする。
Mn is one of the extremely important elements in the present invention. That is, when Mn exceeds 0.15%, M
Since the precipitation amount of nS increases, and as a result, the precipitation amount of Nb-containing carbosulfide decreases, even if high-temperature winding is performed, at the end of the hot-rolled coil, the cooling rate is high and the solid solution C Remains in a large amount and a large number of fine carbides precipitate, so that the material is significantly deteriorated. Therefore, Mn is preferably 0.15% or less, and more preferably less than 0.10%. On the other hand, even if Mn is less than 0.01%, no particular effect is obtained, which causes an increase in steelmaking cost.
%.

【0019】PはSiと同様に安価な高強度化元素とし
て目的とする強度レベルに応じて積極的に活用する。し
かし、P量が0.2%超では熱間あるいは冷間加工時の
割れの原因となり、2次加工性も著しく劣化させ、また
溶融亜鉛メッキの合金化速度を著しく遅滞させるため
0.2%以下とする。以上の観点から、より好ましくは
0.08%以下がよい。高い強度を必要としない場合に
は0.03%以下がさらに好ましい。
Like P, P is positively utilized as an inexpensive strengthening element depending on the intended strength level. However, if the P content exceeds 0.2%, it causes cracking during hot or cold working, the secondary workability is significantly deteriorated, and the alloying rate of the hot dip galvanization is significantly delayed, so the P content is 0.2%. Below. From the above viewpoint, it is more preferably 0.08% or less. When high strength is not required, 0.03% or less is more preferable.

【0020】Sは、本発明において極めて重要な元素で
あり、その添加量を0.004〜0.02%とする。S
量が0.004%未満になるとNb含有炭硫化物の析出
量が十分ではなく、低温で巻取った際にはもちろんのこ
と、たとえ高温で巻取ってもコイルの端部では固溶Cが
多量に残存したり、NbCの微細な析出により焼鈍時の
粒成長性が阻害されて加工性が著しく劣化する。S量が
0.02%超では熱間割れが生じやすく、またNb含有
炭硫化物の析出よりもMnSが多く析出するため同様の
問題が生じ、加工性の均一性が確保されない。なお、
0.004〜0.012%がより好ましい範囲である。
S is an extremely important element in the present invention, and its addition amount is 0.004 to 0.02%. S
When the amount is less than 0.004%, the precipitation amount of Nb-containing carbosulfide is not sufficient, and when the coil is wound at a low temperature, solid solution C is generated at the end of the coil even when wound at a high temperature. A large amount remains, or fine precipitation of NbC hinders grain growth during annealing, resulting in significant deterioration of workability. If the amount of S exceeds 0.02%, hot cracking tends to occur, and more MnS precipitates than the precipitation of Nb-containing carbosulfide, causing the same problem, and the uniformity of workability cannot be ensured. In addition,
0.004 to 0.012% is a more preferable range.

【0021】Alは脱酸剤として少なくとも0.005
%を添加することが必要である。しかし、Al量が0.
1%を超えるとコストアップとなるばかりか介在物の増
加を招き、加工性を劣化させる。NはCと同様にその増
加とともに窒化物形成元素であるAlを増量させねばな
らないことからコスト高となるし、析出物の増加により
延性の劣化を招くので少ないほど望ましい。従って、N
は0.007%以下とする。好ましくは0.003%以
下がよい。
Al is at least 0.005 as a deoxidizer.
% Needs to be added. However, the amount of Al is 0.
If it exceeds 1%, not only the cost is increased, but also inclusions are increased and the workability is deteriorated. As with C, N needs to increase the amount of Al, which is a nitride-forming element, as well as C, which increases the cost, and the increase in precipitates leads to deterioration in ductility, so the smaller the content, the better. Therefore, N
Is 0.007% or less. It is preferably 0.003% or less.

【0022】Nbは本発明において最も重要な元素であ
り、Nb含有炭硫化物として析出するほかに、熱延板を
細粒化し、深絞り性を向上させる。また、Nb単独添加
のためr値の異方性Δrも0.2以下と極めて小さく、
溶融亜鉛メッキを施す場合には耐パウダリング性が著し
く向上する。従って、Nbは0.005〜0.1%の範
囲で添加する。Nbが0.005%未満ではNb含有炭
硫化物を巻取りの前に析出させることができず、また
0.1%を超える量を添加してもCを固定する効果が飽
和するだけでなく延性が著しく劣化する。以上の観点か
ら、Nbは0.02〜0.05%の範囲がさらに好まし
い。
Nb is the most important element in the present invention, and it precipitates as Nb-containing carbosulfide and also makes the hot-rolled sheet finer to improve the deep drawability. Further, since Nb is added alone, the r-value anisotropy Δr is extremely small at 0.2 or less,
When hot dip galvanizing is applied, the powdering resistance is significantly improved. Therefore, Nb is added in the range of 0.005 to 0.1%. If Nb is less than 0.005%, Nb-containing carbosulfide cannot be precipitated before winding, and addition of an amount exceeding 0.1% not only saturates the effect of fixing C. Ductility deteriorates significantly. From the above viewpoint, Nb is more preferably in the range of 0.02 to 0.05%.

