JPH08264549A - Silicon wafer and production thereof - Google Patents
Silicon wafer and production thereofInfo
- Publication number
- JPH08264549A JPH08264549A JP7084524A JP8452495A JPH08264549A JP H08264549 A JPH08264549 A JP H08264549A JP 7084524 A JP7084524 A JP 7084524A JP 8452495 A JP8452495 A JP 8452495A JP H08264549 A JPH08264549 A JP H08264549A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- wafer
- layer
- silicon wafer
- temperature raising
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、半導体デバイス用の
シリコンウエーハ及びその製造方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon wafer for semiconductor devices and a method for manufacturing the same.
【0002】[0002]
【従来の技術】シリコンウエーハは、単結晶シリコンイ
ンゴットから切り出される。2. Description of the Related Art A silicon wafer is cut out from a single crystal silicon ingot.
【0003】シリコン単結晶は、チョクラルスキー法に
よって製造できる。すなわち、原料ポリシリコンを石英
ガラス(SiO2 )質のルツボに入れ、これを加熱・溶
融し、種結晶を用いてシリコン単結晶を引き上げるので
ある。A silicon single crystal can be manufactured by the Czochralski method. That is, raw material polysilicon is put in a quartz glass (SiO 2 ) crucible, which is heated and melted, and a silicon single crystal is pulled up using a seed crystal.
【0004】一般に、チョクラルスキー法で製造したシ
リコン単結晶中には、酸素が固溶している。シリコン融
液に石英ルツボから酸素が溶け込み、シリコン単結晶に
取り込まれるからである。In general, oxygen is in solid solution in a silicon single crystal produced by the Czochralski method. This is because oxygen is dissolved in the silicon melt from the quartz crucible and taken into the silicon single crystal.
【0005】結晶内に含まれる酸素は、半導体デバイス
製造工程における初期の熱処理によって、結晶内で析出
して結晶内酸素析出物(BMD)となる。BMDは、デ
バイス活性層に存在するとデバイス内で電気漏洩を起こ
し、デバイス不良の原因となり、望ましくない。Oxygen contained in the crystal is precipitated in the crystal as an in-crystal oxygen precipitate (BMD) by the initial heat treatment in the semiconductor device manufacturing process. When BMD is present in the device active layer, it causes electrical leakage in the device, causing device failure, which is not desirable.
【0006】デバイス活性層のBMDを除くために、一
般に、次のような措置が採られている。すなわち、水素
やAr等の不活性雰囲気中でウエーハに高温熱処理を行
って表層の酸素を外方拡散除去したり、シラン系ガスを
水素雰囲気中で還元処理してウエーハ表面にエピタキシ
ャル層を形成するのである。これらの熱処理は、通常1
100〜1300℃の高温で行われる。これは、シリコ
ン結晶内を移動する酸素の拡散速度が非常に小さいため
である。In order to remove the BMD of the device active layer, the following measures are generally taken. That is, the wafer is subjected to high temperature heat treatment in an inert atmosphere such as hydrogen or Ar to remove outward diffusion of oxygen in the surface layer, or the silane-based gas is subjected to reduction treatment in a hydrogen atmosphere to form an epitaxial layer on the wafer surface. Of. These heat treatments are usually 1
It is performed at a high temperature of 100 to 1300 ° C. This is because the diffusion rate of oxygen moving in the silicon crystal is very low.
【0007】しかしながら、シリコン結晶は1000℃
以上の高温になると塑性変形し易くなる。このため、高
温加熱時にウエーハ面内においてある程度大きな温度分
布差が生じた場合には、塑性変形(シリコン結晶組成の
すべり転移発生)が起こり、その結果スリップ欠陥が生
じてしまう。例えば、ウエーハの平均温度が1200℃
の場合には、ウエーハ中心部と周辺部の温度差が数℃で
もスリップ欠陥が生じる恐れがある。However, the silicon crystal has a temperature of 1000 ° C.
At the above high temperatures, plastic deformation is likely to occur. Therefore, when a large temperature distribution difference occurs in the wafer surface during heating at a high temperature, plastic deformation (slip transition of silicon crystal composition) occurs, and as a result, slip defects occur. For example, the average temperature of the wafer is 1200 ° C
In this case, slip defects may occur even if the temperature difference between the central part and the peripheral part of the wafer is several degrees centigrade.
