JPH08225845A - Production of high strength bolt excellent in delayed fracture resistance - Google Patents
Production of high strength bolt excellent in delayed fracture resistanceInfo
- Publication number
- JPH08225845A JPH08225845A JP6850395A JP6850395A JPH08225845A JP H08225845 A JPH08225845 A JP H08225845A JP 6850395 A JP6850395 A JP 6850395A JP 6850395 A JP6850395 A JP 6850395A JP H08225845 A JPH08225845 A JP H08225845A
- Authority
- JP
- Japan
- Prior art keywords
- delayed fracture
- fracture resistance
- less
- mpa
- bolt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 230000003111 delayed effect Effects 0.000 title abstract description 53
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 17
- 239000010959 steel Substances 0.000 claims abstract description 17
- 239000012535 impurity Substances 0.000 claims abstract description 10
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 6
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 5
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 4
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 4
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 4
- 238000005496 tempering Methods 0.000 claims description 14
- 238000010791 quenching Methods 0.000 claims description 13
- 230000000171 quenching effect Effects 0.000 claims description 13
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 abstract description 2
- 229910052758 niobium Inorganic materials 0.000 abstract description 2
- 230000000052 comparative effect Effects 0.000 description 18
- 229910001566 austenite Inorganic materials 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 238000005204 segregation Methods 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 238000005452 bending Methods 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000002436 steel type Substances 0.000 description 2
- 229910000954 Medium-carbon steel Inorganic materials 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Landscapes
- Heat Treatment Of Articles (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、引張強さ1500MP
a以上の、耐遅れ破壊性に優れたボルトの製造方法に関
するものである。FIELD OF THE INVENTION The present invention has a tensile strength of 1500MP.
The present invention relates to a method for manufacturing a bolt having a delayed fracture resistance of a or higher.
【0002】[0002]
【従来の技術】鋼製ボルトは引張強さが1200MPa
を越えると、遅れ破壊の感受性が高くなり、使用中に突
然破壊することが知られている。このため、汎用の強靭
綱、たとえばJIS−SCM440鋼、の不純物を低減
したり、熱処理時にボルトの表面を軽脱炭をさせるなど
の遅れ破壊対策を施されたボルトが、1200MPa級
の強度で使用されている。また、合金元素と添加量を規
制したボルトが1400MPa級の強度で実用化されて
いる。2. Description of the Related Art Steel bolts have a tensile strength of 1200 MPa.
It is known that if it exceeds the range, the susceptibility to delayed fracture becomes high, and sudden fracture occurs during use. For this reason, bolts that have been subjected to delayed fracture measures such as reducing impurities in general-purpose toughness steel, for example, JIS-SCM440 steel, or lightly decarburizing the surface of the bolt during heat treatment, are used with 1200 MPa class strength. Has been done. In addition, bolts whose alloy elements and addition amounts are regulated have been put to practical use with a strength of 1400 MPa class.
【0003】ところで、機械、自動車、橋梁、建築物な
どの構造部の小型化や軽量化を図るためには、これら産
業に用いられるボルトも細径化する必要がある。そこ
で、細径化しても締結力を維持できるように、さらなる
ボルトの高強度化が望まれている。By the way, in order to reduce the size and weight of structural parts such as machines, automobiles, bridges and buildings, it is necessary to reduce the diameter of bolts used in these industries. Therefore, it is desired to further increase the strength of the bolt so that the fastening force can be maintained even if the diameter is reduced.
【0004】従来から、引張強さ1400〜1550M
Paのボルト用鋼の耐遅れ破壊性を、1200MPa級
の強靭鋼と同等レベルまで高める技術について提案され
ている。しかし、これらの技術でもって、引張強さを1
500MPa〜1700MPaとしたボルトの耐遅れ破
壊性を、1200MPaレベルの強靭鋼と同等に維持す
ることは困難である。Conventionally, the tensile strength is 1400 to 1550M.
A technique has been proposed for increasing the delayed fracture resistance of Pa bolt steel to the same level as that of 1200 MPa class tough steel. However, with these techniques, the tensile strength can be reduced to 1
It is difficult to maintain the delayed fracture resistance of bolts set to 500 MPa to 1700 MPa at the same level as that of 1200 MPa level tough steel.
【0005】[0005]
【発明が解決しようとする課題】本発明は、引張強さ1
500MPa以上の、耐遅れ破壊性に優れたボルトの製
造を提供することを目的とする。SUMMARY OF THE INVENTION The present invention has a tensile strength of 1
It is an object of the present invention to provide a bolt having a delayed fracture resistance of 500 MPa or more and excellent in resistance to delayed fracture.