【0023】また、コイル端部での材質を確保するため
には、全S量のうちMnSとして析出するS量の割合K
=(S% as MnS)/(全S%)がK≦0.2で
なければならない。さらには、K<0.15とすること
が望ましい。この(S% as MnS)は次のように
して求められる。すなわち、硫化物が溶解しないような
溶媒(例えば、非水溶媒)によって析出物を電解抽出す
る。得られた抽出残査を化学分析に供し、Mn量を測定
(=X(g)とする)する。このときサンプル全体の電
解量をY(g)とすると、(S% as MnS)=X
/Y×32/55×100(%)となる。
In order to secure the material at the coil end, the ratio K of the amount of S precipitated as MnS in the total amount of S is K.
= (S% as MnS) / (total S%) must be K ≦ 0.2. Furthermore, it is desirable that K <0.15. This (S% as MnS) is determined as follows. That is, the precipitate is electrolytically extracted with a solvent (for example, a nonaqueous solvent) that does not dissolve the sulfide. The obtained extraction residue is subjected to chemical analysis, and the Mn amount is measured (= X (g)). At this time, when the amount of electrolysis of the entire sample is Y (g), (S% as MnS) = X
/ Y × 32/55 × 100 (%).

【0024】本発明で最も重要なのはスラブ加熱中と熱
延中にNb含有炭硫化物を十分析出させることである。
すなわち、全C量のうちNb含有炭硫化物として析出す
るC量の割合L=(C% as 炭硫化物)/(全C
%)がL≧0.7でなければならない。また、このNb
含有炭硫化物は、基本的にはTi4 2 2 のTiの位
置をNbで置き換えたものとなるが、原子比で1≦Nb
/S≦2、1≦Nb/C≦2の範囲の組成比を持っても
よい。この(C% as 炭硫化物)は、次のようにし
て求められる。すなわち、硫酸と過酸化水素水など、N
bCのようなサイズの小さい炭化物を溶解してしまうよ
うな方法によって析出物を抽出する。得られた残査を化
学分析に供し、Nb量を測定(=N(g)とする)す
る。このときサンプル全体の抽出量をZ(g)とする
と、(C% as 炭硫化物)=N/Z×12/93×
100(%)となる。
The most important aspect of the present invention is to sufficiently precipitate Nb-containing carbosulfide during slab heating and hot rolling.
That is, the ratio of the amount of C precipitated as Nb-containing carbosulfide in the total amount of C, L = (C% as carbosulfide) / (total C
%) Must be L ≧ 0.7. Also, this Nb
The content of carbosulfide is basically obtained by replacing the Ti position of Ti 4 C 2 S 2 with Nb, but the atomic ratio is 1 ≦ Nb.
The composition ratio may be in the range of / S ≦ 2, 1 ≦ Nb / C ≦ 2. This (C% as carbosulfide) is obtained as follows. That is, N, such as sulfuric acid and hydrogen peroxide
Precipitates are extracted by a method that dissolves small-sized carbides such as bC. The obtained residue is subjected to chemical analysis, and the amount of Nb is measured (= N (g)). At this time, when the extraction amount of the entire sample is Z (g), (C% as carbosulfide) = N / Z × 12/93 ×
It becomes 100 (%).

【0025】Bは粒界を強化して2次加工性を良好にす
るので、必要に応じて0.0001〜0.0030%添
加する。0.0001%未満の添加ではその効果は乏し
く、0.0030%超添加してもその効果は飽和し、延
性が劣化する。上記成分を得るための原料は特に限定し
ないが、鉄鉱石を原料として、高炉、転炉により成分を
調整する方法以外に、スクラップを原料としてもよい
し、これを電炉で溶製してもよい。スクラップを原料の
全部または一部として使用する際には、Cu、Cr、N
i、Sn、Sb、Zn、Pb、Mo等の元素を含有して
もよい。
B strengthens the grain boundary and improves the secondary workability, so 0.0001 to 0.0030% is added if necessary. If it is added in an amount of less than 0.0001%, the effect is poor, and if it is added in excess of 0.0030%, the effect is saturated and the ductility deteriorates. The raw material for obtaining the above-mentioned components is not particularly limited, but scrap iron may be used as a raw material other than a method of adjusting the components by a blast furnace and a converter using iron ore as a raw material, and this may be melted in an electric furnace. . When scrap is used as all or part of the raw material, Cu, Cr, N
Elements such as i, Sn, Sb, Zn, Pb and Mo may be contained.