【0008】[0008]
【発明が解決しようとする課題】一般に、直径150m
m(6インチ)未満のウエーハの熱処理には横型炉が用
いられ、直径150mm及び200mm(8インチ)以
上のウエーハでは縦型炉が用いられる。これらの炉の加
熱には金属製のヒーターが用いられ、炉内全体を加熱す
る形式が採られている。Generally, the diameter is 150 m.
A horizontal furnace is used for heat treatment of wafers having a diameter of less than m (6 inches), and a vertical furnace is used for wafers having a diameter of 150 mm and 200 mm (8 inches) or more. A heater made of metal is used to heat these furnaces, and a type of heating the entire inside of the furnace is adopted.
【0009】一方、数百℃以上の高温処理が短時間の工
程を行う場合には、枚葉型の装置を用いるのが便利であ
る。枚葉型の装置は、ランプ等によりウエーハ1枚分の
温度を正確に制御し、炉内の熱容量をできるだけ低減さ
せて高速昇温・降温が可能な構成になっている。On the other hand, it is convenient to use a single-wafer type apparatus when a high temperature treatment of several hundreds of degrees Celsius or more is performed in a short time. The single-wafer type apparatus is configured to accurately control the temperature of one wafer using a lamp or the like, reduce the heat capacity in the furnace as much as possible, and perform high-speed heating / cooling.
【0010】さて、ウエーハ面内の温度差が最も大きく
なるのはウエーハの昇温・降温時、特に昇温時である。
ウエーハのスリップ欠陥を防止する1つの方法として、
平衡状態に近い形でゆっくりと昇温する加熱方法があ
る。ゆっくり昇温する方法は、ウエーハの処理枚数の多
い大型炉に適している。しかしながら、この方法では、
プロセス工程時間が長くなるため、生産性をある程度以
上向上できなかった。The temperature difference in the wafer surface is greatest when the temperature of the wafer is increased or decreased, particularly when the temperature is increased.
As one method to prevent the slip defect of the wafer,
There is a heating method in which the temperature is slowly raised in a form close to the equilibrium state. The method of slowly raising the temperature is suitable for a large-scale furnace in which a large number of wafers are processed. However, with this method,
Since the process step time becomes long, the productivity could not be improved to some extent.
【0011】一方、枚葉型の装置では、1枚のウエーハ
に最適な熱量を供給しウエーハ面内の温度分布を最適に
制御することによって、スリップ欠陥を防止することが
可能である。しかしながら、枚葉型の装置では、処理枚
数が少ないため、やはり生産性を十分に向上することが
できなかった。On the other hand, in the single-wafer type apparatus, it is possible to prevent slip defects by supplying an optimum amount of heat to one wafer and optimally controlling the temperature distribution in the plane of the wafer. However, in the single-wafer type device, since the number of processed sheets is small, the productivity could not be sufficiently improved.
【0012】以上のような従来技術の問題点に鑑み、本
発明は、無欠陥層であるDZ層を備え、実質的にスリッ
プ欠陥の無いシリコンウエーハ、及びそのようなシリコ
ンウエーハを効率良く低コストで製造するための製造方
法を提供することを目的としている。In view of the above-mentioned problems of the prior art, the present invention provides a silicon wafer having a DZ layer which is a defect-free layer and substantially free of slip defects, and such a silicon wafer can be manufactured efficiently and at low cost. It is an object of the present invention to provide a manufacturing method for manufacturing in.
【0013】[0013]
【課題を解決するための手段】本願第1発明は、単結晶
シリコンインゴットから形成したウエーハを用い、80
0〜1000℃の温度範囲において15〜1000℃/
minの昇温速度で昇温する初期昇温工程と、1000
〜1300℃の温度範囲において低速で昇温する徐昇温
工程と、1100〜1300℃の温度範囲において5分
間以上滞在させる滞在保持工程を行うことを特徴とする
シリコンウエーハの製造方法を要旨としている。The first invention of the present application uses a wafer formed of a single crystal silicon ingot, and
15-1000 ° C / in the temperature range of 0-1000 ° C
an initial temperature raising step of raising the temperature at a temperature raising rate of min;
The gist is a method for manufacturing a silicon wafer, which is characterized in that a gradual temperature raising step of slowly raising the temperature in the temperature range of 1300 ° C. to 1300 ° C. and a stay holding step of allowing the temperature to stay in the temperature range of 1100 ° C. to 1300 ° C. for 5 minutes or more are performed.