【0006】[0006]
【課題を解決するための手段】本発明者らは、耐遅れ破
壊性と、合金元素および熱処理条件との関係を調査し、
Ni、Cr、Mo、Vを含有した中炭素鋼が、1175
°K以上での高温焼入れ後、850°K以上の高温焼も
どしを施されると、1200MPaレベルの強靭鋼と同
等の耐遅れ破壊性を示すことを見いだした。本発明は、
合金元素の含有量の影響を詳細に調査し、以下の成分範
囲の材料がボルト用鋼として適当であることを明らかに
した。The present inventors investigated the relationship between delayed fracture resistance and alloying elements and heat treatment conditions,
Medium carbon steel containing Ni, Cr, Mo, V is 1175
It was found that when high temperature tempering at 850 ° K or higher is performed after high temperature quenching at or above ° K, delayed fracture resistance equivalent to that of 1200 MPa level tough steel is exhibited. The present invention
The effect of the content of alloying elements was investigated in detail, and it was clarified that the materials in the following composition ranges were suitable as the steel for bolts.
【0007】重量%で、C:0.35〜0.50%、S
i:0.15%以下、Mn:0.4%以下、P:0.0
15%以下、S:0.010%以下、Ni:0.8〜
2.4%、Cr:0.8〜1.5%、Mo:0.8〜
1.4%、V:0.15〜0.40%、Al:0.01
〜0.06%、N:0.005〜0.03%と必要に応
じてNb:0.05%以下を含有し、残部実質的にFe
及び不可避的不純物からなる鋼。% By weight, C: 0.35 to 0.50%, S
i: 0.15% or less, Mn: 0.4% or less, P: 0.0
15% or less, S: 0.010% or less, Ni: 0.8 to
2.4%, Cr: 0.8 to 1.5%, Mo: 0.8 to
1.4%, V: 0.15 to 0.40%, Al: 0.01
.About.0.06%, N: 0.005 to 0.03% and, if necessary, Nb: 0.05% or less, with the balance being substantially Fe.
And steel consisting of inevitable impurities.
【0008】[0008]
【作用】以下、本発明の高強度ボルト用鋼の組成および
熱処理の限定理由を説明する。 C:Cは熱処理によって所要の強度を得るために有効な
元素であり、このような効果を得るために0.35%以
上含有させることが必要である。しかし、0.5%を越
えて含有するととくに耐遅れ破壊性が劣化するので0.
50%以下とする必要がある。また、ボルト成形前の素
材の硬さの上昇を招き、ボルト成形時の金型寿命を短縮
し、コストの増大を招くことがあるため、0.50%以
下とするのがよい。The composition of the high strength bolt steel of the present invention and the reasons for limiting the heat treatment will be described below. C: C is an element effective for obtaining a required strength by heat treatment, and in order to obtain such an effect, it is necessary to contain C by 0.35% or more. However, if the content exceeds 0.5%, the delayed fracture resistance deteriorates, so that
It should be 50% or less. Further, the hardness of the material before bolt forming may be increased, the mold life during bolt forming may be shortened, and the cost may be increased, so 0.50% or less is preferable.
【0009】Si:Siはオーステナイト化時の高温加
熱による粒界酸化を助長する元素であり、遅れ破壊の起
点となりうるものであるため耐遅れ破壊性を劣化させ
る。また、PやSなどの不純物元素の粒界への偏析を助
長する作用があり、これも耐遅れ破壊性を劣化させる要
因になる。さらに、ボルト成形前の素材の硬さの上昇を
招くことがある。これらのことから、Si量は低い方が
望ましく、0.15%以下に限定する。Si: Si is an element that promotes grain boundary oxidation due to high temperature heating during austenitization, and can be a starting point of delayed fracture, and therefore deteriorates delayed fracture resistance. Further, it has an action of promoting segregation of impurity elements such as P and S to the grain boundaries, which also causes deterioration of delayed fracture resistance. Further, the hardness of the material before bolt forming may increase. From these things, it is desirable that the amount of Si is low, and it is limited to 0.15% or less.
【0010】Mn:Mnは溶製時の脱酸剤として有効で
あるとともに焼入性の向上に寄与する元素であるが、M
nはSiとともに焼入れ時の粒界酸化を助長し、耐遅れ
破壊性を劣化させる。また、Siと同様にPやSなどの
不純物元素の粒界への偏析を助長する作用があり、これ
も耐遅れ破壊性を劣化させる要因になる。さらに、ボル
ト成形前の素材の硬さの上昇を招くことがある。これら
のことから、Mn量は低い方が望ましく、0.40%以
下に限定する。Mn: Mn is an element that is effective as a deoxidizer during melting and contributes to the improvement of hardenability.
n promotes grain boundary oxidation during quenching together with Si and deteriorates delayed fracture resistance. Further, similar to Si, it has the effect of promoting segregation of impurity elements such as P and S to the grain boundaries, which also causes a deterioration in delayed fracture resistance. Further, the hardness of the material before bolt forming may increase. For these reasons, the Mn content is preferably low, and is limited to 0.40% or less.