【0026】次に本発明の製造プロセスに関する限定理
由を述べる。熱間圧延に供するスラブは、特に限定する
ものではない。すなわち、連続鋳造スラブや薄スラブキ
ャスターで製造したものなどであればよい。また、鋳造
後に直ちに熱間圧延を行う、連続鋳造−直接圧延(CC
−DR)のようなプロセスにも適合する。
Next, the reasons for limitation regarding the manufacturing process of the present invention will be described. The slab used for hot rolling is not particularly limited. That is, it may be a continuous cast slab or a thin slab caster. Further, continuous casting-direct rolling (CC
-DR).

【0027】熱間圧延における加熱温度は、Nb含有炭
硫化物の析出量をなるべく増やすために、1250℃以
下とすることが必須である。この観点から、好ましくは
1200℃未満、さらに好ましくは1150℃未満とす
る。熱間圧延における仕上温度は、プレス成形性を確保
するために(Ar3 −100)℃以上とする必要があ
る。また、熱間圧延は、粗圧延終了後にバー接合して連
続的に仕上熱延を行っても構わない。
It is essential that the heating temperature in the hot rolling is 1250 ° C. or lower in order to increase the precipitation amount of Nb-containing carbosulfide. From this viewpoint, the temperature is preferably less than 1200 ° C, and more preferably less than 1150 ° C. The finishing temperature in hot rolling needs to be (Ar 3 -100) ° C or higher in order to secure press formability. Further, in the hot rolling, bar finishing may be performed after the rough rolling is completed and continuous hot rolling may be performed.

【0028】本発明においては、巻取温度が低くても加
工性を確保できるという特徴を有する。すなわち、本発
明では、Cの析出は熱延の加工時〜熱延後の冷却までの
過程でNb含有炭硫化物として十分に析出が終了してお
り、高温巻取しても材質が顕著に向上することはない。
従って、巻取りは操業上適当な温度で行えばよく、室温
から800℃の範囲で行う。室温未満で巻取ることは過
剰な設備が必要となるばかりで特段の効果もない。ま
た、800℃超となると熱延板の結晶粒が粗大化した
り、表面の酸化スケールが厚くなり、酸洗のコストアッ
プを招くので800℃を上限とする。本発明鋼の場合、
巻取温度が高いとわずかに残存していた固溶Cが微細炭
化物として析出したり、Pの化合物が析出したりして、
材質はむしろ劣化する傾向にある。従って、巻取りは6
50℃以下の温度で行うのが好ましい。これらの有害な
化合物の析出を完全に避けるためには、500℃以下の
温度で巻取ることがさちに好ましい。さらに、巻取り後
に室温付近まで温度が下がる時間を短縮するためには、
100℃以下で巻取ることが好ましい。このような低温
巻取によって、製造コストの削減が図れることは言うま
でもない。
The present invention is characterized in that workability can be secured even when the winding temperature is low. That is, in the present invention, the precipitation of C is sufficiently completed as Nb-containing carbosulfide during the process of hot rolling to the cooling after hot rolling, and the material is remarkably formed even at high temperature winding. There is no improvement.
Therefore, the winding may be carried out at a temperature suitable for the operation, and is carried out in the range of room temperature to 800 ° C. Winding at less than room temperature requires not only excessive equipment but also no particular effect. Further, if it exceeds 800 ° C, the crystal grains of the hot-rolled sheet become coarse, or the oxide scale on the surface becomes thick, and the cost of pickling increases, so 800 ° C is the upper limit. In the case of the steel of the present invention,
When the coiling temperature is high, a small amount of the solid solution C that remains may be precipitated as fine carbide, or the compound of P may be precipitated.
The material tends to deteriorate rather. Therefore, the winding is 6
It is preferable to carry out at a temperature of 50 ° C. or lower. To completely avoid the precipitation of these harmful compounds, it is often preferred to wind at temperatures below 500 ° C. Furthermore, in order to shorten the time it takes for the temperature to drop to near room temperature after winding,
It is preferable to wind at 100 ° C or lower. It goes without saying that such low temperature winding can reduce the manufacturing cost.