【0014】本願第2発明は、前記製造方法によって製
造したシリコンウエーハにおいて、20nm以上の大き
さの酸素析出物(BMD)密度が103 個/cm3 以下
である無欠陥層(DZ層)を、少なくとも3μm以上の
肉厚でウエーハ表面に形成したことを特徴とするシリコ
ンウエーハを要旨としている。In the second invention of the present application, a defect-free layer (DZ layer) having a density of oxygen precipitates (BMD) of 20 nm or more in a silicon wafer manufactured by the above manufacturing method is 10 3 pieces / cm 3 or less. The gist is a silicon wafer having a thickness of at least 3 μm or more formed on the surface of the wafer.
【0015】[0015]
【実施例】図1は、シリコンウエーハ内に温度差がある
場合のスリップ欠陥の発生領域を示すグラフである。図
1において、横軸はウエーハの平均温度である。スリッ
プ発生領域は、曲線の上側で示されている。本発明者達
は、ウエーハ内温度分布が図1のスリップ発生領域にあ
る場合に、スリップ発生の確率が大きくなることを見い
出した。EXAMPLE FIG. 1 is a graph showing a slip defect generation region when there is a temperature difference in a silicon wafer. In FIG. 1, the horizontal axis represents the average temperature of the wafer. The slip occurring area is shown above the curve. The present inventors have found that the probability of slip occurrence increases when the temperature distribution in the wafer is in the slip occurrence region of FIG.
【0016】図1から分るように、スリップ欠陥は、1
000℃を超すと急激に発生し易くなり、ウエーハ内温
度差が僅かでもスリップ欠陥が発生するようになる。従
って、1000℃を超えたらウエーハの温度管理をより
厳しく行う必要がある。As can be seen from FIG. 1, slip defects are 1
If it exceeds 000 ° C., it is likely to occur rapidly, and slip defects will occur even if the temperature difference in the wafer is small. Therefore, if the temperature exceeds 1000 ° C, it is necessary to more strictly control the temperature of the wafer.
【0017】このようなスリップ欠陥の発生特性を考慮
し、本発明方法では、シリコンウエーハのデバイス活性
層部分に無欠陥層(DZ層)を形成するための熱処理
を、次の方式で行う。すなわち、800〜1000℃の
温度範囲において昇温速度が15〜100℃/minの
初期昇温工程を行い、1000〜1300℃の温度範囲
において低速で昇温する徐昇温工程を行い、しかる後
に、1100〜1300℃の温度範囲で5分間以上滞在
させる滞在保持工程を行うのである。In consideration of such slip defect generation characteristics, in the method of the present invention, the heat treatment for forming the defect-free layer (DZ layer) on the device active layer portion of the silicon wafer is performed by the following method. That is, an initial temperature raising step with a temperature raising rate of 15 to 100 ° C./min is performed in the temperature range of 800 to 1000 ° C., and a slow temperature raising step of raising the temperature at a low speed is performed in the temperature range of 1000 to 1300 ° C. The stay-holding step is performed in which the material is allowed to stay for 5 minutes or more in the temperature range of 1300 ° C.
【0018】低速の徐昇温工程は、好ましくは0.5〜
10℃/minの昇温速度で行う。さらに望ましい徐昇
温速度は1〜5℃/minである。The slow slow temperature raising step is preferably 0.5 to
The heating rate is 10 ° C./min. A more desirable gradual temperature increase rate is 1 to 5 ° C / min.
【0019】昇温速度が0.5℃/min未満の場合に
は、熱処理に多大な時間を要しコスト高になってしま
う。また、昇温速度が10℃/minを超える場合に
は、ウエーハ面内の温度差が大きくなるため、スリップ
欠陥の発生を確実に防止することができない。If the rate of temperature rise is less than 0.5 ° C./min, the heat treatment requires a lot of time, resulting in high cost. Further, when the temperature rising rate exceeds 10 ° C./min, the temperature difference in the wafer surface becomes large, so that the occurrence of slip defects cannot be reliably prevented.
【0020】初期昇温工程が15℃/min未満の速度
であると、ウエーハ内部の結晶欠陥の原因となる微小核
(エンブリオ)が成長し、BMDの生成が増加し、良好
な無欠陥層が形成されなくなるためである。When the initial temperature raising step is performed at a rate of less than 15 ° C./min, fine nuclei (embryos) causing crystal defects inside the wafer grow, BMD formation increases, and a good defect-free layer is formed. This is because it will not be formed.