【0011】P:Pはオーステナイト化の高温加熱によ
ってオーステナイト粒界に偏析を生じ、粒界をぜい化さ
せて耐遅れ破壊性を劣化させるので、0.015%以下
に限定する。P: P segregates at the austenite grain boundaries due to high-temperature heating for austenitization, embrittles the grain boundaries and deteriorates delayed fracture resistance, and is therefore limited to 0.015% or less.
【0012】S:SはPと同様にオーステナイト化時の
高温加熱によってオーステナイト粒界に偏析を生じ、粒
界をぜい化させて耐遅れ破壊性を劣化させるとともに、
MnSを形成して耐遅れ破壊性を劣化させるので、0.
010%以下に限定する。S: S, like P, causes segregation at austenite grain boundaries due to high temperature heating during austenitization, embrittles the grain boundaries, and deteriorates delayed fracture resistance.
Since MnS is formed to deteriorate the delayed fracture resistance,
It is limited to 010% or less.
【0013】Ni:Niは焼入性の向上に寄与する元素
であるので、高強度部品の寸法などに応じてその添加量
を調整するのがよく、これによってボルトの焼入性を確
保する。また、1500MPa以上の強度レベルで耐遅
れ破壊性を維持するためには旧オーステナイト粒界だけ
でなく、基地の靭性を高める必要がある。Niは基地の
靭性向上に有効である。このため、Niの含有量を0.
8%以上とした。しかし、過度の添加はボルト成形前の
素材の硬さの上昇を招き、ボルト成形時の金型寿命を短
縮し、コストの増大を招くことがある。このため、2.
4%以下とするのがよい。Ni: Ni is an element that contributes to the improvement of the hardenability, so it is preferable to adjust the addition amount according to the size of the high-strength component, etc., thereby ensuring the hardenability of the bolt. Further, in order to maintain the delayed fracture resistance at a strength level of 1500 MPa or more, it is necessary to enhance not only the prior austenite grain boundaries but also the toughness of the matrix. Ni is effective in improving the toughness of the matrix. Therefore, the Ni content is set to 0.
8% or more. However, excessive addition may increase the hardness of the material before bolt molding, shorten the mold life during bolt molding, and increase the cost. Therefore, 2.
It is better to be 4% or less.
【0014】Cr:CrはNiと同様に焼入性の向上に
寄与する元素であるので、高強度部品の寸法などに応じ
てその添加量を調整するのがよく、これによってボルト
の焼入性を確保する。このため、Crの含有量を0.8
%以上とした。しかし、過度の添加はSiおよびMnと
同様に粒界酸化を助長して耐遅れ破壊性を劣化させるの
で、上限を設定する必要がある。また、ボルト成形前の
素材の硬さの上昇を招くことがあるため、1.5%以下
とするのがよい。Cr: Cr, like Ni, is an element that contributes to the improvement of hardenability. Therefore, the addition amount should be adjusted according to the size of the high-strength parts. Secure. Therefore, the content of Cr is 0.8
% And above. However, excessive addition promotes intergranular oxidation and deteriorates delayed fracture resistance similarly to Si and Mn, so it is necessary to set an upper limit. In addition, the hardness of the material before bolt forming may increase, so the content is preferably 1.5% or less.
【0015】Mo:Moは焼入性の向上に寄与するとと
もに、結晶粒の微細化およびオーステナイト粒界の強度
向上に寄与する元素であり、さらには焼もどし時にじゅ
うぶんな二次硬化を得ることができるようにし、引張強
さ1500MPa以上の強度を得るための焼もどし温度
が850°Kを上回るようにするために、0.80%以
上とした。しかし、多量の添加により、巨大な一次炭化
物が晶出し、焼入れ時に残存して靭性のみならず、耐遅
れ破壊性の劣化をもたらすため、その上限を1.4%以
下にする。Mo: Mo is an element that contributes not only to improving the hardenability but also to refining the crystal grains and improving the strength of the austenite grain boundaries, and further, it is possible to obtain a sufficient secondary hardening during tempering. In order to make it possible and the tempering temperature for obtaining the tensile strength of 1500 MPa or more, the tempering temperature is set to 0.80% or more in order to exceed 850 ° K. However, when added in a large amount, a huge primary carbide crystallizes out and remains during quenching, resulting in deterioration of not only toughness but also delayed fracture resistance, so the upper limit is made 1.4% or less.