【0029】冷間圧延の圧下率は、深絞り性を確保する
という観点から60%以上とする。連続焼鈍における焼
鈍温度は、加工性を確保するために再結晶温度以上とす
る。連続溶融亜鉛メッキラインにおける再結晶焼鈍温度
も同様の理由で再結晶温度以上とする。溶融亜鉛メッキ
は、メッキ性、メッキ密着性の観点から420〜500
℃がよい。その後の合金化処理温度は、低すぎると合金
化反応が遅すぎて生産性を損なうばかりか耐食性、溶接
性が劣悪になり、高すぎると耐メッキ剥離性が劣化する
ので、400〜600℃で行う。より密着性に優れたメ
ッキ層を得るためには480〜550℃の範囲で合金化
を行うのがよい。
The rolling reduction of cold rolling is 60% or more from the viewpoint of ensuring deep drawability. The annealing temperature in continuous annealing is higher than the recrystallization temperature in order to secure workability. The recrystallization annealing temperature in the continuous hot-dip galvanizing line is also set to the recrystallization temperature or higher for the same reason. The hot dip galvanizing is 420 to 500 from the viewpoint of plating property and plating adhesion.
℃ is good. If the temperature of the subsequent alloying treatment is too low, not only the alloying reaction will be too slow to impair the productivity but also the corrosion resistance and weldability will be poor, and if it is too high, the plating peeling resistance will be deteriorated. To do. In order to obtain a plated layer with more excellent adhesion, it is preferable to carry out alloying in the range of 480 to 550 ° C.

【0030】連続焼鈍や連続溶融亜鉛メッキラインにお
ける加熱速度は特に限定するものではなく、通常の速度
でもよいし、1000℃/s以上の超急速加熱を行って
もよい。なお、溶融亜鉛メッキ以外にも電気メッキ等種
々の表面処理を施してもよい。
The heating rate in the continuous annealing or continuous hot dip galvanizing line is not particularly limited, and may be a normal rate or ultra-rapid heating at 1000 ° C./s or more. In addition to hot dip galvanizing, various surface treatments such as electroplating may be performed.

【0031】[0031]

【実施例】以下に本発明を実施例をもって詳細に述べ
る。 (実施例1)表1、表2(表1のつづき)に示す化学成
分を有するNb添加極低炭素鋼を転炉にて出鋼し、連続
鋳造機にてスラブとした後、1140℃に加熱し、仕上
温度が925℃、板厚が4.0mmとなるような熱間圧
延を行った。ランアウトテーブル(run out t
able)での平均冷却速度は約30℃/sであり、そ
の後、表3、表4(表3のつづき)に示すような種々の
巻取温度でコイルに巻取った。この熱延コイルの長手方
向中心部から試料を切り出し、以下のような処理を行っ
た。すなわち、実験室にて酸洗後0.8mmまで冷間圧
延を行い、連続焼鈍相当の熱処理を施した。焼鈍条件
は、焼鈍温度:(表3、表4中に示す)、均熱:60
s、冷却速度:焼鈍温度から680℃まで約5℃/s、
680℃〜室温までは約65℃/sとした。その後、
0.7%の圧下率で調質圧延を行い、引張試験に供し
た。引張試験および平均ランクフォード値(以下r値)
の測定は、JIS5号試験片を用いて行った。なお、r
値は伸び15%で評価し、圧延方向(L方向)、圧延方
向に垂直な方向(C方向)、および圧延方向に対して4
5°方向(D方向)の値を測定し、下式により算出し
た。
EXAMPLES The present invention will be described in detail below with reference to examples. (Example 1) Nb-added ultra-low carbon steel having the chemical composition shown in Tables 1 and 2 (continued from Table 1) was tapped in a converter and made into a slab by a continuous casting machine, and then at 1140 ° C. It was heated and hot-rolled so that the finishing temperature was 925 ° C. and the plate thickness was 4.0 mm. Run out table
The average cooling rate for each of the samples was about 30 ° C./s, and thereafter, the coil was wound at various winding temperatures as shown in Tables 3 and 4 (continued from Table 3). A sample was cut out from the center of the hot rolled coil in the longitudinal direction, and the following treatment was performed. That is, after pickling in the laboratory, cold rolling was performed to 0.8 mm and heat treatment equivalent to continuous annealing was performed. Annealing conditions are: annealing temperature: (shown in Tables 3 and 4), soaking: 60
s, cooling rate: about 5 ° C / s from annealing temperature to 680 ° C,
From 680 ° C. to room temperature, it was set to about 65 ° C./s. afterwards,
Temper rolling was performed at a rolling reduction of 0.7%, and the tensile test was performed. Tensile test and average Rank Ford value (r value below)
Was measured using a JIS No. 5 test piece. Note that r
The value was evaluated at an elongation of 15% and was 4 with respect to the rolling direction (L direction), the direction perpendicular to the rolling direction (C direction), and the rolling direction.
The value in the 5 ° direction (D direction) was measured and calculated by the following formula.

【0032】r=(rL +2rD +rC )/4 試験結果を表3、表4にまとめて示す。R = (r L + 2r D + r C ) / 4 The test results are summarized in Tables 3 and 4.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【表3】 [Table 3]

【0036】[0036]

【表4】 [Table 4]

【0037】表3、表4から明らかなように、本発明の
成分を有する鋼では、800℃以下の温度で巻取ること
によって、優れた材質が得られることが分かる。特にM
n量が低くCに対してNbが十分添加されていて、焼鈍
温度も高いC、G、Kでは巻取温度が低くなり、微細炭
化物として析出するC量が少なくなると極めて優れた材
質が得られる。これに対して比較鋼では低温巻取では材
質が劣悪となることが明らかである。
As is clear from Tables 3 and 4, it is understood that the steel having the components of the present invention can obtain an excellent material by being wound at a temperature of 800 ° C. or lower. Especially M
When the amount of N is low and Nb is sufficiently added to C, and the annealing temperature is high, the coiling temperature is low and the amount of C precipitated as fine carbide is small, resulting in an extremely excellent material. . On the other hand, it is clear that the comparative steels are inferior in material at low temperature coiling.

【0038】(実施例2)実施例1と同じ条件で製造し
た表1、表2の鋼B、C、D、G、H、J、L、N、
R、Tの熱延コイルの長手方向における先端(コイル内
周)部(最先端より10mの位置)、および中央部、さ
らに末端(コイル外周)部(最末端より10mの位置)
から熱延板を切り出した。なお、熱延コイルの全長は約
240mであった。その後、実施例1と同じ条件で冷
延、焼鈍、調質圧延した冷延鋼板(熱延で4mm厚にし
た後冷延で0.8mm厚)を用いて冷延コイル長手方向
における材質特性を調査した。
(Example 2) Steels B, C, D, G, H, J, L, N of Tables 1 and 2 produced under the same conditions as in Example 1
The tip (inner circumference) of the R and T hot rolled coils in the longitudinal direction (10 m from the tip), the center, and the end (outer circumference) (10 m from the extreme end)
A hot-rolled sheet was cut out from. The total length of the hot rolled coil was about 240 m. Then, using cold-rolled, annealed, and temper-rolled cold-rolled steel sheet (4 mm thick by hot rolling and then 0.8 mm thick by cold rolling) under the same conditions as in Example 1, the material properties in the longitudinal direction of the cold rolled coil were measured. investigated.

【0039】試験結果を表5、表6(表5のつづき)に
まとめて示す。
The test results are summarized in Tables 5 and 6 (continued from Table 5).

【0040】[0040]

【表5】 [Table 5]

【0041】[0041]

【表6】 [Table 6]

【0042】表5、表6から明らかなように、本発明の
範囲によって製造された鋼は、コイルの中央部はもちろ
んこと、その端部10mにおいても優れた特性を示して
いる。これに対して比較鋼の場合には、コイル端部にな
ると材質が著しく劣化し、また低温巻取の場合には、コ
イル全長にわたって材質が劣悪になった。この傾向が端
部になるほど顕著になるのは明白である。
As is clear from Tables 5 and 6, the steel manufactured according to the scope of the present invention exhibits excellent characteristics not only in the central portion of the coil but also in the end portion 10m thereof. On the other hand, in the case of the comparative steel, the material was significantly deteriorated at the coil end, and in the case of low temperature winding, the material was deteriorated over the entire length of the coil. It is clear that this tendency becomes more prominent toward the edges.

【0043】(実施例3)表1、表2の鋼C、Q(実機
出鋼スラブ)を用いて冷延、焼鈍後の材質特性に及ぼす
熱延加熱温度の影響について調査した。すなわち、スラ
ブを実機にて1100〜1350℃に加熱し、仕上温度
が940℃、板厚が4.0mmとなるような熱間圧延を
行った。ランアウトテーブルでの平均冷却速度は約40
℃/sであり、その後620℃でコイルに巻取った。な
お、コイルの全長は約200mであった。同コイルより
実施例2と同様の位置からサンプルを切り出し、酸洗後
0.8mmまで冷間圧延を行い、続いて実験室において
連続焼鈍相当の熱処理を施した。焼鈍条件は、焼鈍温
度:810℃、均熱:50s、冷却速度:室温まで約6
0℃/sとした。その後、0.8%の圧下率で調質圧延
を行い、引張試験に供した。
(Example 3) The effects of hot rolling heating temperature on the material properties after cold rolling and annealing were investigated using steels C and Q (steel slabs produced in actual equipment) shown in Tables 1 and 2. That is, the slab was heated to 1100 to 1350 ° C. in an actual machine, and hot rolling was performed so that the finishing temperature was 940 ° C. and the plate thickness was 4.0 mm. The average cooling rate at the runout table is about 40
C / s, and then coiled at 620 ° C. The total length of the coil was about 200 m. A sample was cut out from the same coil from the same position as in Example 2, pickled, cold-rolled to 0.8 mm, and subsequently subjected to heat treatment equivalent to continuous annealing in a laboratory. Annealing conditions are: annealing temperature: 810 ° C., soaking: 50 s, cooling rate: about 6 up to room temperature.
0 ° C./s. Then, temper rolling was performed at a rolling reduction of 0.8%, and the steel was subjected to a tensile test.

【0044】試験結果を表7にまとめて示す。The test results are summarized in Table 7.

【0045】[0045]

【表7】 [Table 7]

【0046】表7から明らかなように、本発明の範囲に
よって製造された鋼は、熱延コイルの中央部はもちろん
のこと、その端部においても、冷延、焼鈍後の材質が優
れている。これに対して、加熱温度が1250℃超の場
合には、コイル端部において、冷延、焼鈍後の材質が著
しく劣化した。 (実施例4)表1、表2中の鋼B、D、G、J、L、
N、R、Tを用いて実施例1と同様の条件で熱間圧延を
施し(巻取温度:730℃)、引き続き実機にて酸洗
し、圧下率80%の冷間圧延を行い、ライン内焼鈍方式
の連続溶融亜鉛メッキラインに通板した。このとき最高
加熱温度800℃で加熱後冷却し、470℃で慣用の溶
融亜鉛メッキを行い(浴中Al濃度は0.12%)、さ
らに加熱して560℃で約12秒間の合金化処理を行っ
た。さらに0.8%の調質圧延を施して、機械的性質、
メッキ密着性を評価した。
As is apparent from Table 7, the steel manufactured according to the scope of the present invention is excellent in the material after cold rolling and annealing not only in the central portion of the hot rolled coil but also in the end portion thereof. . On the other hand, when the heating temperature was higher than 1250 ° C, the material after cold rolling and annealing significantly deteriorated at the coil end. (Example 4) Steels B, D, G, J, L in Tables 1 and 2
Hot rolling was performed using N, R, and T under the same conditions as in Example 1 (winding temperature: 730 ° C.), followed by pickling with an actual machine, and cold rolling with a reduction rate of 80%. The plate was passed through an internal annealing galvanizing line. At this time, after heating at a maximum heating temperature of 800 ° C., cooling is carried out, conventional hot dip galvanizing is performed at 470 ° C. (Al concentration in the bath is 0.12%), further heating is performed, and alloying treatment is performed at 560 ° C. for about 12 seconds. went. Furthermore, 0.8% temper rolling is applied to obtain mechanical properties,
The plating adhesion was evaluated.

【0047】得られた結果を表8にまとめて示す。ここ
で、メッキ密着性は180°密着曲げを行い、亜鉛皮膜
の剥離状況を曲げ加工部に粘着テープを接着した後、こ
れを剥がしてテープに付着した剥離メッキ量から判定し
た。評価は、下記の5段階とした。 1:剥離大、2:剥離中、3:剥離小、4:剥離微量、
5:剥離なし
The results obtained are summarized in Table 8. Here, the plating adhesiveness was determined by determining the peeling condition of the zinc coating by adhering an adhesive tape to the bent portion, peeling the adhesive tape off, and peeling off the zinc film. The evaluation was made into the following 5 grades. 1: Large peeling, 2: During peeling, 3: Small peeling, 4: Small amount of peeling,
5: No peeling

【0048】[0048]

【表8】 [Table 8]

【0049】表8から明らかなように、本発明の範囲に
よって製造された合金化溶融亜鉛メッキ鋼板は、コイル
の部位に関わらず優れた特性を示している。これに対し
て比較鋼では、コイルの部位による加工性のばらつきが
大きかった。
As is apparent from Table 8, the alloyed hot-dip galvanized steel sheet produced according to the scope of the present invention exhibits excellent characteristics regardless of the coil portion. On the other hand, in the comparative steel, the workability varied greatly depending on the coil portion.

【0050】[0050]

【発明の効果】以上のように、本発明によれば熱延後の
巻取温度を低温化することができ、しかもコイルの長手
方向および幅方向に均一に優れた材質が得られ、従来切
り捨てられていたコイル端部を製品とすることができ
る。また、本発明に含まれる高強度冷延鋼板を自動車用
として適用した場合には、板厚を軽減することができる
ため、燃費の向上をもたらし、近年大きな問題となって
いる地球環境問題にも貢献し得るので、その価値は大き
い。
As described above, according to the present invention, the coiling temperature after hot rolling can be lowered, and moreover, a material excellent in the longitudinal direction and the width direction of the coil can be uniformly obtained. The former coil end can be made into a product. Further, when the high-strength cold-rolled steel sheet included in the present invention is applied to an automobile, it is possible to reduce the sheet thickness, which leads to an improvement in fuel consumption and also to a global environmental problem which has become a big problem in recent years. Its value is great because it can contribute.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.0005〜0.00
7%、Mn:0.01〜0.15%、Si:0.005
〜0.8%、Al:0.005〜0.1%、P:0.2
%以下、S:0.004〜0.02%、N:0.007
%以下、Nb:0.005〜0.1%を含有し、残部は
鉄および不可避的不純物よりなり、さらに全S量のうち
MnSとして析出するS量の割合K=(S% as M
nS)/(全S%)がK≦0.2であり、かつ全C量の
うちNb含有炭硫化物として析出するC量の割合L=
(C% as 炭硫化物)/(全C%)がL≧0.7で
あることを特徴とする加工性の均一性に優れた冷延鋼
板。
1. C: 0.0005-0.00, by weight.
7%, Mn: 0.01 to 0.15%, Si: 0.005
~ 0.8%, Al: 0.005-0.1%, P: 0.2
% Or less, S: 0.004 to 0.02%, N: 0.007
% Or less, Nb: 0.005 to 0.1%, the balance consisting of iron and unavoidable impurities, and the ratio of the amount of S precipitated as MnS in the total amount of S K = (S% as M
nS) / (total S%) is K ≦ 0.2, and the ratio of the amount of C precipitated as Nb-containing carbosulfide in the total amount of C is L =
(C% as carbosulfide) / (total C%) is L ≧ 0.7, which is a cold-rolled steel sheet excellent in uniformity of workability.
【請求項2】 B:0.0001〜0.0030%を含
有する請求項1記載の加工性の均一性に優れた冷延鋼
板。
2. A cold-rolled steel sheet having excellent workability uniformity according to claim 1, which contains B: 0.0001 to 0.0030%.
【請求項3】 請求項1または2記載の成分を有する鋼
を加熱温度≦1250℃、仕上温度≧(Ar3 −10
0)℃の熱間圧延を施し、室温から800℃の温度範囲
で巻取り、次いで圧下率≧60%の冷間圧延を施し、さ
らに再結晶温度以上で焼鈍することを特徴とする加工性
の均一性に優れた冷延鋼板の製造方法。
3. A steel having the composition according to claim 1 or 2 is heated at a temperature of ≦ 1250 ° C. and a finishing temperature of ≧ (Ar 3 −10).
0) ° C. hot rolling, coiling in the temperature range from room temperature to 800 ° C., then cold rolling with a rolling reduction ≧ 60%, and further annealing at a recrystallization temperature or higher. A method for producing a cold rolled steel sheet having excellent uniformity.
【請求項4】 請求項1または2記載の成分を有する鋼
を加熱温度≦1250℃、仕上温度≧(Ar3 −10
0)℃の熱間圧延を施し、室温から800℃の温度範囲
で巻取り、次いで圧下率≧60%の冷間圧延を施した
後、ライン内焼鈍炉を有する連続溶融亜鉛メッキライン
で再結晶温度以上で焼鈍を施し、冷却過程中に亜鉛メッ
キを施すことを特徴とする加工性の均一性に優れた溶融
亜鉛メッキ冷延鋼板の製造方法。
4. A steel having the composition according to claim 1 or 2 is heated at a temperature of ≦ 1250 ° C. and a finishing temperature of ≧ (Ar 3 −10).
0) ℃ hot rolled, rolled in the temperature range from room temperature to 800 ℃, then cold rolled with a rolling reduction ≧ 60%, then recrystallized in a continuous hot dip galvanizing line with an in-line annealing furnace A method for producing a hot-dip galvanized cold-rolled steel sheet excellent in workability uniformity, which comprises performing annealing at a temperature or higher and performing galvanization during a cooling process.
【請求項5】 請求項1または2記載の成分を有する鋼
を加熱温度≦1250℃、仕上温度≧(Ar3 −10
0)℃の熱間圧延を施し、室温から800℃の温度範囲
で巻取り、次いで圧下率≧60%の冷間圧延を施した
後、ライン内焼鈍炉を有する連続溶融亜鉛メッキライン
で再結晶温度以上で焼鈍を施し、冷却過程中に亜鉛メッ
キを施し、その後、400〜600℃の温度範囲で合金
化処理を行うことを特徴とする加工性の均一性に優れた
合金化溶融亜鉛メッキ冷延鋼板の製造方法。
5. A steel having the composition according to claim 1 or 2 is heated at a temperature of ≦ 1250 ° C. and a finishing temperature of ≧ (Ar 3 −10).
0) ℃ hot rolled, rolled in the temperature range from room temperature to 800 ℃, then cold rolled with a rolling reduction ≧ 60%, then recrystallized in a continuous hot dip galvanizing line with an in-line annealing furnace An alloyed hot-dip galvanized plate with excellent workability, characterized by being annealed at a temperature above the temperature, galvanized during the cooling process, and then alloyed at a temperature range of 400 to 600 ° C. Manufacturing method of rolled steel sheet.
JP7091180A 1995-02-23 1995-04-17 Cold rolled steel sheet with excellent workability uniformity and method for producing the same Withdrawn JPH08283909A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP7091180A JPH08283909A (en) 1995-04-17 1995-04-17 Cold rolled steel sheet with excellent workability uniformity and method for producing the same
KR1019960705921A KR100210866B1 (en) 1995-02-23 1995-12-28 Cold rolled steel sheet and hot-dip galvanized steel sheet with good workability and manufacturing method
EP95942317A EP0767247A4 (en) 1995-02-23 1995-12-28 COLD ROLLED STEEL SHEET AND FIRE-SMOOTHED GALVANIZED STEEL SHEET WITH EXCELLENT SMOOTH WORKABILITY, AND METHOD FOR PRODUCING THE SHEET
CN95192729A CN1074054C (en) 1995-02-23 1995-12-28 Cold-rolled steel sheet and hot-dipped galvanized steel sheet excellent in uniform workability, and process for producing the sheets
US08/737,107 US5954896A (en) 1995-02-23 1995-12-28 Cold rolled steel sheet and galvanized steel sheet having improved homogeneity in workability and process for producing same
PCT/JP1995/002768 WO1996026300A1 (en) 1995-02-23 1995-12-28 Cold-rolled steel sheet and hot-dipped galvanized steel sheet excellent in uniform workability, and process for producing the sheets
CN01117920.1A CN1128241C (en) 1995-02-23 2001-05-09 Technology for manufacturing hot-dip galvanized cold-rolled steel plate with excellent machining uniformity
CN01117921.XA CN1128243C (en) 1995-02-23 2001-05-09 Cold rolled steel plate with excellent machining homogenity and its production process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7091180A JPH08283909A (en) 1995-04-17 1995-04-17 Cold rolled steel sheet with excellent workability uniformity and method for producing the same

Publications (1)

Publication Number Publication Date
JPH08283909A true JPH08283909A (en) 1996-10-29

Family

ID=14019264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7091180A Withdrawn JPH08283909A (en) 1995-02-23 1995-04-17 Cold rolled steel sheet with excellent workability uniformity and method for producing the same

Country Status (1)

Country Link
JP (1) JPH08283909A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100742953B1 (en) * 2005-05-03 2007-07-25 주식회사 포스코 Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same
KR100815820B1 (en) * 2006-12-27 2008-03-20 주식회사 포스코 Manufacturing method of alloyed hot dip galvanized steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100742953B1 (en) * 2005-05-03 2007-07-25 주식회사 포스코 Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same
KR100815820B1 (en) * 2006-12-27 2008-03-20 주식회사 포스코 Manufacturing method of alloyed hot dip galvanized steel sheet

Similar Documents

Publication Publication Date Title
JP3958921B2 (en) Cold-rolled steel sheet excellent in paint bake-hardening performance and room temperature aging resistance and method for producing the same
JP4635525B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
US5954896A (en) Cold rolled steel sheet and galvanized steel sheet having improved homogeneity in workability and process for producing same
US20090071574A1 (en) Cold rolled dual phase steel sheet having high formability and method of making the same
WO2021153746A1 (en) Hot rolled steel sheet and production method thereof
CN116694886A (en) Method for manufacturing thin steel sheet and method for manufacturing plated steel sheet
JP5835624B2 (en) Steel sheet for hot pressing, surface-treated steel sheet, and production method thereof
CN100439544C (en) High-strength cold-rolled steel sheet and manufacturing method thereof
CN105164298A (en) Galvanized steel sheet and production method therefor
JP4150277B2 (en) High strength galvannealed steel sheet excellent in press formability and method for producing the same
JP2000313936A (en) Galvannealed steel sheet excellent in ductility and production thereof
WO2020138343A1 (en) Steel sheet
JP3882679B2 (en) Manufacturing method of high-strength hot-dip galvanized cold-rolled steel sheet with excellent deep-drawability with good plating appearance
JP4113036B2 (en) Strain-age-hardening-type steel sheet excellent in elongation resistance at room temperature, slow aging at room temperature, and low-temperature bake-hardening characteristics, and a method for producing the same
JP4436348B2 (en) Hot-rolled steel sheet excellent in paint bake-hardening performance and room temperature aging resistance and method for producing the same
CN113166837B (en) High-strength steel sheet and method for producing same
JP2002146475A (en) Galvannealed steel sheet
JP3023875B2 (en) Method for producing hot-dip galvanized steel sheet with excellent surface properties
JP3291639B2 (en) Cold rolled steel sheet excellent in workability uniformity and method for producing the same
JPH0657337A (en) Production of high strength galvannealed steel sheet excellent in formability
JPS6048571B2 (en) Manufacturing method of alloyed galvanized steel sheet for deep drawing
JP3293015B2 (en) Cold rolled steel sheet with excellent workability uniformity
JPH08283909A (en) Cold rolled steel sheet with excellent workability uniformity and method for producing the same
CN114207172A (en) High-strength steel sheet, high-strength member, and method for producing same
JP3834100B2 (en) Method for producing cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent workability uniformity

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020702