【0021】初期昇温工程が100℃/min以上の速
度はウエハに加わる熱応力が大きくなり、また、実用的
でない。At a rate of 100 ° C./min or more in the initial temperature raising step, the thermal stress applied to the wafer becomes large and it is not practical.
【0022】滞在保持工程を1100〜1300℃で行
う理由は、この温度範囲未満では酸素の外方拡散の効率
が悪く、良好な無欠陥層が形成できないためである。ま
た、この温度範囲を越える温度では、ウエハ内部のBM
Dが過大に成長しすぎ、ウエハの機械的強度が悪くな
る。The reason why the stay holding step is carried out at 1100 to 1300 ° C. is that if the temperature is lower than this range, the outward diffusion efficiency of oxygen is poor and a good defect-free layer cannot be formed. Also, if the temperature exceeds this temperature range, the BM inside the wafer
D grows excessively and the mechanical strength of the wafer deteriorates.
【0023】これらの熱処理は、水素、He及びArの
少なくとも1つから成る雰囲気中で行うことが好まし
い。These heat treatments are preferably performed in an atmosphere containing at least one of hydrogen, He and Ar.
【0024】以上の熱処理を行うことによって、ウエー
ハ表面に、肉厚が少なくとも3μmであり酸素析出物
(BMD)密度が103 個/cm3 以下である無欠陥
層、すなわちDZ層を形成することができる。DZ層の
肉厚が3μm未満の場合には、デバイス工程でリークが
生じる等の不具合が生じるため、高品質のシリコンウエ
ーハを得ることができなくなる。By performing the above heat treatment, a defect-free layer having a thickness of at least 3 μm and an oxygen precipitate (BMD) density of 10 3 pieces / cm 3 or less, that is, a DZ layer is formed on the wafer surface. You can If the thickness of the DZ layer is less than 3 μm, a defect such as a leak may occur in the device process, and a high quality silicon wafer cannot be obtained.
【0025】また、DZ層の肉厚の上限は、30μm程
度とする。DZ層の肉厚がこれを超える場合には、ウエ
ハ内部に形成されるBMD層による、DZ層に及ぼすゲ
ッタリング効果が乏しくなる等の不具合が生じる。The upper limit of the thickness of the DZ layer is about 30 μm. If the thickness of the DZ layer exceeds this, problems such as a poor gettering effect exerted on the DZ layer by the BMD layer formed inside the wafer occur.
【0026】なお、前記熱処理によって、シリコンウエ
ーハ内部にBMD層を形成することも可能である。BM
D層とは、酸素析出物を含み、イントリンシックゲッタ
リング(IG)効果を有する層である。IG効果を有す
るBMD層を形成するためには、単結晶シリコンインゴ
ットをスライスしたウエーハの結晶内酸素濃度
([0i ])が、1.2〜1.8×1018atoms/
cm3 であることが望ましい。It is also possible to form the BMD layer inside the silicon wafer by the heat treatment. BM
The D layer is a layer containing an oxygen precipitate and having an intrinsic gettering (IG) effect. In order to form a BMD layer having the IG effect, the oxygen concentration ([0 i ]) in the crystal of a wafer obtained by slicing a single crystal silicon ingot is 1.2 to 1.8 × 10 18 atoms /
It is preferably cm 3 .
【0027】図2は、本発明方法の熱処理工程の一例を
示す説明図である。炉入れ温度T1℃から1000℃の
昇温工程は、昇温速度1で示されている。1000℃か
ら1200℃の昇温工程が、昇温速度2で示されてい
る。昇温後の滞在保持工程が、熱処理として示されてい
る。FIG. 2 is an explanatory view showing an example of the heat treatment step of the method of the present invention. The temperature rising rate from the furnace charging temperature T1 ° C. to 1000 ° C. is shown by the temperature rising rate 1. The heating process from 1000 ° C. to 1200 ° C. is shown by the heating rate 2. The stay-holding step after heating is shown as heat treatment.
【0028】本発明方法によって、実際にシリコンウエ
ーハを製造した。また、比較例として熱処理条件を一部
変更してシリコンウエーハを製造し、実施例との比較を
行った。A silicon wafer was actually manufactured by the method of the present invention. Further, as a comparative example, a silicon wafer was manufactured by partially changing the heat treatment conditions and compared with the example.