【0016】V:Vは高温焼もどし時にじゅうぶんな二
次硬化を得ることができるようにするのに有効な元素で
あるので、0.15%以上とした。しかし、多量の添加
により、巨大な一次炭化物が晶出し、焼入れ時に残存し
て靭性のみならず、耐遅れ破壊性の劣化をもたらすた
め、その上限を0.4%以下にする。V: V is 0.15% or more because it is an element effective for making it possible to obtain sufficient secondary hardening during high temperature tempering. However, when added in a large amount, huge primary carbides crystallize out and remain during quenching, causing not only toughness but also delayed fracture resistance, so the upper limit is made 0.4% or less.
【0017】AlはNとともにAlNを形成して結晶粒
を微細化し、靭性の向上を図るのに有効な元素であり、
このような効果を得るために0.01%以上とした。し
かし、多すぎると地きずとなる大型介在物を生成し、A
l2O3が疲労の起点となるため0.06%以下とし
た。Al is an element effective in forming AlN together with N to refine the crystal grains and improve the toughness.
In order to obtain such an effect, it is set to 0.01% or more. However, if too much, large inclusions that will cause ground marks are generated, and
Since 1 2 O 3 is the starting point of fatigue, the content was made 0.06% or less.
【0018】NはAlとともにAlNを形成して結晶粒
を微細化し、靭性の向上を図るのに有効な元素であるの
で、このような効果を得るために0.005%以上とし
た。そして、Nの添加量はAlの添加量のおよそ1/2
とすることが望ましいが、多すぎると地きずとなる大型
介在物を生成するので、0.03%以下とした。N is an element effective in forming AlN together with Al to make the crystal grains finer and improve the toughness, so the content is made 0.005% or more to obtain such an effect. The amount of N added is about 1/2 of the amount of Al added.
However, if too much, large inclusions that will cause ground marks are generated, so the content was made 0.03% or less.
【0019】Nb:Nbは微細な炭窒化物を形成し、結
晶粒の微細化に効果が有り、基地の靭性強化に有効であ
るので、必要に応じて添加する。しかし、0.05%を
越えて添加しても効果は飽和するので、0.05%以下
とするのがよい。Nb: Nb forms fine carbonitrides, has an effect of refining the crystal grains, and is effective in strengthening the toughness of the matrix, so it is added if necessary. However, even if added over 0.05%, the effect is saturated, so 0.05% or less is preferable.
【0020】焼入温度:焼入温度は、焼入れ前の炭化物
を固溶させ、じゅうぶんな二次硬化を得るために117
5°K以上に設定することが望ましい。これより低い温
度で焼入れを行うと、焼もどしによって1500MPa
以上の引張強さが得られない。 焼もどし温度:焼もどし温度は、MoやV炭化物の二次
硬化を効果的に利用するために850°K以上で行うよ
うにする。これよりも低い温度で焼もどしを行うと、目
標とする強度が得られないばかりか、耐遅れ破壊性が著
しく劣化する。Quenching temperature: The quenching temperature is 117 in order to solidify the carbide before quenching and obtain a sufficient secondary hardening.
It is desirable to set it to 5 ° K or higher. If tempered at a temperature lower than this, 1500 MPa due to tempering
The above tensile strength cannot be obtained. Tempering temperature: The tempering temperature is set to 850 ° K or higher in order to effectively utilize the secondary hardening of Mo and V carbides. When tempering is performed at a temperature lower than this, not only the target strength cannot be obtained, but also the delayed fracture resistance deteriorates significantly.
【0021】[0021]
【実施例】第1表に示す化学成分の本発明例による鋼A
〜Fおよび比較例G〜Mをそれぞれ溶製したのち造塊
し、各鋼を直径10mmの線材に圧延した。EXAMPLE Steel A according to the present invention having the chemical composition shown in Table 1
-F and Comparative Examples GM were melted and then ingoted, and each steel was rolled into a wire rod having a diameter of 10 mm.
【0022】[0022]
【表1】 [Table 1]
【0023】ついで、各線材に焼なましを施した後、引
張り試験片に加工した。引張試験には縮小JIS4号試
験片を使用した。調質後の引張試験の結果を第2表と第
3表に示す。なお、焼入れは所定の温度に30分保持
後、油冷で行った。また、焼もどしは所定の温度に1時
間保持後、空冷で行った。Then, each wire was annealed and processed into a tensile test piece. A reduced JIS No. 4 test piece was used for the tensile test. The results of the tensile test after conditioning are shown in Tables 2 and 3. The quenching was carried out at a predetermined temperature for 30 minutes and then oil cooling. The tempering was carried out by air cooling after holding at a predetermined temperature for 1 hour.
【0024】また、各線材に焼なましを施した後、遅れ
破壊試験片に加工した。遅れ破壊特性の試験に際しては
第1図に示す曲げ型促進試験片(l1=20mm、d1
=6mm、d2=4mm、R=0.1mm)を使用し、
片持ち曲げ荷重を負荷して行った。また、試験環境は
0.1N−HCl水溶液を試験片の切欠き部に滴下し、
曲げ応力を加えた。After annealing each wire, it was processed into a delayed fracture test piece. In the test of delayed fracture characteristics, a bending type accelerated test piece (l 1 = 20 mm, d 1 shown in FIG. 1 was used.
= 6 mm, d 2 = 4 mm, R = 0.1 mm),
A cantilever bending load was applied. In addition, the test environment, 0.1N-HCl aqueous solution is dropped into the notch of the test piece,
Bending stress was applied.
【0025】そして、各供試材の耐遅れ破壊性は、静曲
げ応力(σSB)に対する遅れ破壊試験30時間後にお
ける強度(σ30h)との比、すなわち遅れ破壊強度比
σ30h/σSBで表した。この結果を第2表と第3
表に示す。なお、引張強さが1500MPaよりも小さ
い試験片については、比較例のYを除いて、遅れ破壊試
験を行わなかった。The delayed fracture resistance of each test material was expressed by the ratio of the static bending stress (σSB) to the strength (σ30h) after 30 hours of the delayed fracture test, that is, the delayed fracture strength ratio σ30h / σSB. The results are shown in Tables 2 and 3.
Shown in the table. In addition, about the test piece whose tensile strength is less than 1500 MPa, the delayed fracture test was not performed except Y of the comparative example.
【0026】[0026]
【表2】 [Table 2]
【0027】[0027]
【表3】 [Table 3]
【0028】第2表に示すように引張強さ1200MP
a級の比較例Y鋼の遅れ破壊強度比は0.70である。
そこで、0.70以上の遅れ破壊強度比が得られるか否
かで、耐遅れ破壊性の優劣を判断することにした。As shown in Table 2, the tensile strength is 1200MP.
The delayed fracture strength ratio of the a-class comparative example Y steel is 0.70.
Therefore, it was decided to judge the superiority or inferiority of the delayed fracture resistance based on whether or not the delayed fracture strength ratio of 0.70 or more can be obtained.
【0029】第2表に示すように、本発明例の鋼A〜F
は、請求範囲の焼入温度、焼もどし温度域の熱処理によ
って引張強さ1500MPa以上の引張強さを示してい
る。さらに、比較例Yよりも高い遅れ破壊強度比を示し
ている。As shown in Table 2, the steels A to F of the examples of the present invention.
Indicates a tensile strength of 1500 MPa or more due to heat treatment in the quenching temperature and tempering temperature ranges of the claims. Further, it shows a higher delayed fracture strength ratio than Comparative Example Y.
【0030】これに対し、比較例G、P、Rは、それぞ
れ、C、Mo、V含有量が請求範囲よりも低いため、じ
ゅうぶんな二次硬化量が得られず、1500MPa以上
の引張強さを得られなかった。U、W、Xはそれぞれ、
Al、N、Nb含有量が請求範囲よりも高いため、大型
介在物が生成し、これが破壊の起点になり、低い引張応
力で破断したため、1500MPa以上が得られなかっ
た。On the other hand, in Comparative Examples G, P and R, since the contents of C, Mo and V were lower than the claimed ranges, respectively, an adequate secondary curing amount could not be obtained and a tensile strength of 1500 MPa or more was obtained. Couldn't get U, W and X are
Since the content of Al, N, and Nb was higher than the claimed range, large inclusions were generated, which became a starting point of fracture and fractured at a low tensile stress, so that 1500 MPa or more could not be obtained.