【0029】まず、異なる引上げ条件で単結晶シリコン
インゴットを引上げ、これをスライスし、平均酸素含有
率が1.3×1018、1.5×1018、1.7×1018
atoms/cm3 のシリコンウエーハ(各々をW−
A、W−B、W−Cとする)を形成した。First, single crystal silicon ingots were pulled under different pulling conditions and sliced to obtain average oxygen contents of 1.3 × 10 18 , 1.5 × 10 18 , 1.7 × 10 18.
Atoms / cm 3 silicon wafer (W-
A, WB, and WC) were formed.
【0030】これらのウエーハに対して、表1に示す熱
処理を行った。HT01からHT10が比較例で、HT
11〜が本発明の実施例である。The heat treatments shown in Table 1 were applied to these wafers. HT01 to HT10 are comparative examples, and HT
11 to 11 are examples of the present invention.
【0031】HT01からHT05は、途中で昇温速度
を変更せず、30〜2℃/minの範囲で昇温速度を一
定に保った比較例である。HT01 to HT05 are comparative examples in which the rate of temperature increase was not changed and the rate of temperature increase was kept constant in the range of 30 to 2 ° C./min.
【0032】HT06とHT07は、炉入れ後の昇温速
度1を30℃/minにして、その後の昇温速度2を2
0、15℃/minに引き下げた比較例である。For HT06 and HT07, the heating rate 1 after the furnace was put in was set to 30 ° C./min, and the heating rate 2 thereafter was set to 2
This is a comparative example in which the temperature is lowered to 0 and 15 ° C / min.
【0033】HT08は、HT07の処理雰囲気をH2
雰囲気からAr雰囲気に変更した比較例である。The HT08 uses H 2 as the processing atmosphere of the HT07.
This is a comparative example in which the atmosphere is changed to an Ar atmosphere.
【0034】HT09は、HT10の昇温速度1を30
℃/minから40、50℃/minと増大した場合の
比較例である。HT09 sets the heating rate 1 of HT10 to 30
It is a comparative example in the case of increasing from 40 ° C / min to 40 ° C / min.
【0035】HT11〜HT13は、炉入れ温度を60
0、700、800℃と変更した場合の実施例である。HT11 to HT13 have a furnace charging temperature of 60.
This is an example when the temperature is changed to 0, 700, and 800 ° C.
【0036】HT14〜HT18は、HT12の昇温速
度2をそれぞれ0.5、1、5、10、15℃/min
と増大していった場合の実施例である。HT14 to HT18 set the heating rate 2 of HT12 to 0.5, 1, 5, 10 and 15 ° C./min, respectively.
It is an example in the case of increasing.
【0037】HT19〜HT22は、HT12の昇温速
度1をそれぞれ20、50、60、80℃/minと増
大していった場合の実施例である。HT19 to HT22 are examples when the temperature rising rate 1 of the HT12 is increased to 20, 50, 60 and 80 ° C./min, respectively.
【0038】HT23〜HT26は、HT12の処理温
度をそれぞれ1100、1150、1250、1290
℃と上げた場合の実施例である。HT23 to HT26 have the processing temperatures of HT12 of 1100, 1150, 1250 and 1290, respectively.
This is an example when the temperature is raised to ℃.
【0039】HT27とHT28は、処理雰囲気ガスを
H2 からAr、Heに変更した場合の実施例である。HT27 and HT28 are examples when the processing atmosphere gas is changed from H 2 to Ar or He.
【0040】HT29〜HT33はH2 、Ar、Heの
2成分系または3成分系のガス雰囲気で熱処理を行った
場合の実施例である。HT29 to HT33 are examples when the heat treatment is performed in a binary or ternary gas atmosphere of H 2 , Ar and He.
【0041】被熱処理ウエーハがW−A、W−B、W−
Cの場合の結果をそれぞれ表2〜表4に示した。表2〜
表4から分るように、ウエーハの酸素濃度が変わって
も、DZ層の厚み及びスリップの発生状況にほとんど変
化はなかった。また、いずれの実施例においてもDZ層
は3μm以上形成された。The wafers to be heat treated are WA, WB, W-
The results in the case of C are shown in Tables 2 to 4, respectively. Table 2
As can be seen from Table 4, even if the oxygen concentration of the wafer was changed, there was almost no change in the thickness of the DZ layer and the occurrence of slip. Further, in all the examples, the DZ layer was formed to have a thickness of 3 μm or more.
【0042】また、炉入れ温度を600〜800℃にし
ても、スリップ欠陥は発生しなかった(HT11〜HT
13)。Even when the furnace temperature was set to 600 to 800 ° C., slip defects did not occur (HT11 to HT).
13).
【0043】1000℃までの昇温速度を30℃/mi
nと増大しても、その後の昇温速度を遅くすることで、
スリップ欠陥の発生を防止できた(HT14〜HT1
8)。The temperature rising rate up to 1000 ° C. is 30 ° C./mi
Even if it increases with n, by slowing the temperature rising rate after that,
It was possible to prevent the occurrence of slip defects (HT14 to HT1
8).
【0044】1000℃までの昇温速度を20℃/mi
nから80℃/minまで増大しても、スリップ欠陥は
発生しないか又は僅かに発生する程度であった(HT1
9〜HT22)。The temperature rising rate up to 1000 ° C. is 20 ° C./mi
Even if the temperature was increased from n to 80 ° C./min, slip defects did not occur or slightly occurred (HT1
9-HT22).
【0045】表2〜表4において、スリップ発生程度が
「小」とは具体的に、JIS H0609−1994
「選択エッチングによるシリコンの結晶欠陥の観察方
法」に記載された方法によって観察されたウエーハのス
リップにおいて、スリップの発生箇所が1カ所で、スリ
ップの本数が10本以下の場合、「中」とは、同様に発
生箇所が1カ所で10本を越える場合または発生箇所が
複数に渡り、合計が50本以下の場合、「大」とは同様
に発生箇所が複数に渡り、合計が50本を越える場合、
を意味している。In Tables 2 to 4, the degree of occurrence of slip is "small", specifically, JIS H0609-1994.
In the slip of the wafer observed by the method described in "Method of observing crystal defects of silicon by selective etching", when there is one slip occurrence point and the number of slips is 10 or less, "medium" means Similarly, if the number of occurrence points is more than 10 at one location or if there are multiple occurrence points and the total is 50 or less, "Large" means that there are multiple occurrence points and the total exceeds 50. If
Means
【0046】熱処理速度を1100℃〜1290℃まで
変化させた場合、温度が高くなるほどDZ層厚みが大き
くなった。一方、スリップは温度が高いほど発生しやす
くなるが、ごく僅かに発生するだけであった(HT23
〜HT26)。When the heat treatment rate was changed from 1100 ° C. to 1290 ° C., the higher the temperature, the larger the DZ layer thickness. On the other hand, slips are more likely to occur as the temperature rises, but only slightly (HT23).
~ HT26).
【0047】雰囲気ガスをH2 単独から、He、Ar
や、H2 とHe、Arとの混合雰囲気にしても、H2 単
独雰囲気の場合と同じ様にDZ層が形成され、スリップ
も発生しなかった(HT27〜HT33)。The atmosphere gas is H 2 alone, He, Ar
Also, even in a mixed atmosphere of H 2 , He, and Ar, the DZ layer was formed as in the case of the H 2 single atmosphere, and slip did not occur (HT27 to HT33).
【0048】処理時間を5分から240分まで変化させ
ても、スリップ欠陥の発生は無く、DZ層の肉厚が厚く
なるだけであった(HT34〜HT38)。Even when the treatment time was changed from 5 minutes to 240 minutes, slip defects did not occur and only the thickness of the DZ layer was increased (HT34 to HT38).
【0049】以上の実施例から明らかなように、本発明
方法によれば、ウエーハ表面に肉厚3μm以上のDZ層
を有し、実質的にスリップ欠陥の無い高品質のシリコン
ウエーハを製造することが可能である。As is clear from the above examples, according to the method of the present invention, it is possible to manufacture a high-quality silicon wafer having a DZ layer having a thickness of 3 μm or more on the surface of the wafer and having substantially no slip defects. Is possible.
【0050】なお、本発明方法は、酸素含有量が比較的
少ないFZ(フロートゾーン)法で製造されたシリコン
ウエーハに対しても、適用可能である。その場合にも、
ウエーハ表面の酸素濃度をさらに低下させてDZ層を形
成し、ウエーハ表面を改質できる。The method of the present invention can also be applied to a silicon wafer manufactured by the FZ (float zone) method having a relatively low oxygen content. In that case,
The oxygen concentration on the wafer surface can be further reduced to form a DZ layer, and the wafer surface can be modified.