【0031】また、比較例H、I、J、L、M、N、
O、Q、S、T、Vの引張強さは1500MPa以上得
られたが、遅れ破壊強度比は、0.7よりも小さいこと
がわかった。比較例Hでは、Cが請求範囲の上限を越え
たため、遅れ破壊感受性が増大したことによる。比較例
lでは、Siが請求範囲の上限を越えたため、不純物元
素のオーステナイト粒界への偏析量が増加し、旧オース
テナイト粒界の遅れ破壊感受性が増大したことによる。
比較例Jでは、Mnが請求範囲の上限を越えたため、不
純物元素のオーステナイト粒界への偏析量が増加し、旧
オーステナイト粒界の遅れ破壊感受性が増大したことに
よる。比較例Lでは、Pが請求範囲の上限を越えたた
め、不純物元素のオーステナイト粒界への偏析量が増加
し、旧オーステナイト粒界の遅れ破壊感受性が増大した
ことによる。比較例Mでは、Sが請求範囲の上限を越え
たため、不純物元素のオーステナイト粒界への偏析量が
増加し、旧オーステナイト粒界の遅れ破壊感受性が増大
したことによる。比較例Nでは、Niが請求範囲の下限
を下回ったため、基地の遅れ破壊感受性が増大したこと
による。比較例Oでは、Crが請求脆囲を越えたため、
熱処理時の粒界酸化層深さが深くなり、試験片近傍の遅
れ破壊感受性が増大したことによる。比較例Qでは、M
oが請求範囲の上限を越えたため、巨大な一次共晶炭化
物が生成し、これが基地の靭性を劣化させ、遅れ破壊感
受性が増大したことによる。比較例Sでは、Vが請求範
囲の上限を越えたため、巨大な一次共晶炭化物が生成
し、これが基地の靭性を劣化させ、遅れ破壊感受性が増
大したことによる。比較例Tは、Alが請求範囲を下回
ったため、結晶粒が粗大化し、これが基地の靭性を劣化
させ、遅れ破壊感受性が増大したことによる。比較例V
は、Nが請求範囲を下回ったため、結晶粒が粗大化し、
これが基地の靭性を劣化させ、遅れ破壊感受性が増大し
たことによる。Comparative examples H, I, J, L, M, N,
It was found that the tensile strengths of O, Q, S, T, and V were 1500 MPa or more, but the delayed fracture strength ratio was smaller than 0.7. In Comparative Example H, since C exceeds the upper limit of the claimed range, the delayed fracture susceptibility is increased. In Comparative Example 1, since Si exceeds the upper limit of the claimed range, the amount of segregation of the impurity element to the austenite grain boundaries increases, and the delayed fracture susceptibility of the old austenite grain boundaries increases.
In Comparative Example J, since Mn exceeds the upper limit of the claimed range, the amount of segregation of the impurity element to the austenite grain boundaries is increased, and the delayed fracture susceptibility of the old austenite grain boundaries is increased. In Comparative Example L, since P exceeds the upper limit of the claimed range, the segregation amount of the impurity element to the austenite grain boundaries increases, and the delayed fracture susceptibility of the old austenite grain boundaries increases. In Comparative Example M, since S exceeded the upper limit of the claim range, the segregation amount of the impurity element to the austenite grain boundary was increased, and the delayed fracture susceptibility of the old austenite grain boundary was increased. In Comparative Example N, since Ni was below the lower limit of the claimed range, the delayed fracture susceptibility of the base was increased. In Comparative Example O, since Cr exceeded the claimed brittle range,
This is because the depth of the grain boundary oxide layer during heat treatment became deeper and the delayed fracture susceptibility near the specimen increased. In Comparative Example Q, M
Because o exceeds the upper limit of the claimed range, a huge primary eutectic carbide is generated, which deteriorates the toughness of the matrix and increases the delayed fracture susceptibility. In Comparative Example S, since V exceeded the upper limit of the claimed range, huge primary eutectic carbide was generated, which deteriorated the toughness of the matrix and increased the delayed fracture susceptibility. In Comparative Example T, since Al was less than the claimed range, the crystal grains were coarsened, which deteriorated the toughness of the matrix and increased the delayed fracture susceptibility. Comparative Example V
, N was below the claimed range, so the crystal grains became coarse,
This is because the toughness of the base deteriorates and the susceptibility to delayed fracture increases.
【0032】第3表に、第2表での本発明例での鋼A〜
Fの、焼入温度、焼もどし温度域が本請求範囲にあるも
のと、請求範囲を逸脱するものとの引張強さと遅れ破壊
強度比を示す。Table 3 shows steels A to A in the examples of the present invention shown in Table 2.
The tensile strength and delayed fracture strength ratios of F having quenching temperature and tempering temperature range within the present claims and those exceeding the claims are shown.
【0033】焼入温度が1175Kよりも低い場合、い
ずれの鋼種とも引張強さが1500MPaよりも低かっ
た。これは、焼入加熱時に炭化物がじゅうぶん固溶しな
かったため、二次硬化量が小さくなったことによる。When the quenching temperature was lower than 1175K, the tensile strength was lower than 1500 MPa for all the steel types. This is due to the fact that the carbide did not form a solid solution at the time of quenching and heating, so that the secondary curing amount became small.
【0034】焼もどし温度が850°Kよりも低い場
合、いずれの鋼種とも引張強さは1500MPa以上を
得られた。しかし、遅れ破壊強度比は、第2表の比較例
Yの0.70を下回ることがわかる。これは、二次硬化
に寄与する炭化物がじゅうぶんに析出しなかったため
に、水素の捕捉量が減少し、遅れ破壊起点部への水素の
拡散を防止できなかったことによる。When the tempering temperature was lower than 850 ° K, a tensile strength of 1500 MPa or more was obtained for all steel types. However, it can be seen that the delayed fracture strength ratio is less than 0.70 of Comparative Example Y in Table 2. This is because the carbides that contribute to the secondary hardening were not sufficiently precipitated, so that the amount of trapped hydrogen was reduced, and the diffusion of hydrogen to the delayed fracture starting point portion could not be prevented.
【0035】[0035]
【発明の効果】以上説明してきたように、本発明によっ
て、引張強さ1500MPa以上を有し、1200MP
aに調質した強靭鋼と同等以上の耐遅れ破壊性を有する
ボルトの製造が可能になる。これによって、構造部品の
軽量化や小型化が達成されるので、工業的な効果は大き
い。As described above, according to the present invention, the tensile strength is 1500 MPa or more and 1200 MPa.
It is possible to manufacture a bolt having a delayed fracture resistance equal to or higher than that of a high-strength steel tempered to a. As a result, the weight and size of the structural component can be reduced, which has a great industrial effect.
【図1】遅れ破壊試験片形状を示す。FIG. 1 shows a delayed fracture test piece shape.
Claims (1)
Si:0.15%以下、Mn:0.4%以下、P:0.
015%以下、S:0.010%以下、Ni:0.8〜
2.4%、Cr:0.8〜1.5%、Mo:0.8〜
1.4%、V:0.15〜0.40%、Al:0.01
〜0.06%、N:0.005〜0.03%と必要に応
じてNb:0.05%以下を含有し、残部実質的にFe
及び不可避的不純物からなる鋼を用いて加工したボルト
を、1175°K以上の温度から焼入れ、850°K以
上の温度で焼きもどしすることを特徴とした、引張強さ
1500MPa以上であり、耐遅れ破壊性に優れた高強
度ボルトの製造方法。1. C: 0.35 to 0.50% by weight,
Si: 0.15% or less, Mn: 0.4% or less, P: 0.
015% or less, S: 0.010% or less, Ni: 0.8 to
2.4%, Cr: 0.8 to 1.5%, Mo: 0.8 to
1.4%, V: 0.15 to 0.40%, Al: 0.01
.About.0.06%, N: 0.005 to 0.03% and, if necessary, Nb: 0.05% or less, with the balance being substantially Fe.
And a bolt processed using steel made of unavoidable impurities are characterized by quenching from a temperature of 1175 ° K or higher and tempering at a temperature of 850 ° K or higher, with a tensile strength of 1500 MPa or more and delay resistance. A method for manufacturing a high-strength bolt having excellent destructiveness.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6850395A JPH08225845A (en) | 1995-02-20 | 1995-02-20 | Production of high strength bolt excellent in delayed fracture resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6850395A JPH08225845A (en) | 1995-02-20 | 1995-02-20 | Production of high strength bolt excellent in delayed fracture resistance |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08225845A true JPH08225845A (en) | 1996-09-03 |
Family
ID=13375575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6850395A Pending JPH08225845A (en) | 1995-02-20 | 1995-02-20 | Production of high strength bolt excellent in delayed fracture resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08225845A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1371863A1 (en) * | 2001-03-22 | 2003-12-17 | Nippon Steel Corporation | High-strength bolt excellent in delayed fracture resistance characteristics and its steel product |
JP2006131990A (en) * | 2004-10-08 | 2006-05-25 | Nippon Steel Corp | High strength bolt with excellent delayed fracture resistance and method for improving delayed fracture resistance |
JP2007031736A (en) * | 2005-07-22 | 2007-02-08 | Nippon Steel Corp | Manufacturing method of high-strength bolts with excellent delayed fracture resistance |
WO2020162616A1 (en) * | 2019-02-08 | 2020-08-13 | 日本製鉄株式会社 | Bolt, and steel material for bolts |
WO2021094088A1 (en) * | 2019-11-11 | 2021-05-20 | Robert Bosch Gmbh | Slow-transforming steel alloy, method for producing the slow-transforming steel alloy and hydrogen store having a component made from said slow-transforming steel alloy |
-
1995
- 1995-02-20 JP JP6850395A patent/JPH08225845A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1371863A1 (en) * | 2001-03-22 | 2003-12-17 | Nippon Steel Corporation | High-strength bolt excellent in delayed fracture resistance characteristics and its steel product |
EP1371863A4 (en) * | 2001-03-22 | 2004-10-20 | Nippon Steel Corp | HIGH RESISTANCE BOLT HAVING EXCELLENT DEFERRED FRACTURE RESISTANCE PROPERTIES AND ITS PRODUCING STEEL |
US7070664B2 (en) | 2001-03-22 | 2006-07-04 | Nippon Steel Corporation | High strength bolt superior in delayed fracture resistant property and steel material for the same |
JP2006131990A (en) * | 2004-10-08 | 2006-05-25 | Nippon Steel Corp | High strength bolt with excellent delayed fracture resistance and method for improving delayed fracture resistance |
JP4555749B2 (en) * | 2004-10-08 | 2010-10-06 | 新日本製鐵株式会社 | Method for improving delayed fracture resistance of high strength bolts |
JP2007031736A (en) * | 2005-07-22 | 2007-02-08 | Nippon Steel Corp | Manufacturing method of high-strength bolts with excellent delayed fracture resistance |
JP4485424B2 (en) * | 2005-07-22 | 2010-06-23 | 新日本製鐵株式会社 | Manufacturing method of high-strength bolts with excellent delayed fracture resistance |
WO2020162616A1 (en) * | 2019-02-08 | 2020-08-13 | 日本製鉄株式会社 | Bolt, and steel material for bolts |
KR20210104862A (en) * | 2019-02-08 | 2021-08-25 | 닛폰세이테츠 가부시키가이샤 | Bolts and steel for bolts |
CN113383094A (en) * | 2019-02-08 | 2021-09-10 | 日本制铁株式会社 | Bolt and steel material for bolt |
JPWO2020162616A1 (en) * | 2019-02-08 | 2021-11-11 | 日本製鉄株式会社 | Bolts and steel materials for bolts |
WO2021094088A1 (en) * | 2019-11-11 | 2021-05-20 | Robert Bosch Gmbh | Slow-transforming steel alloy, method for producing the slow-transforming steel alloy and hydrogen store having a component made from said slow-transforming steel alloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20080017365A (en) | High strength steel and metal bolts with excellent delayed fracture resistance | |
JPH0853714A (en) | Shaft parts for machine structural use excellent in torsional fatigue strength | |
JP2006037177A (en) | Age-hardening steel | |
CN113692456A (en) | Ultrahigh-strength steel sheet having excellent shear workability and method for producing same | |
JP2004027334A (en) | Steel for induction tempering and method of producing the same | |
JP4946328B2 (en) | Method for manufacturing age-hardening machine parts | |
JP3288563B2 (en) | Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same | |
JPH08225845A (en) | Production of high strength bolt excellent in delayed fracture resistance | |
JP4344126B2 (en) | Induction tempered steel with excellent torsional properties | |
JPH1129836A (en) | Steel for machine structural use for induction hardening | |
JPH07188840A (en) | High strength steel excellent in hydrogen embrittlement resistance and its production | |
JP2003306741A (en) | High-tensile cast steel and production method thereof | |
JPH06336648A (en) | High strength PC bar wire excellent in delayed fracture resistance and its manufacturing method | |
JP3320958B2 (en) | Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same | |
JP2591807B2 (en) | Carbon steel for machine structure with excellent cold forgeability and induction hardening | |
JPH07179988A (en) | Hot tool steel excellent in high temperature strength | |
JP7544489B2 (en) | Alloy steel for machine structures with an excellent balance of hardness and toughness | |
JPH06299296A (en) | Steel for high strength spring excellent in decarburizing resistance | |
JP4001787B2 (en) | Cold tool steel with excellent fatigue life and heat treatment method thereof | |
JP4975261B2 (en) | Manufacturing method of high strength steel with excellent delayed fracture resistance | |
JP3468875B2 (en) | Manufacturing method of high strength and high toughness steel | |
JP3238452B2 (en) | Forged steel rolls for rolling metal | |
JP2954216B2 (en) | Steel for high strength parts | |
JP3748696B2 (en) | Manufacturing method of connecting rod for automobile | |
JP3762543B2 (en) | Manufacturing method of non-tempered steel for hot forging and non-tempered hot forged product and hot forged non-tempered product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Effective date: 20040519 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040602 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040723 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040723 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050517 |