【0051】[0051]
【表1】 [Table 1]
【0052】[0052]
【表2】 [Table 2]
【0053】[0053]
【表3】 [Table 3]
【0054】[0054]
【表4】 [Table 4]
【0055】[0055]
【発明の効果】本発明によれば、無欠陥層であるDZ層
を備え、実質的にスリップ欠陥の無いシリコンウエーハ
を効率良く低コストで製造することができる。According to the present invention, a silicon wafer having a DZ layer which is a defect-free layer and substantially free of slip defects can be efficiently manufactured at low cost.
【図1】本発明におけるウエーハ内温度差とスリップ発
生領域の関係を説明するためのグラフ。FIG. 1 is a graph for explaining a relationship between a temperature difference inside a wafer and a slip generation region in the present invention.
【図2】本発明のシリコンウエーハの製造方法を説明す
るための説明図。FIG. 2 is an explanatory view for explaining a method for manufacturing a silicon wafer of the present invention.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉川 淳 神奈川県秦野市曽屋30番地 東芝セラミッ クス株式会社開発研究所内 (72)発明者 茶木 勝弘 神奈川県秦野市曽屋30番地 東芝セラミッ クス株式会社開発研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Jun Yoshikawa 30 Soya, Hadano City, Kanagawa Prefecture Toshiba Ceramics Co., Ltd.Development Research Laboratory (72) Inventor Katsuhiro Chaki 30 Soya, Hadano City, Kanagawa Prefecture Toshiba Ceramics Co. In-house
Claims (5)
ウエーハを用い、800〜1000℃の温度範囲におい
て15〜1000℃/minの昇温速度で昇温する初期
昇温工程と、1000〜1300℃の温度範囲において
低速で昇温する徐昇温工程と、1100〜1300℃の
温度範囲において5分間以上滞在させる滞在保持工程を
行うことを特徴とするシリコンウエーハの製造方法。1. A wafer formed from a single crystal silicon ingot, an initial temperature raising step of heating at a temperature raising rate of 15 to 1000 ° C./min in a temperature range of 800 to 1000 ° C., and a temperature of 1000 to 1300 ° C. A method for producing a silicon wafer, which comprises performing a gradual temperature raising step of raising the temperature at a low speed in the range and a stay holding step of allowing the temperature to stay in the temperature range of 1100 to 1300 ° C. for 5 minutes or more.
/minとすることを特徴とする請求項1に記載の製造
方法。2. The temperature raising rate in the gradual temperature raising step is 0.5 to 10 ° C.
/ Min It sets, The manufacturing method of Claim 1 characterized by the above-mentioned.
nとすることを特徴とする請求項1に記載の製造方法。3. The temperature raising rate of the gradual temperature raising step is 1 to 5 ° C./mi.
n is set, The manufacturing method of Claim 1 characterized by the above-mentioned.
工程を水素、He、Arの少なくとも1つからなる雰囲
気中で行うことを特徴とする請求項1〜3のいずれか1
項に記載のシリコンウエーハの製造方法。4. The initial temperature raising step, the gradual temperature raising step and the stay holding step are performed in an atmosphere consisting of at least one of hydrogen, He and Ar.
A method for manufacturing a silicon wafer according to item.
したシリコンウエーハにおいて、20nm以上の大きさ
の酸素析出物(BMD)密度が103 個/cm3 以下で
ある無欠陥層(DZ層)を、少なくとも3μm以上の肉
厚でウエーハ表面に形成したことを特徴とするシリコン
ウエーハ。5. A silicon wafer manufactured by the manufacturing method according to claim 1, wherein a defect-free layer (DZ layer) having an oxygen precipitate (BMD) density of 20 nm or more is 10 3 pieces / cm 3 or less. Is formed on the surface of the wafer with a thickness of at least 3 μm.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08452495A JP3172390B2 (en) | 1995-03-17 | 1995-03-17 | Silicon wafer and method for manufacturing the same |
US08/612,214 US5788763A (en) | 1995-03-09 | 1996-03-07 | Manufacturing method of a silicon wafer having a controlled BMD concentration |
DE19609107A DE19609107B4 (en) | 1995-03-09 | 1996-03-08 | Method for producing silicon wafers |
CA002171375A CA2171375C (en) | 1995-03-09 | 1996-03-08 | Manufacturing method of a silicon wafer having a controlled bmd concentration in the bulk and a good dz layer |
KR1019960006200A KR100226374B1 (en) | 1995-03-09 | 1996-03-09 | Silicon Wafer Manufacturing Method |
TW086112289A TW379388B (en) | 1995-03-09 | 1996-04-06 | Manufacturing method of a silicon wafer having a controlled BMD concentration in the bulk and a good DZ layer |
TW085104000A TW337031B (en) | 1995-03-09 | 1996-04-06 | Manufacturing method of a silicon wafer having a controlled BMD concentration in the bulk and a good DZ layer |
TW086112288A TW383429B (en) | 1995-03-09 | 1996-04-06 | Manufacturing method of a silicon wafer having a controlled BMD concentration in the bulk and a good DZ layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08452495A JP3172390B2 (en) | 1995-03-17 | 1995-03-17 | Silicon wafer and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08264549A true JPH08264549A (en) | 1996-10-11 |
JP3172390B2 JP3172390B2 (en) | 2001-06-04 |
Family
ID=13833036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08452495A Expired - Lifetime JP3172390B2 (en) | 1995-03-09 | 1995-03-17 | Silicon wafer and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3172390B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6809015B2 (en) | 1998-12-28 | 2004-10-26 | Shin-Etsu Handotai Co., Ltd. | Method for heat treatment of silicon wafers and silicon wafer |
JP2015090953A (en) * | 2013-11-07 | 2015-05-11 | 富士電機株式会社 | Method for manufacturing MOS type semiconductor device |
-
1995
- 1995-03-17 JP JP08452495A patent/JP3172390B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6809015B2 (en) | 1998-12-28 | 2004-10-26 | Shin-Etsu Handotai Co., Ltd. | Method for heat treatment of silicon wafers and silicon wafer |
US7011717B2 (en) | 1998-12-28 | 2006-03-14 | Shin-Etsu Handotai Co., Ltd. | Method for heat treatment of silicon wafers and silicon wafer |
JP2015090953A (en) * | 2013-11-07 | 2015-05-11 | 富士電機株式会社 | Method for manufacturing MOS type semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP3172390B2 (en) | 2001-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5788763A (en) | Manufacturing method of a silicon wafer having a controlled BMD concentration | |
TWI420599B (en) | Manufacturing method for silicon wafer | |
JPS59190300A (en) | Semiconductor manufacturing method and device | |
JP5542383B2 (en) | Heat treatment method for silicon wafer | |
KR19990077706A (en) | A method for producing a silicon single crystal wafer and a silicon single crystal wafer | |
JP2004503086A (en) | Method and apparatus for manufacturing a silicon wafer having a denuded area | |
WO2002103091A1 (en) | SILICON SINGLE CRYSTAL WAFER HAVING VOID DENUDED ZONE ON THE SUFRACE AND DIAMETER OF AVOBE 300 mm AND ITS PRODUCTION METHOD | |
JP3614019B2 (en) | Manufacturing method of silicon single crystal wafer and silicon single crystal wafer | |
JP2005142434A (en) | Silicon single crystal wafer and method for manufacturing same | |
JP5590644B2 (en) | Heat treatment method for silicon wafer | |
JPH06295912A (en) | Manufacture of silicon wafer and silicon wafer | |
WO2003019647A1 (en) | Epitaxial wafer and production method therefor | |
JP2002198375A (en) | Method of heat treatment of semiconductor wafer and semiconducor wafer fabricated therby | |
JP3172390B2 (en) | Silicon wafer and method for manufacturing the same | |
JPH1192283A (en) | Silicon wafer and its production | |
JPH08250505A (en) | Silicon wafer and its manufacture | |
JP4080657B2 (en) | Method for producing silicon single crystal ingot | |
JP3578397B2 (en) | Semiconductor disk having crystal lattice defects and method of manufacturing the same | |
JP3578396B2 (en) | Semiconductor disk having crystal lattice defects and method of manufacturing the same | |
US20050032337A1 (en) | Method and apparatus for forming a silicon wafer with a denuded zone | |
JP2001156074A (en) | Method for heat treating silicon wafer | |
JP5583053B2 (en) | Heat treatment method for silicon wafer | |
JPH06295913A (en) | Manufacture of silicon wafer and silicon wafer | |
JP2004175620A (en) | Manufacturing method of single crystal | |
JPS6344720B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080323 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080323 Year of fee payment: 7 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080323 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080323 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090323 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090323 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100323 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100323 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110323 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110323 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120323 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120323 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130323 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130323 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140323 Year of fee payment: 13 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140323 Year of fee payment: 13 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |