[go: up one dir, main page]

JPH08213055A - Charging method of battery pack and its device - Google Patents

Charging method of battery pack and its device

Info

Publication number
JPH08213055A
JPH08213055A JP7020363A JP2036395A JPH08213055A JP H08213055 A JPH08213055 A JP H08213055A JP 7020363 A JP7020363 A JP 7020363A JP 2036395 A JP2036395 A JP 2036395A JP H08213055 A JPH08213055 A JP H08213055A
Authority
JP
Japan
Prior art keywords
voltage
unit
charging
battery
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7020363A
Other languages
Japanese (ja)
Inventor
Kazuhiro Araki
一浩 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP7020363A priority Critical patent/JPH08213055A/en
Publication of JPH08213055A publication Critical patent/JPH08213055A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Control Of Charge By Means Of Generators (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: To uniformly increase the capacity of respective unit secondary batteries while eliminating its dispersion even if dispersion of the capacity of the respective unit secondary batteries is caused at the beginning of charging in the case of charging a battery pack. CONSTITUTION: A charging method of battery pack and its device are provided with a constant current charging process to perform charging by supplying a charging current of a constant current to a battery pack 1 until voltage of the whole battery pack 1 formed by connecting unit secondary batteries 2a and 2b in series to each other becomes its almost full charging voltage and a constant voltage charging process to perform charging by giving constant voltage to the battery pack 1 in the second place. In the constant current charging process voltages of the respective unit secondary batteries 2a and 2b are momentarily detected by voltage detecting means 4a, and the constant current is carried as it is to the unit secondary battery 2a or 2b corresponding to the lowest voltage among these detecting voltages, and charging is performed, and a part of the constant current is distributed to the unit secondary battery 2b or 2a high in the detecting voltage by a distributing circuit part 5b or 5a, and charging is performed by a charging current less than the unit secondary battery 2a or 2b of the lowest voltage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数の単位二次電池を
直列に接続してなる組電池の充電方法及びその装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of charging a battery pack and a device for charging the battery pack, in which a plurality of unit secondary batteries are connected in series.

【0002】[0002]

【従来の技術】例えば電気自動車等に搭載されるバッテ
リにあっては、大容量出力が要求されるため、複数の単
位二次電池を直列に接続してなる組電池が一般に使用さ
れている。
2. Description of the Related Art For a battery mounted in, for example, an electric vehicle, a large capacity output is required, so that an assembled battery in which a plurality of unit secondary batteries are connected in series is generally used.

【0003】そして、この種の組電池を充電する場合、
比較的充電効率がよく、充電所要時間を比較的短いもの
とすることができる定電流充電方式が一般に用いられて
いる。また、例えばリチウムイオン二次電池やリチウム
ポリマー二次電池を単位二次電池とする組電池を充電す
る場合には、その内部抵抗が比較的高く、定電流充電だ
けでは、充分に充電することが困難であることから、該
組電池の充電電圧(各単位二次電池の充電電圧の総和)
が所定の電圧となるまで、該組電池の定電流充電を行
い、その後、該組電池の満充電電圧に相当する定電圧で
もって充電を行う充電手法が用いられている。
When charging this type of assembled battery,
A constant current charging method is generally used, which has a relatively high charging efficiency and a relatively short charging time. In addition, for example, when charging an assembled battery including a lithium ion secondary battery or a lithium polymer secondary battery as a unit secondary battery, the internal resistance thereof is relatively high, and constant current charging alone is sufficient for charging. Since it is difficult, the charging voltage of the assembled battery (sum of charging voltage of each unit secondary battery)
A charging method is used in which constant current charging of the assembled battery is performed until a predetermined voltage is reached, and then charging is performed with a constant voltage corresponding to the full charge voltage of the assembled battery.

【0004】一方、前記組電池にあっては、その製造時
に各単位二次電池の容量のばらつきを生じたり、あるい
は、種々の放電態様での使用や、経時劣化等によって個
々の単位二次電池の容量のばらつきを生じる場合が多々
ある。特に、前記リチウムイオン二次電池やリチウムポ
リマー二次電池においては、このようなばらつきを生じ
やすい。
On the other hand, in the assembled battery, the capacity of each unit secondary battery may vary during manufacture, or the unit secondary battery may be used in various discharge modes or deteriorated with time. In many cases, there is a variation in the capacitance. In particular, such variations are likely to occur in the lithium ion secondary battery and the lithium polymer secondary battery.

【0005】そして、このように各単位電池の容量のば
らつきを生じている組電池にあっては、それを前述の充
電手法によって充電すると、定電流充電の際に、各単位
二次電池に同一の充電電流が流れるため、各単位二次電
池の単位時間当たりの充電量はいずれもほぼ同じとな
り、従って、各単位二次電池の時々刻々の容量あるいは
それに対応する各単位二次電池の電圧は、当初のばらつ
きを生じたまま上昇していくこととなる。
Then, in the assembled battery in which the capacity of each unit battery varies as described above, if the assembled battery is charged by the above-mentioned charging method, each unit secondary battery is the same in constant current charging. Since the charging current flows for each unit secondary battery, the amount of charge per unit time is almost the same, so the momentary capacity of each unit secondary battery or the corresponding voltage of each unit secondary battery is , It will rise with the initial variation.

【0006】しかしながら、このように各単位二次電池
の容量や電圧のばらつきを生じたまま充電が行われる
と、例えばその充電途中において、組電池を使用してそ
の放電を開始した場合、その組電池の放電能力は、最も
容量の低い単位電池の影響を大きく受け、本来の性能を
発揮することができなくなると共に、そのような放電と
充電とが繰り返されると、組電池の経時劣化を助長して
しまう。
However, when charging is performed while the capacity and voltage of each unit secondary battery are varied in this way, for example, if the assembled battery is used to start discharging during charging, the assembly The discharge capacity of the battery is greatly affected by the unit battery with the lowest capacity, and the original performance cannot be exerted.If such discharging and charging are repeated, deterioration of the assembled battery over time is promoted. Will end up.

【0007】また、上記のように充電途中で組電池の放
電が開始されない場合であっても、各単位二次電池が満
充電状態に達するタイミングは相互に異なるため、定電
流充電を例えば組電池の電圧が略満充電電圧に達するま
で行うと、充電当初に最も容量の大きかった単位2次電
池が満充電状態となった後にも継続して充電されて過剰
充電状態となったり、あるいは、充電当初に最も容量の
小さかった単位2次電池が過少充電状態となったりし
て、その結果、組電池の経時劣化を助長してしまう。
Even when the assembled battery does not start discharging during charging as described above, the timings at which the unit secondary batteries reach the fully charged state are different from each other. If the unit rechargeable battery that has the largest capacity at the beginning of charging is continuously charged to the overcharged state, The unit secondary battery having the smallest capacity at the beginning is in an undercharged state, and as a result, deterioration of the assembled battery over time is promoted.

【0008】さらに、前述のように、定電流充電を組電
池の所定電圧まで行った後に定電圧充電を行う場合であ
っても、上記のような過剰充電を防止するために、前記
所定電圧を組電池の満充電電圧よりも充分に低い値に設
定しておく必要が生じ、このため、定電流充電に較べて
充電効率の低下を生じやすい定電圧充電を行う期間が長
くなり、組電池を満充電状態とするまでの充電時間が長
くなってしまう。
Further, as described above, even when the constant voltage charging is performed after the constant current charging is performed up to the predetermined voltage of the assembled battery, the predetermined voltage is set to prevent the above-mentioned overcharging. It is necessary to set it to a value that is sufficiently lower than the full charge voltage of the assembled battery, and as a result, the period for constant voltage charging that tends to cause a decrease in charging efficiency is longer than that for constant current charging, and the assembled battery is It takes a long time to fully charge the battery.

【0009】[0009]

【発明が解決しようとする課題】本発明はかかる不都合
を解消し、組電池の充電に際して、充電当初に各単位二
次電池の容量のばらつきが生じていても、そのばらつき
を解消しつつ均等に各単位二次電池の容量を上昇させて
いくことができる充電方法及び充電装置を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention solves such inconveniences, and even when there is a variation in the capacity of each unit secondary battery at the beginning of charging when the assembled battery is charged, the variation can be eliminated and evenly distributed. An object of the present invention is to provide a charging method and a charging device capable of increasing the capacity of each unit secondary battery.

【0010】そして、定電流充電と定電圧充電とを順次
行って組電池を満充電するに際し、定電流充電時の各単
位二次電池の容量のばらつきを解消しつつ均等な容量上
昇を行わせると共に、各単位二次電池の過剰充電や過少
充電を生じることなく効率よく組電池を満充電すること
ができる充電方法及び充電装置を提供することを目的と
する。
Then, when the battery pack is fully charged by sequentially performing the constant current charging and the constant voltage charging, a uniform capacity increase is performed while eliminating the variation in the capacity of each unit secondary battery during the constant current charging. At the same time, it is an object of the present invention to provide a charging method and a charging device capable of efficiently fully charging an assembled battery without causing overcharge or undercharge of each unit secondary battery.

【0011】[0011]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明の組電池の充電方法は複数の単位二次電池
を直列に接続してなる組電池の充電方法において、前記
組電池に充電電流を給電する給電工程と、該充電電流の
給電時に前記組電池の各単位二次電池の電圧を時々刻々
検出する工程と、該電圧の各検出時点において、前記複
数の単位二次電池のうち、検出電圧の最も低い単位二次
電池を基準単位電池とし、その基準単位電池の単位時間
当たりの電圧上昇率が他の各単位二次電池よりも大きく
なるように各単位二次電池の充電電流を制御すると共
に、その充電電流の制御を、前記基準単位電池の検出電
圧が他の単位二次電池のうちの少なくとも一つの単位二
次電池の検出電圧を越えたとき、他の検出電圧の最も低
い単位二次電池を次の基準単位電池として順次基準単位
電池を更新しつつ行う電流制御工程とを備えたことを特
徴とする。
In order to achieve the above object, a method for charging an assembled battery according to the present invention is a method for charging an assembled battery, which comprises a plurality of unit secondary batteries connected in series, wherein A step of feeding a charging current, a step of momentarily detecting the voltage of each unit secondary battery of the assembled battery at the time of feeding the charging current, and a step of detecting the voltage of each of the plurality of unit secondary batteries at each detection point of the voltage. Of these, the unit secondary battery with the lowest detected voltage is used as the reference unit battery, and the unit secondary batteries are charged so that the rate of voltage increase per unit time of the reference unit battery is higher than that of other unit secondary batteries. While controlling the current, the control of the charging current, when the detection voltage of the reference unit battery exceeds the detection voltage of at least one unit secondary battery of other unit secondary batteries, Next lowest unit secondary battery Characterized by comprising a current control process performed while sequentially updated reference unit cell as reference unit cell.

【0012】そして、前記給電工程は前記組電池に定電
流の充電電流を給電し、前記電流制御工程は、前記基準
単位電池に前記定電流の充電電流をそのまま通電すると
共に、他の各単位二次電池にはその検出電圧に応じて前
記定電流の充電電流を各単位二次電池に並列に接続され
た分流路に分流することにより該定電流の充電電流より
も少ない充電電流を通電するように制御することを特徴
とする。
In the power feeding step, a constant-current charging current is fed to the assembled battery, and in the current control step, the constant-current charging current is passed to the reference unit battery as it is, and the other unit cells are charged. According to the detected voltage, the constant current charging current is distributed to the secondary flow paths connected in parallel to each unit secondary battery so that a charging current smaller than the constant current charging current is applied to the secondary battery. It is characterized by controlling to.

【0013】また、前記電流制御工程は、前記の充電電
流の制御を各単位二次電池の検出電圧が各単位二次電池
の略満充電電圧に相当する所定電圧に略達するまで行
い、各単位二次電池の検出電圧が所定電圧に略達した後
には前記組電池にその満充電電圧に対応する定電圧を付
与して各単位電池の充電を行う定電圧充電工程を備えた
ことを特徴とする。
In the current control step, the control of the charging current is performed until the detected voltage of each unit rechargeable battery substantially reaches a predetermined voltage corresponding to a substantially full charge voltage of each unit rechargeable battery. After the detection voltage of the secondary battery substantially reaches a predetermined voltage, a constant voltage charging step of charging each unit battery by applying a constant voltage corresponding to the full charge voltage to the assembled battery is provided. To do.

【0014】さらに、前記単位二次電池は、リチウムイ
オン二次電池又はリチウムポリマー二次電池であること
を特徴とする。
Further, the unit secondary battery is a lithium ion secondary battery or a lithium polymer secondary battery.

【0015】また、本発明の組電池の充電装置は、前記
の目的を達成するために、複数の単位二次電池を直列に
接続してなる組電池の充電装置において、前記組電池に
接続されて該組電池に充電電流を給電する給電手段と、
前記各単位二次電池に接続され、前記給電手段による充
電電流の給電時に各単位二次電池の電圧を時々刻々検出
する電圧検出手段と、前記電圧検出手段による各単位電
池の電圧の各検出時点において該電圧検出手段から得ら
れる各単位二次電池の検出電圧のうちの最低電圧を把握
する最低電圧把握手段と、各単位二次電池を流れる充電
電流を調整可能に各単位二次電池に並列に接続された分
流路と、前記最低電圧把握手段により時々刻々把握され
た最低電圧に対応する単位二次電池の単位時間当たりの
電圧上昇率を他の各単位二次電池よりも大きくすべく前
記各分流路に流れる分流電流を調整して各単位電池を流
れる充電電流を制御する充電電流制御手段とを備えたこ
とを特徴とする。
In order to achieve the above object, the battery pack charging apparatus of the present invention is a battery pack charging apparatus in which a plurality of unit secondary batteries are connected in series, and is connected to the battery pack. A power supply means for supplying a charging current to the assembled battery,
Voltage detection means connected to each of the unit secondary batteries and momentarily detecting the voltage of each of the unit secondary batteries when the charging current is supplied by the power supply means, and each detection time of the voltage of each unit battery by the voltage detection means In the minimum voltage grasping means for grasping the lowest voltage among the detection voltages of the respective unit secondary batteries obtained from the voltage detecting means, and the charging current flowing through the respective unit secondary batteries can be adjusted in parallel with the respective unit secondary batteries. And a branching flow path connected to the unit secondary battery to increase the rate of voltage rise per unit time of the unit secondary battery corresponding to the minimum voltage grasped momentarily by the minimum voltage grasping unit, compared to other unit secondary batteries. And a charging current control means for controlling a charging current flowing through each unit battery by adjusting a shunt current flowing through each branching channel.

【0016】そして、前記給電手段は、前記組電池に定
電流の充電電流を給電する定電流給電手段であり、前記
充電電流制御手段は、前記最低電圧の単位二次電池につ
いては該単位二次電池に接続された前記分流路の分流電
流を遮断して前記定電流の充電電流を該単位二次電池に
そのまま流すと共に、他の各単位二次電池については該
単位二次電池に接続された各分流路に該単位二次電池の
前記検出電圧に応じた分流電流を流すことにより該単位
二次電池を流れる充電電流を前記定電流の充電電流より
も少なく制御することを特徴とする。
The power supply means is a constant current power supply means for supplying a constant current charging current to the assembled battery, and the charging current control means is the unit secondary battery for the minimum voltage unit secondary battery. The shunt current of the shunt flow path connected to the battery was cut off, and the constant-current charging current was allowed to flow to the unit secondary battery as it was, and the other unit secondary batteries were connected to the unit secondary battery. The charging current flowing through the unit secondary battery is controlled to be smaller than the constant current charging current by causing a shunt current corresponding to the detection voltage of the unit secondary battery to flow in each branch flow path.

【0017】また、前記組電池に定電圧を付与して各単
位二次電池を充電する定電圧給電手段と、前記電圧検出
手段から得られる各単位電池の検出電圧が各単位二次電
池の略満充電電圧に相当する所定電圧に略達するまで前
記定電流給電手段により前記組電池に充電電流を給電せ
しめ、その後は前記定電圧給電手段により前記組電池に
充電する充電方式切換手段とを備え、前記充電電流制御
手段は、前記定電流給電手段による充電時にのみ各単位
二次電池の充電電流を前記各分流路の分流電流により制
御することを特徴とする。
Further, the constant voltage feeding means for applying a constant voltage to the assembled battery to charge each unit secondary battery, and the detection voltage of each unit battery obtained from the voltage detecting means is the abbreviation of each unit secondary battery. A charging method switching means for supplying a charging current to the assembled battery by the constant current power supply means until the predetermined voltage corresponding to a full charge voltage is substantially reached, and then charging the assembled battery by the constant voltage power supply means. The charging current control means controls the charging current of each unit secondary battery by the shunt current of each of the flow paths only when charging by the constant current feeding means.

【0018】さらに、前記各単位二次電池は、リチウム
イオン二次電池又はリチウムポリマー二次電池であるこ
とを特徴とする。
Furthermore, each unit secondary battery is a lithium ion secondary battery or a lithium polymer secondary battery.

【0019】[0019]

【作用】本発明の組電池の充電方法によれば、前記組電
池に充電電流を給電して該組電池を充電する際には、各
単位二次電池の電圧を時々刻々検出し、その検出の各時
点において、最も検出電圧の低い単位二次電池を基準単
位電池として、その基準単位二次電池の単位時間当たり
の電圧上昇率が他の単位二次電池よりも大きくなるよう
に各単位二次電池の充電電流を制御するので、充電の際
の各時点において、最も検出電圧の低い単位二次電池、
すなわち容量の最も低い単位二次電池が他の単位二次電
池よりも多くの充電量でもって充電されて、最も速く電
圧が上昇する。この場合、このように最も速く電圧が上
昇する基準単位電池は、やがてその電圧が他の単位二次
電池の電圧を越えるため、次には、基準単位二次電池が
新たに最も低い検出電圧となった単位二次電池に更新さ
れ、その更新された基準単位二次電池が他の二次電池よ
りも多くの充電量でもって充電されて、その電圧が最も
速く上昇するようになる。これにより、各単位二次電池
の電圧は、組電池の充電過程で常時、互いに同じ電圧に
なるように上昇し、各単位二次電池の容量がほぼ均等に
上昇していく。
According to the method of charging the assembled battery of the present invention, when the assembled battery is charged by supplying the charging current to the assembled battery, the voltage of each unit secondary battery is detected momentarily and the detection is performed. At each time point, the unit secondary battery with the lowest detection voltage is used as the reference unit battery, and each unit secondary battery is set so that the voltage rise rate of the reference unit secondary battery per unit time is larger than that of other unit secondary batteries. Since the charging current of the secondary battery is controlled, the unit secondary battery with the lowest detection voltage at each time of charging,
That is, the unit secondary battery having the lowest capacity is charged with a larger amount of charge than other unit secondary batteries, and the voltage rises fastest. In this case, the reference unit battery whose voltage rises fastest in this way eventually exceeds the voltage of the other unit secondary batteries, so that the reference unit secondary battery will now have the new lowest detected voltage. The updated reference unit secondary battery is charged with a larger amount of charge than other secondary batteries, and the voltage rises fastest. As a result, the voltage of each unit secondary battery constantly rises to the same voltage during the charging process of the assembled battery, and the capacity of each unit secondary battery rises substantially evenly.

【0020】このような本発明の充電方法において、前
記組電池を定電流の充電電流により充電する場合には、
前記基準単位電池に定電流の充電電流をそのまま通電す
ることにより、充電過程で適宜更新される最低の検出電
圧の基準電池は常に定電流の充電電流でもって、効率よ
く充電される。そして、他の各単位二次電池について
は、その検出電圧に応じて前記定電流の充電電流を各単
位二次電池に並列に接続された分流路に分流すること
で、それらの各単位二次電池がその電圧に応じた定電流
の充電電流よりも少ない電流でもって充電され、各単位
二次電池が互いに迅速に均等な電圧及び容量となるよう
に充電される。
In the above charging method of the present invention, when the assembled battery is charged with a constant current charging current,
By supplying a constant-current charging current to the reference unit battery as it is, the reference battery having the lowest detection voltage, which is appropriately updated in the charging process, is always efficiently charged with the constant-current charging current. Then, for each other unit secondary battery, by dividing the charging current of the constant current according to the detection voltage to the branch flow path connected in parallel to each unit secondary battery, each of the unit secondary The battery is charged with a current smaller than the constant-current charging current corresponding to the voltage, and each unit secondary battery is quickly charged to have an equal voltage and capacity.

【0021】また、前記電流制御工程の後に、前記定電
圧充電工程を行って、前記組電池を満充電する場合に
は、各単位二次電池は前述のように均等に充電されるた
め、各単位二次電池は、前記所定電圧にほぼ同時に達
し、その時点から前記定電圧充電工程が開始する。従っ
て、前記所定電圧を各単位二次電池の略満充電電圧とし
ても、定電圧充電工程の開始時に、過剰充電や過少充電
を生じていることはなく、しかも、各単位二次電池の略
満充電状態から定電圧充電工程を開始することで、該定
電圧充電工程により前記組電池を満充電状態にするまで
の時間を短いものとすることが可能となる。
When the constant voltage charging step is performed after the current control step to fully charge the assembled battery, each unit secondary battery is charged evenly as described above. The unit secondary batteries reach the predetermined voltage almost at the same time, and the constant voltage charging process starts from that time. Therefore, even if the predetermined voltage is set as the substantially full charge voltage of each unit secondary battery, overcharge or undercharge does not occur at the start of the constant voltage charging step, and furthermore, each unit secondary battery is almost fully charged. By starting the constant voltage charging step from the charged state, it becomes possible to shorten the time until the assembled battery is fully charged by the constant voltage charging step.

【0022】この場合、最終的に定電圧充電を行うこと
が好ましいリチウムイオン二次電池やリチウムポリマー
二次電池の充電に際して、上記のように定電圧充電工程
を短縮することが可能となることで、該リチウムイオン
二次電池やリチウムポリマー二次電池を単位二次電池と
する組電池の満充電を効率よく行うことが可能となる。
In this case, it is possible to shorten the constant voltage charging step as described above when charging the lithium ion secondary battery or the lithium polymer secondary battery, which is preferably charged with constant voltage finally. Thus, it becomes possible to efficiently perform full charge of the assembled battery including the lithium ion secondary battery or the lithium polymer secondary battery as a unit secondary battery.

【0023】次に、本発明の組電池の充電装置によれ
ば、前記給電手段により、前記組電池に充電電流を給電
して該組電池を充電する際に、前記最低電圧把握手段に
より前記電圧検出手段を介して時々刻々把握される最低
電圧に対応する単位二次電池の単位時間当たりの電圧上
昇率を他の各単位二次電池よりも大きくするように充電
電流制御手段により各単位二次電池に並列に接続された
分流路を流れる分流電流を調整することで、前述の充電
方法に従って、各単位二次電池の充電電流が制御され、
各単位二次電池の電圧が常時互いにほぼ同じ電圧となる
ように各単位二次電池が均等に充電される。
Next, according to the battery pack charging apparatus of the present invention, when the charging current is supplied to the battery pack by the power supply means to charge the battery pack, the voltage is detected by the minimum voltage grasping means. Each unit secondary battery is controlled by the charging current control device so that the voltage increase rate per unit time of the unit secondary battery corresponding to the lowest voltage that is grasped momentarily via the detection unit is made larger than that of each other unit secondary battery. By adjusting the shunt current flowing through the shunt flow path connected in parallel to the battery, according to the charging method described above, the charging current of each unit secondary battery is controlled,
The unit secondary batteries are uniformly charged so that the voltages of the unit secondary batteries are always substantially equal to each other.

【0024】この場合、前記給電手段して前記定電流給
電手段を用いたときには、最低電圧の単位二次電池につ
いては前記分流路を流れる分流電流を遮断して定電流給
電手段から給電される定電流の充電電流をそのまま該最
低電圧の単位二次電池に給電し、また、他の単位二次電
池については、その検出電圧に応じた分流電流を該単位
電池に対応する分流路に流すことで、最低電圧の単位二
次電池を常時、定電流の充電電流でもって効率よく充電
しつつ各単位二次電池を迅速に互いに均等な電圧及びそ
の電圧に対応した容量となるように充電される。
In this case, when the constant current power supply means is used as the power supply means, for the unit secondary battery having the lowest voltage, the shunt current flowing through the shunt flow path is cut off to supply power from the constant current power supply means. By supplying the charging current of the current as it is to the unit secondary battery having the lowest voltage, and for other unit secondary batteries, a shunt current corresponding to the detected voltage is caused to flow in the shunt channel corresponding to the unit battery. While the unit secondary battery having the lowest voltage is constantly and efficiently charged with the constant-current charging current, the unit secondary batteries are quickly charged to have mutually equal voltages and capacities corresponding to the voltages.

【0025】また、前記定電圧給電手段を備えたときに
は、前記充電電流制御手段による各充電電流の制御を行
いつつ各単位二次電池の充電を行って、各単位二次電池
の検出電圧が各単位二次電池の略満充電電圧に相当する
所定電圧に略達すると、前記充電方式切換手段の制御に
より、前記定電圧給電手段による定電圧充電が行われて
前記組電池が満充電される。そして、この場合、各単位
二次電池の検出電圧が各単位二次電池の略満充電電圧に
相当する所定電圧に略達したときに定電圧給電手段によ
る定電圧充電を開始することで、その開始時に各単位二
次電池の過剰充電や過少充電が生じることはなく、しか
も、定電圧給電手段による最終的な定電圧充電が短くて
済む。
Further, when the constant voltage power supply means is provided, each unit secondary battery is charged while controlling each charging current by the charging current control means so that the detected voltage of each unit secondary battery becomes When the predetermined voltage corresponding to the substantially full charge voltage of the unit secondary battery is substantially reached, the constant voltage charging means performs constant voltage charging by the control of the charging method switching means to fully charge the assembled battery. Then, in this case, by starting the constant voltage charging by the constant voltage power supply means when the detected voltage of each unit secondary battery substantially reaches a predetermined voltage corresponding to the substantially full charge voltage of each unit secondary battery, At the start, overcharge or undercharge of each unit secondary battery does not occur, and moreover, the final constant voltage charging by the constant voltage power supply means is short.

【0026】従って、最終的に定電圧充電を行うことが
好ましいリチウムイオン二次電池やリチウムポリマー二
次電池を単位二次電池とする組電池の満充電を効率よく
行うことが可能となる。
Therefore, it is possible to efficiently fully charge the assembled battery including the lithium ion secondary battery or the lithium polymer secondary battery as a unit secondary battery, which is preferably charged with a constant voltage finally.

【0027】[0027]

【実施例】本発明の一実施例を図1乃至図4を参照して
説明する。図1は本実施例の充電装置の回路的構成図、
図2は本実施例で充電を行う組電池の単位二次電池の開
路電圧と残容量との関係を示す線図、図3は本実施例の
充電装置により組電池を充電した時の各単位二次電池の
電圧の変化の様子を示す線図、図4は本実施例の充電装
置により充電した組電池の各単位二次電池を放電させた
時の電圧の変化の様子を示す線図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a circuit diagram of the charging device according to the present embodiment.
FIG. 2 is a diagram showing the relationship between the open circuit voltage of the rechargeable battery and the remaining capacity of the assembled battery in this embodiment, and FIG. 3 is each unit when the assembled battery is charged by the charging device of this embodiment. FIG. 4 is a diagram showing how the voltage of the secondary battery changes, and FIG. 4 is a diagram showing how the voltage changes when each unit secondary battery of the assembled battery charged by the charging device of this embodiment is discharged. is there.

【0028】図1を参照して、1は例えば2個の単位二
次電池2a,2bを直列に接続して構成された組電池、
3は組電池1を充電する際に該組電池1に給電する給電
部(給電手段)、4a,4bはそれぞれ単位二次電池2
a,2bの電圧を検出する電圧検出部(電圧検出手
段)、5a,5bは給電部3から組電池1に流れる充電
電流をそれぞれ単位二次電池2a,2bについて適宜分
流させるための分流回路部、6はマイクロコンピュータ
等により構成された充電コントローラである。
Referring to FIG. 1, reference numeral 1 denotes an assembled battery composed of, for example, two unit secondary batteries 2a and 2b connected in series,
3 is a power feeding unit (power feeding means) for feeding power to the assembled battery 1 when charging the assembled battery 1, and 4a and 4b are unit secondary batteries 2 respectively.
Voltage detection units (voltage detection means) 5a and 5b for detecting the voltages of a and 2b are shunt circuit units for appropriately shunting the charging currents flowing from the power feeding unit 3 to the assembled battery 1 with respect to the unit secondary batteries 2a and 2b, respectively. , 6 are charge controllers composed of a microcomputer or the like.

【0029】組電池1は、例えばリチウムイオン二次電
池を単位二次電池2a,2bとするものであり、各単位
二次電池2a,2bの満充電定格電圧は4.2V、組電
池1としての満充電定格電圧は8.4Vである。
The assembled battery 1 is, for example, a lithium ion secondary battery as the unit secondary batteries 2a and 2b, and the full-charge rated voltage of each unit secondary battery 2a and 2b is 4.2V. The full-charge rated voltage of is 8.4V.

【0030】尚、各単位二次電池2a,2bの開路電圧
と容量(残存容量)との関係は図2に示すように、開路
電圧が大きくなるに従って残存容量が大きくなるような
関係(大略比例関係)となり、該開路電圧と残存容量と
は1対1に対応する。
As shown in FIG. 2, the relationship between the open circuit voltage and the capacity (remaining capacity) of each unit secondary battery 2a, 2b is such that the remaining capacity increases as the open circuit voltage increases (roughly proportional to each other). Relationship), and the open circuit voltage and the remaining capacity have a one-to-one correspondence.

【0031】給電部4は、電源部7と、該電源部7の出
力から組電池1の定電流充電を行うための定電流と定電
圧充電を行うための定電圧とを充電コントローラ6の指
令により切換自在に生成する定電流・定電圧生成部8と
により構成されている。この場合、定電流・定電圧生成
部8が定電流充電時に生成する定電流は1A、定電圧充
電時に生成する定電圧は組電池1の満充電定格電圧と同
じ8.4Vである。
The power supply unit 4 issues a command to the charge controller 6 to the power supply unit 7, a constant current for performing constant current charging of the battery pack 1 and a constant voltage for performing constant voltage charging from the output of the power supply unit 7. And a constant current / constant voltage generation section 8 which is switchably generated by the. In this case, the constant current / constant voltage generation unit 8 generates a constant current of 1 A during constant current charging, and the constant voltage generated during constant voltage charging is 8.4 V, which is the same as the full-charge rated voltage of the assembled battery 1.

【0032】尚、電源部7及び定電流・定電圧生成部8
は、本発明の構成に対応して、定電流給電手段及び定電
圧給電手段を併せて構成するものである。
The power supply unit 7 and the constant current / constant voltage generation unit 8
According to the configuration of the present invention, the constant current feeding means and the constant voltage feeding means are configured together.

【0033】分流回路部5a,5bは、いずれも同一構
成のものであり、各単位二次電池2a,2bのプラス極
側に接続されたスイッチ9と、該スイッチ9の前段から
切換スイッチ10を介して各単位二次電池2a,2bに
並列に接続された一組の分流路11,12とにより構成
されている。この場合、分流路11には、充電コントロ
ーラ6の指令により抵抗値を可変とした可変抵抗11a
が介装され、該分流路11には、切換スイッチ10を図
1の矢印x側に投入したとき、組電池1に供給される充
電電流の一部が可変抵抗11aの抵抗値に応じた分流電
流として流れる。また、分流路12は、組電池1に供給
される充電電流を該分流路12に対応する単位二次電池
2a又は2bに流さずに分流させるためのものであり、
切換スイッチ10を図1の矢印y側に投入すると共にこ
れに連動させてスイッチ9を開成したとき、組電池1に
供給される充電電流が該分流路12に対応する単位二次
電池2a又は2bに流れることなく、該分流路12に分
流する。
The shunt circuit portions 5a and 5b have the same structure, and each of the unit secondary batteries 2a and 2b has a switch 9 connected to the positive electrode side and a changeover switch 10 from the preceding stage of the switch 9. It is constituted by a pair of branch channels 11 and 12 connected in parallel to each unit secondary battery 2a and 2b through. In this case, the shunt channel 11 has a variable resistor 11a whose resistance value is variable according to a command from the charge controller 6.
When a changeover switch 10 is turned to the arrow x side in FIG. 1, a part of the charging current supplied to the assembled battery 1 is shunted to the branch flow passage 11 according to the resistance value of the variable resistor 11a. It flows as an electric current. In addition, the shunt channel 12 is for diverting the charging current supplied to the assembled battery 1 without flowing to the unit secondary battery 2a or 2b corresponding to the shunt channel 12,
When the changeover switch 10 is turned to the side of the arrow y in FIG. 1 and the switch 9 is opened in conjunction with this, the charging current supplied to the assembled battery 1 corresponds to the unitary secondary battery 2a or 2b. Flow into the branch flow channel 12 without flowing into the flow path.

【0034】尚、スイッチ9及び切換スイッチ10は、
例えばトランジスタやFET等の半導体スイッチ素子を
用いて構成されたものであり、その作動は充電コントロ
ーラ6の指令により行われる。
The switch 9 and the changeover switch 10 are
For example, it is configured by using a semiconductor switch element such as a transistor or an FET, and its operation is performed by a command from the charge controller 6.

【0035】充電コントローラ6は、その主要な機能的
構成として、各単位二次電池2a,2bに流れる充電電
流を各単位二次電池2a,2bに対応する分流回路部5
a,5bを介して制御する充電電流制御部13(充電電
流制御手段)と、各電圧検出部4a,4bにより検出さ
れる各単位二次電池2a,2bの電圧のうちの最低電圧
を把握する最低電圧把握部14(最低電圧把握手段)
と、組電池1の充電方式の切換を前記定電流・定電圧生
成部8に指示する充電方式切換制御部15(充電方式切
換手段)とを備えている。これらの機能的構成は、組電
池1の充電時に各電圧検出部4a,4bにより検出され
る各単位二次電池2a,2bの電圧に基づき、後述する
ように作動する。
The charge controller 6 has, as its main functional configuration, a shunt circuit section 5 corresponding to each unit secondary battery 2a, 2b for charging current flowing in each unit secondary battery 2a, 2b.
The minimum voltage of the voltages of the unit secondary batteries 2a and 2b detected by the charging current control unit 13 (charging current control unit) and the voltage detection units 4a and 4b, which are controlled via a and 5b, is grasped. Minimum voltage grasping section 14 (minimum voltage grasping means)
And a charging method switching control section 15 (charging method switching means) for instructing the constant current / constant voltage generating section 8 to switch the charging method of the assembled battery 1. These functional configurations operate as described below based on the voltages of the unit secondary batteries 2a and 2b detected by the voltage detection units 4a and 4b when the assembled battery 1 is charged.

【0036】次に、本実施例の充電装置を用いた組電池
1の充電作動を説明する。
Next, the charging operation of the assembled battery 1 using the charging device of this embodiment will be described.

【0037】まず、組電池1に給電部4を接続し、充電
コントローラ6の充電電流制御部13により各スイッチ
9を閉成した状態で、充電コントローラ6は、充電方式
切換制御部15により、給電部4の定電流・定電圧生成
部8に定電流充電を指示する。この時、定電流・定電圧
生成部8は、1Aの定電流を生成し、それを組電池1に
その充電電流として給電する。これにより、組電池1の
定電流充電が開始される。
First, in a state in which the power feeding unit 4 is connected to the assembled battery 1 and each switch 9 is closed by the charging current control unit 13 of the charging controller 6, the charging controller 6 causes the charging system switching control unit 15 to supply power. Instruct the constant current / constant voltage generation unit 8 of the unit 4 to perform constant current charging. At this time, the constant current / constant voltage generating unit 8 generates a constant current of 1 A and supplies the constant current to the assembled battery 1 as its charging current. As a result, constant current charging of the assembled battery 1 is started.

【0038】また、これと並行して、各電圧検出部4
a,4bは、接続された各単位二次電池2a,2bの電
圧を時々刻々検出し、その検出電圧を充電コントローラ
6に出力する。そして、充電コントローラ6の最低電圧
把握部14は、各単位二次電池2a,2bの検出電圧の
うちの最低電圧を時々刻々把握する。さらに充電コント
ローラ6の充電電流制御部13は、把握された最低電圧
の単位二次電池2a又は2bを基準単位電池として、そ
の基準単位電池に他の単位二次電池2b又は2aよりも
大きな充電電流が流れるように各分流回路部5a,5b
を制御する。
In parallel with this, each voltage detection unit 4
a and 4b momentarily detect the voltage of each connected unit secondary battery 2a and 2b, and output the detected voltage to the charge controller 6. Then, the minimum voltage grasping unit 14 of the charge controller 6 grasps the lowest voltage among the detected voltages of the unit secondary batteries 2a and 2b moment by moment. Furthermore, the charging current control unit 13 of the charging controller 6 uses the unit secondary battery 2a or 2b having the lowest voltage as a reference unit battery, and sets the reference unit battery to a charging current larger than that of another unit secondary battery 2b or 2a. So that each of the flow dividing circuits 5a, 5b
Control.

【0039】さらに詳細には、今現在、例えば単位二次
電池2aの検出電圧が単位二次電池2bの検出電圧より
も低いとし、該単位二次電池2aの検出電圧が最低電圧
であるとすると、充電電流制御部13は、分流回路部5
aの切換スイッチ10を分流路11,12のいずれ側に
も接続することなく、分流路11,12を単位二次電池
2aから切り離す。この時、単位二次電池2aには、定
電流・定電圧生成部8により生成された定電流の充電電
流(1A)がそのまま流れて、該単位二次電池2aが充
電されていく。
More specifically, at present, for example, if the detection voltage of the unit secondary battery 2a is lower than the detection voltage of the unit secondary battery 2b, and the detection voltage of the unit secondary battery 2a is the lowest voltage. The charging current control unit 13 includes the shunt circuit unit 5
The branch channels 11 and 12 are disconnected from the unit secondary battery 2a without connecting the changeover switch 10a of a to either side of the branch channels 11 and 12. At this time, the constant-current charging current (1 A) generated by the constant-current / constant-voltage generating unit 8 flows through the unit secondary battery 2a as it is, and the unit secondary battery 2a is charged.

【0040】一方、検出電圧の高い側の単位二次電池2
bについては、充電電流制御部13は、分流回路部5b
の切換スイッチ10を例えば可変抵抗11aを設けた分
流路11側に接続し、前記定電流の充電電流の一部を分
流路11に分流させると共に該定電流の残部を単位二次
電池2bに流す。この場合、分流回路部5bの分流路1
1に流す分流電流の大きさは、検出電圧に応じて可変抵
抗11aの抵抗値を調整することで調整され、単位二次
電池2bの検出電圧が、単位二次電池2aの検出電圧よ
りも大きい程、分流回路部5bの分流路11に多くの分
流電流を流すように、該分流路11の可変抵抗11aの
抵抗値を調整する。尚、充電電流制御部13は、単位二
次電池2bの検出電圧が単位二次電池2aの検出電圧よ
りも所定量以上高くなっている場合には、分流回路部5
bの切換スイッチ10を分流路12に接続すると共に該
分流回路部5bのスイッチ9を開成し、前記定電流の充
電電流の全てを分流路12に分流させて単位二次電池2
bには充電電流を流さない。
On the other hand, the unit secondary battery 2 on the high detection voltage side
As for b, the charging current control unit 13 uses the shunt circuit unit 5b.
The changeover switch 10 is connected to, for example, the side of the shunt channel 11 provided with the variable resistor 11a so that a part of the constant current charging current is shunted to the shunt channel 11 and the remaining constant current is passed to the unit secondary battery 2b. . In this case, the diversion channel 1 of the diversion circuit unit 5b
The magnitude of the shunt current flowing in 1 is adjusted by adjusting the resistance value of the variable resistor 11a according to the detection voltage, and the detection voltage of the unit secondary battery 2b is larger than the detection voltage of the unit secondary battery 2a. The resistance value of the variable resistor 11a of the shunt flow path 11 is adjusted so that a large amount of shunt current flows through the shunt flow path 11 of the shunt flow path circuit section 5b. When the detected voltage of the unit secondary battery 2b is higher than the detected voltage of the unit secondary battery 2a by a predetermined amount or more, the charging current control unit 13 divides the shunt circuit unit 5.
The changeover switch 10b of b is connected to the shunt channel 12 and the switch 9 of the shunt circuit unit 5b is opened to shunt all the charging current of the constant current to the shunt channel 12 to recharge the unit secondary battery 2
No charging current is passed through b.

【0041】これにより、検出電圧の低い単位二次電池
2aには、単位二次電池2bよりも多くの充電電流が流
れることとなって、その充電による単位時間当たりの電
圧上昇率が単位二次電池2bよりも大きくなる。従っ
て、該単位二次電池2aの検出電圧はやがて単位二次電
池2bの検出電圧を越える。このようになると、充電電
流制御部13は、次に、検出電圧が新たに最低となった
単位二次電池2bを基準単位電池として、該単位二次電
池2bに前記定電流の充電電流がそのまま流れるように
上記の場合と同様に分流回路部5bを制御する(分流回
路部5bの切換スイッチ10を両分流路11,12から
切り離す)。また、検出電圧の高くなった単位二次電池
2aについては、前記定電流の充電電流の一部または全
部を分流回路部5aの分流路11又は12に分流させる
ように該分流回路部5aを制御する。以下、かかる充電
電流の制御が時々刻々行われていく。尚、各単位二次電
池2a,2bの検出電圧が同じである場合には、充電電
流制御部13は、前記定電流の充電電流を分流させるこ
となくそのまま両単位二次電池2a,2bに流す。
As a result, a larger charging current than the unit secondary battery 2b flows through the unit secondary battery 2a having a low detection voltage, and the rate of voltage increase per unit time due to the charging is the unit secondary battery 2b. It is larger than the battery 2b. Therefore, the detection voltage of the unit secondary battery 2a eventually exceeds the detection voltage of the unit secondary battery 2b. In this case, the charging current control unit 13 then uses the unit secondary battery 2b having the newly lowest detected voltage as a reference unit battery, and the unit secondary battery 2b receives the constant-current charging current as it is. The diversion circuit unit 5b is controlled so as to flow (disconnect the changeover switch 10 of the diversion circuit unit 5b from both diversion channels 11 and 12). Further, for the unit secondary battery 2a having a higher detection voltage, the shunt circuit unit 5a is controlled so as to divert part or all of the constant-current charging current to the shunt channel 11 or 12 of the shunt circuit unit 5a. To do. Hereinafter, such control of the charging current is performed every moment. When the detected voltages of the unit secondary batteries 2a and 2b are the same, the charging current control unit 13 causes the constant-current charging current to flow to the unit secondary batteries 2a and 2b without being shunted. .

【0042】このように各単位二次電池2a,2bに流
す充電電流を制御することで、組電池1の充電開始時に
各単位二次電池2a,2bの検出電圧が相違している場
合、すなわち、各単位二次電池2a,2bの残容量のば
らつきが生じている場合には、例えば図3に示すように
各単位二次電池2a,2bは、充電により上昇していく
時々刻々の検出電圧が互いにほぼ同じ電圧となるように
上昇していく。そして、図2に示したように、単位二次
電池2a,2bの電圧と残容量とは大略比例関係となる
ので、各単位二次電池2a,2bの残容量も、ほぼ均等
に上昇していくこととなる。
By controlling the charging currents flowing through the unit secondary batteries 2a and 2b in this manner, when the detection voltages of the unit secondary batteries 2a and 2b are different at the start of charging the assembled battery 1, that is, When the remaining capacities of the unit secondary batteries 2a and 2b are varied, the unit secondary batteries 2a and 2b, for example, as shown in FIG. Rise so that they have almost the same voltage. Then, as shown in FIG. 2, since the voltages of the unit secondary batteries 2a and 2b and the remaining capacities are approximately proportional to each other, the remaining capacities of the unit secondary batteries 2a and 2b also rise substantially evenly. I will go.

【0043】上記のように、充電電流を制御しつつ行う
定電流充電は、各単位二次電池2a,2bの検出電圧の
総和、すなわち、組電池1全体の電圧が、該組電池1の
前記満充電定格電圧(8.4V)に達するまで行われ
る。この場合、前述のように、各単位二次電池2a,2
bの電圧は均等に上昇していくので、組電池1全体の電
圧が満充電定格電圧(8.4V)に達した時(図3の時
刻Tc)には、各単位二次電池2a,2bの電圧は、い
ずれもその満充電定格電圧(4.2V)に略等しい電圧
となっている。従って、定電流充電の終了時に各単位二
次電池2a,2bの過剰充電や過少充電は生じていな
い。
As described above, in the constant current charging performed while controlling the charging current, the sum of the detection voltages of the unit secondary batteries 2a and 2b, that is, the voltage of the entire assembled battery 1 is the above-mentioned value of the assembled battery 1. It is performed until the full charge rated voltage (8.4V) is reached. In this case, as described above, each unit secondary battery 2a, 2
Since the voltage of b rises evenly, when the voltage of the whole assembled battery 1 reaches the full-charge rated voltage (8.4V) (time Tc in FIG. 3), each unit secondary battery 2a, 2b is discharged. All the voltages are substantially equal to the full-charge rated voltage (4.2V). Therefore, at the end of the constant current charging, neither the overcharge nor the undercharge of each unit secondary battery 2a, 2b has occurred.

【0044】このように、組電池1全体の電圧が満充電
定格電圧(8.4V)に達すると、次に、充電コントロ
ーラ6の充電方式切換制御部15は、給電部4の定電流
・定電圧生成部8に定電圧充電を指示する。この時、定
電流・定電圧生成部8は、組電池1の満充電定格電圧
(8.4V)である定電圧を生成し、それを組電池1に
付与する。また、これと連動して、充電電流制御部13
は、各分流回路部5a,bの分流路11,12を切換ス
イッチ10により各単位二次電池2a,2bから切り離
し、その状態を保持する。
When the voltage of the entire assembled battery 1 reaches the full-charge rated voltage (8.4 V) in this way, the charging method switching control unit 15 of the charging controller 6 then causes the constant current / constant of the power feeding unit 4 to change. Instruct the voltage generator 8 to perform constant voltage charging. At this time, the constant current / constant voltage generation unit 8 generates a constant voltage that is the full-charge rated voltage (8.4V) of the battery pack 1 and applies it to the battery pack 1. Also, in conjunction with this, the charging current control unit 13
Disconnects the flow dividing channels 11 and 12 of the flow dividing circuit units 5a and 5b from the unit secondary batteries 2a and 2b by the changeover switch 10 and maintains the state.

【0045】これにより、組電池1の定電圧充電が開始
され、その定電圧充電により組電池1の各単位二次電池
2a,2bが最終的に満充電状態まで充電される。本実
施例においては、前述の定電流充電と定電圧充電とを併
せたトータルの充電時間は、2.5時間とした。尚、定
電圧充電は、各単位二次電池2a,2bの電圧がほぼ同
じ電圧となっている状態で行われるので、該定電圧充電
においても、各単位二次電池2a,2bは最終的な満充
電状態まで均等に充電される。
As a result, the constant voltage charging of the assembled battery 1 is started, and the unit secondary batteries 2a, 2b of the assembled battery 1 are finally charged to the fully charged state by the constant voltage charging. In this embodiment, the total charging time of the above-mentioned constant current charging and constant voltage charging was set to 2.5 hours. Since constant voltage charging is performed in a state where the voltages of the unit secondary batteries 2a and 2b are substantially the same voltage, even in the constant voltage charging, the unit secondary batteries 2a and 2b are finally charged. Evenly charged to full charge.

【0046】このような組電池1の充電を行うことで、
前述したように、組電池1の各単位二次電池2a,2b
は均等に充電されるため、その充電途中で、組電池1を
使用し、その放電を開始しても、その時の各単位二次電
池2a,2bの各単位二次電池2a,2bの相互の容量
のばらつきがほとんどなく、これにより、組電池1は、
各単位二次電池2a,2bの総和に相当する容量でもっ
て、本来の性能を発揮することができる。
By charging the battery pack 1 as described above,
As described above, each unit secondary battery 2a, 2b of the assembled battery 1
Are charged evenly, even if the assembled battery 1 is used during the charging and the discharging is started, the respective unit secondary batteries 2a, 2b of the respective unit secondary batteries 2a, 2b at that time are mutually charged. There is almost no variation in capacity, so that the battery pack 1
The original performance can be exhibited with the capacity corresponding to the sum of the unit secondary batteries 2a and 2b.

【0047】また、前述のように満充電状態まで充電し
た組電池1を例えば0.5Aの定電流でもって放電させ
ると、各単位二次電池2a,2bの電圧は、図4に示す
ように、放電の進行によっても、さほど大きな差異を生
じることなくほぼ同じように減少していき、このこと
は、前述したような組電池1の充電により、各単位二次
電池2a,2bの放電性能が互いに均一的なものとなっ
ていることを示している。
When the assembled battery 1 charged to the fully charged state as described above is discharged with a constant current of, for example, 0.5 A, the voltage of each unit secondary battery 2a, 2b becomes as shown in FIG. The discharge performance of each unit secondary battery 2a, 2b decreases due to the charging of the assembled battery 1 as described above even if the discharge progresses without causing a large difference. It shows that they are uniform with each other.

【0048】さらに、組電池1の各単位二次電池2a,
2bは均等に充電されるため、定電流充電から定電圧充
電への切換えを、組電池1の電圧がその満充電定格電圧
(8.4V)になった時に行っても、その時の各単位二
次電池2a,2bの電圧は、ほぼその満充電定格電圧
(4.2V)であって、過剰充電や過少充電を生じるこ
とがない。そして、このように充電効率の比較的高い定
電流充電を各単位二次電池2a,2bが満充電定格電圧
に略達するまで行うことで、その後の定電圧充電を比較
的短い時間としても、組電池1の各単位二次電池2a,
2bを確実に満充電状態まで充電することができ、それ
により、組電池1を満充電状態に充電するまでのトータ
ルの充電時間を短縮することができる。
Further, each unit secondary battery 2a of the assembled battery 1,
Since 2b is charged evenly, even if the switching from constant current charging to constant voltage charging is performed when the voltage of the battery pack 1 reaches its full charge rated voltage (8.4V), each unit 2 at that time is The voltage of the secondary batteries 2a and 2b is almost the full-charge rated voltage (4.2V), and overcharge or undercharge does not occur. By performing constant current charging with a relatively high charging efficiency until each unit secondary battery 2a, 2b substantially reaches the full-charge rated voltage in this way, the constant voltage charging thereafter can be performed for a relatively short time. Each unit secondary battery 2a of the battery 1,
2b can be surely charged to the fully charged state, whereby the total charging time until the assembled battery 1 is fully charged can be shortened.

【0049】[0049]

【比較例1】前記組電池1の単位二次電池2a,2bと
同じリチウムイオン二次電池を単位二次電池として、そ
れを3個直列に接続してなる組電池を、各単位二次電池
の電圧にばらつきを生じた状態から、定電流充電及びそ
れに続く定電圧充電により充電した。この場合、定電流
充電は、1Aの定電流をそのまま各単位二次電池に通電
しつつ、組電池全体の電圧が、その満充電定格電圧であ
る12.6V(4.2V×3)となるまで行い、その後
の定電圧充電は、該満充電定格電圧(12.6V)を組
電池に付与して行った。トータルの充電時間は前記実施
例と同じ2.5時間とした。
[Comparative Example 1] A lithium ion secondary battery, which is the same as the unit secondary batteries 2a and 2b of the assembled battery 1, is used as a unit secondary battery and three assembled batteries are connected in series. From the state in which the voltage of No. 1 was varied, the battery was charged by constant current charging and subsequent constant voltage charging. In this case, in the constant current charging, the voltage of the entire assembled battery becomes 12.6V (4.2V × 3) which is the full-charge rated voltage while the constant current of 1A is supplied to each unit secondary battery as it is. The subsequent constant voltage charging was performed by applying the full charge rated voltage (12.6 V) to the assembled battery. The total charging time was 2.5 hours, which was the same as in the above-mentioned example.

【0050】かかる充電を行った時の各単位二次電池の
電圧の変化の様子を図5に示した。
FIG. 5 shows how the voltage of each unit secondary battery changes when such charging is performed.

【0051】図5を参照して明らかなように、各単位二
次電池の電圧は、充電開始時のばらつきを生じたまま充
電され、最も電圧の高い単位二次電池については、その
満充電定格電圧(4.2V)を越える電圧まで充電され
て過剰充電状態となっている傾向が見られる。同様に、
最も電圧の低い単位二次電池については、その満充電定
格電圧(4.2V)よりも低い電圧までしか充電され
ず、過少充電状態となっている傾向が見られる。そし
て、この比較例1のものと、前記図3に示した実施例の
ものとを比較して明らかなように、前記実施例による組
電池1の充電が各単位二次電池の過剰充電や過少充電を
生じずに均等に充電する上で効果的であることが判る。
As is clear with reference to FIG. 5, the voltage of each unit secondary battery is charged while the variation at the start of charging is generated, and the unit secondary battery with the highest voltage has its full charge rating. There is a tendency that the battery is charged to a voltage exceeding the voltage (4.2 V) and is in an overcharged state. Similarly,
The unit secondary battery having the lowest voltage is charged only to a voltage lower than the full-charge rated voltage (4.2V), and there is a tendency to be in an undercharged state. Then, as is clear from comparison between the comparative example 1 and the example shown in FIG. 3, the assembled battery 1 according to the example was overcharged or undercharged. It turns out that it is effective in charging evenly without charging.

【0052】[0052]

【比較例2】前記組電池1の単位二次電池2a,2bと
同じリチウムイオン二次電池を単位二次電池として、そ
れを2個直列に接続してなる組電池を、各単位二次電池
の電圧にばらつきを生じた状態から、定電流充電及びそ
れに続く定電圧充電により充電し、その後、該組電池を
0.5Aの定電流で放電させた。この場合、定電流充電
は、1Aの定電流をそのまま各単位二次電池に通電しつ
つ、組電池全体の電圧が、その満充電定格電圧である
8.4V(4.2V×2)となるまで行い、その後の定
電圧充電は、該満充電定格電圧(8.4V)を組電池に
付与して行った。
[Comparative Example 2] A lithium ion secondary battery, which is the same as the unit secondary batteries 2a and 2b of the assembled battery 1, is used as a unit secondary battery, and two assembled batteries are connected in series. From the state in which the voltage was varied, the battery was charged by constant current charging and subsequent constant voltage charging, and then the assembled battery was discharged at a constant current of 0.5A. In this case, in the constant current charging, the voltage of the entire assembled battery becomes 8.4 V (4.2 V × 2) which is the full-charge rated voltage, while the constant current of 1 A is directly applied to each unit secondary battery. The subsequent constant voltage charging was performed by applying the full charge rated voltage (8.4 V) to the assembled battery.

【0053】この場合の放電時における各単位二次電池
の電圧の変化の様子を、図6に示した。尚、上記充電時
の各単位二次電池の電圧の変化の様子は図示を省略する
が、充電終了時における各単位二次電池の電圧は前記比
較例1のものと同様にばらつきを生じた。
FIG. 6 shows how the voltage of each unit secondary battery changes during discharging in this case. Although the change in the voltage of each unit secondary battery at the time of charging is not shown in the figure, the voltage of each unit secondary battery at the end of charging varied as in Comparative Example 1.

【0054】図6を参照して明らかなように、各単位二
次電池の充電電圧がばらつきを生じたまま、組電池の放
電を行うと、各単位二次電池の電圧の差異が放電の進行
に伴って増大し、また、電圧の低い単位二次電池はそれ
よりも電圧の高い単位二次電池に較べて、比較的短い時
間で急激に電圧低下を生じ、過剰放電状態となることが
判る。このことは、組電池としての放電性能が電圧の低
い(容量の低い)単位二次電池に大きく支配されて本来
の放電性能を発揮することができなくなることを示して
いる。これに対して、前記実施例の充電を行った組電池
1にあっては、前記図4に示したように、各単位二次電
池2a,2bの放電がほぼ均等に行われるため、該組電
池1が本来の放電性能を充分な放電量まで比較的長期に
わたって発揮することができることが判る。
As is apparent from FIG. 6, when the assembled battery is discharged while the charging voltage of each unit secondary battery varies, the difference in voltage between the unit secondary batteries causes the progress of discharge. It can be seen that the unit secondary battery having a lower voltage rapidly decreases in voltage in a relatively short time and becomes an over-discharged state as compared with a unit secondary battery having a lower voltage. . This indicates that the discharge performance of the assembled battery is largely controlled by the unit secondary battery having a low voltage (low capacity), and the original discharge performance cannot be exhibited. On the other hand, in the battery pack 1 that has been charged according to the above-described embodiment, as shown in FIG. 4, the unit secondary batteries 2a and 2b are discharged substantially evenly. It is understood that the battery 1 can exhibit the original discharge performance up to a sufficient discharge amount for a relatively long period.

【0055】尚、前記実施例においては、2個のリチウ
ムイオン二次電池を単位二次電池2a,2bとする組電
池1の充電を例にとって説明したが、さらに多くの単位
二次電池を直列に接続してなる組電池についても前記実
施例と同様に充電を行うことができることはもちろんで
あり、また、リチウムイオン二次電池と同様の特性を有
するリチウムポリマー二次電池を単位二次電池とする組
電池についても前記実施例と同様に充電を行うことがで
きる。
In the above embodiment, the charging of the assembled battery 1 having two lithium ion secondary batteries as the unit secondary batteries 2a and 2b has been described as an example, but more unit secondary batteries are connected in series. It is needless to say that the battery pack connected to can also be charged in the same manner as in the above-mentioned embodiment, and a lithium polymer secondary battery having the same characteristics as the lithium ion secondary battery is referred to as a unit secondary battery. The assembled battery can be charged in the same manner as in the above embodiment.

【0056】また、前記実施例においては、定電流充電
だけでは満充電状態とすることが困難なリチウムイオン
二次電池を単位二次電池とする組電池を充電するため
に、定電流充電の後に定電圧充電を行うようにしたが、
定電流充電だけで満充電状態とすることが可能な他の種
類の単位二次電池とする組電池の充電にあっては、前記
実施例と同様に各単位二次電池について充電電流の制御
を行う定電流充電だけで、組電池を充電するようにして
もよい。さらには、その充電時の定電流を適宜変更する
ようにしてもよい。
Further, in the above-mentioned embodiment, in order to charge the assembled battery having the lithium ion secondary battery as a unit secondary battery, which is difficult to be fully charged only by constant current charging, after the constant current charging, I tried to do constant voltage charging,
In charging an assembled battery that is another type of unit secondary battery that can be brought to a fully charged state only by constant current charging, control of the charging current for each unit secondary battery is performed as in the above embodiment. The assembled battery may be charged only by performing constant current charging. Further, the constant current at the time of charging may be changed appropriately.

【0057】また、前記実施例においては、各分流回路
部5a,5bに、それに対応する単位二次電池2a,2
bへの充電電流を全て分流させるための分流路12及び
スイッチ9を設けたが、これを省略することも可能であ
り、また、抵抗値が互いに相違する固定抵抗をそれぞれ
備えた複数の分流路を各単位二次電池にスイッチ素子を
用いて切換自在に並列に接続するようにしてもよい。
Further, in the above embodiment, the unit secondary batteries 2a, 2 corresponding to the respective shunt circuit parts 5a, 5b are provided.
Although the shunt 12 and the switch 9 for shunting all the charging current to b are provided, it is also possible to omit them, and a plurality of shunts each provided with fixed resistors having different resistance values. May be connected to each unit secondary battery in parallel using a switch element so as to be switchable.

【0058】[0058]

【発明の効果】上記の説明から明らかなように、本発明
の組電池の充電方法によれば、充電電流の給電時に組電
池の各単位二次電池の電圧を時々刻々検出し、その電圧
の各検出時点において、検出電圧の最も低い単位二次電
池を基準単位電池とし、その基準単位電池の単位時間当
たりの電圧上昇率が他の各単位二次電池よりも大きくな
るように各単位二次電池の充電電流を制御すると共に、
その充電電流の制御を、前記基準単位電池の検出電圧が
他の単位二次電池のうちの少なくとも一つの単位二次電
池の検出電圧を越えたとき、他の検出電圧の最も低い単
位二次電池を次の基準単位電池として順次基準単位電池
を更新しつつ行うようにしたことによって、組電池の各
単位二次電池の容量が互いに略同一となるように均等に
充電することができる。
As is apparent from the above description, according to the method of charging the assembled battery of the present invention, the voltage of each unit secondary battery of the assembled battery is momentarily detected at the time of supplying the charging current, and the voltage At each detection time, the unit secondary battery with the lowest detection voltage is used as the reference unit battery, and each unit secondary battery is set so that the rate of voltage increase per unit time of that reference unit battery is larger than that of each other unit secondary battery. While controlling the charging current of the battery,
When the detection voltage of the reference unit battery exceeds the detection voltage of at least one unit secondary battery of the other unit secondary batteries, the control of the charging current is performed by the unit secondary battery having the lowest other detection voltage. By performing the above as the next reference unit battery while sequentially updating the reference unit battery, the unit secondary batteries of the assembled battery can be charged evenly so that their capacities are substantially the same.

【0059】そして、定電流の充電電流を組電池に給電
しつつ、最低電圧の基準単位電池についてはその定電流
の充電電流をそのまま流して充電すると共に、他の単位
二次電池については、検出電圧に応じて定電流の充電電
流よりも少ない充電電流を流して充電するようにしたこ
とによって、最も電圧の低い、すなわち容量の低い単位
二次電池を常に定電流でもって効率よく充電しつつ、各
単位二次電池の相互の容量を均等なのものとして充電す
ることができ、それによって、各単位二次電池の均等な
充電を可能な限り効率よく行うことができる。
Then, while supplying a constant-current charging current to the assembled battery, the constant-voltage charging current is supplied as it is to the reference unit battery having the lowest voltage, and the other unit secondary batteries are detected. By charging a charging current that is smaller than the charging current of the constant current according to the voltage so as to charge, the lowest voltage, that is, while efficiently charging the unit secondary battery with the low capacity, always with the constant current, The unit rechargeable batteries can be charged with an equal mutual capacity, and thus the unit rechargeable batteries can be uniformly charged as efficiently as possible.

【0060】さらに、各単位二次電池の充電電流を制御
しつつ行う充電を行った後、組電池に定電圧を付与して
組電池の満充電状態まで定電圧充電を行う場合に、各単
位二次電池の充電電流を制御しつつ行う充電によって、
各単位二次電池が均等に充電されるため、その充電を各
単位二次電池の過剰充電や過少充電を生じることなく各
単位二次電池の電圧が略満充電電圧に達するまで支障な
く行うことができ、それによって、その後の定電圧充電
に要する時間を可能な限り短くして、トータルの充電時
間の短縮化を図ることができる。
Furthermore, when charging is performed while controlling the charging current of each unit secondary battery, a constant voltage is applied to the assembled battery and constant voltage charging is performed until the assembled battery is fully charged. By charging while controlling the charging current of the secondary battery,
Since each unit rechargeable battery is charged evenly, it should be charged without causing overcharging or undercharging of each unit rechargeable battery until the voltage of each unit rechargeable battery reaches almost full charge voltage. As a result, the time required for the subsequent constant voltage charging can be shortened as much as possible, and the total charging time can be shortened.

【0061】従って、特に最終的に定電圧充電を行うこ
とが好ましいリチウムイオン二次電池やリチウムポリマ
ー二次電池を単位二次電池として構成された組電池を過
剰充電や過少充電を生じることなく効率よく充電するこ
とができる。
Therefore, particularly, it is possible to improve the efficiency of the assembled battery constituted by using the lithium ion secondary battery or the lithium polymer secondary battery as the unit secondary battery, which is preferably subjected to the constant voltage charging finally, without causing overcharging or undercharging. Can be charged well.

【0062】また、本発明の組電池の充電装置によれ
ば、前記充電方法と同様の効果を奏することができるば
かりか、そのような効果を奏する充電装置を簡略な構成
で提供することができる。
Further, according to the battery pack charging apparatus of the present invention, not only the same effects as those of the above-described charging method can be obtained, but also a charging apparatus having such effects can be provided with a simple structure. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の組電池の充電装置の一例の回路的構成
図。
FIG. 1 is a circuit configuration diagram of an example of a battery pack charging device of the present invention.

【図2】図1の装置により充電する組電池の単位二次電
池の電圧と容量との関係を示す線図。
FIG. 2 is a diagram showing the relationship between the voltage and capacity of a unit secondary battery of an assembled battery charged by the device of FIG.

【図3】図1の装置により組電池を充電した時の各単位
二次電池の電圧の変化の様子を示す線図。
FIG. 3 is a diagram showing how the voltage of each unit secondary battery changes when the assembled battery is charged by the device of FIG.

【図4】図1の装置により充電した組電池の各単位二次
電池を放電させた時の電圧の変化の様子を示す線図。
FIG. 4 is a diagram showing how the voltage changes when each unit secondary battery of the assembled battery charged by the device of FIG. 1 is discharged.

【図5】比較例1における組電池の充電時の各単位二次
電池の電圧の変化の様子を示す線図。
FIG. 5 is a diagram showing how the voltage of each unit secondary battery changes when the assembled battery is charged in Comparative Example 1.

【図6】比較例2において充電した組電池を放電させた
ときの各単位二次電池の電圧の変化の様子を示す線図。
FIG. 6 is a diagram showing how the voltage of each unit secondary battery changes when the assembled battery charged in Comparative Example 2 is discharged.

【符号の説明】[Explanation of symbols]

1…組電池、2a,2b…単位二次電池(リチウムイオ
ン二次電池)、3…給電手段、4a,4b…電圧検出手
段、11,12…分流路、13…充電電流制御手段、1
4…最低電圧把握手段、15…充電方式切換手段。
DESCRIPTION OF SYMBOLS 1 ... Assembly battery, 2a, 2b ... Unit secondary battery (lithium ion secondary battery), 3 ... Power feeding means, 4a, 4b ... Voltage detection means, 11, 12 ... Dividing channel, 13 ... Charging current control means, 1
4 ... Minimum voltage grasping means, 15 ... Charging method switching means.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】複数の単位二次電池を直列に接続してなる
組電池の充電方法において、前記組電池に充電電流を給
電する給電工程と、該充電電流の給電時に前記組電池の
各単位二次電池の電圧を時々刻々検出する工程と、該電
圧の各検出時点において、前記複数の単位二次電池のう
ち、検出電圧の最も低い単位二次電池を基準単位電池と
し、その基準単位電池の単位時間当たりの電圧上昇率が
他の各単位二次電池よりも大きくなるように各単位二次
電池の充電電流を制御すると共に、その充電電流の制御
を、前記基準単位電池の検出電圧が他の単位二次電池の
うちの少なくとも一つの単位二次電池の検出電圧を越え
たとき、他の検出電圧の最も低い単位二次電池を次の基
準単位電池として順次基準単位電池を更新しつつ行う電
流制御工程とを備えたことを特徴とする組電池の充電方
法。
1. A method of charging an assembled battery comprising a plurality of unit secondary batteries connected in series, a power feeding step of feeding a charging current to the assembled battery, and each unit of the assembled battery at the time of feeding the charging current. A step of momentarily detecting the voltage of the secondary battery, and a unit secondary battery having the lowest detection voltage among the plurality of unit secondary batteries at each detection time of the voltage is set as a reference unit battery, and the reference unit battery While controlling the charging current of each unit secondary battery so that the rate of voltage increase per unit time of each unit secondary battery is greater than that of the other unit secondary batteries, the control of the charging current is performed by detecting the reference unit battery voltage. When the detection voltage of at least one unit secondary battery among other unit secondary batteries is exceeded, the unit secondary battery having the lowest other detection voltage is set as the next reference unit battery and the reference unit batteries are sequentially updated. Equipped with a current control process A method of charging a battery pack, characterized in that the.
【請求項2】前記給電工程は前記組電池に定電流の充電
電流を給電し、前記電流制御工程は、前記基準単位電池
に前記定電流の充電電流をそのまま通電すると共に、他
の各単位二次電池にはその検出電圧に応じて前記定電流
の充電電流を各単位二次電池に並列に接続された分流路
に分流することにより該定電流の充電電流よりも少ない
充電電流を通電するように制御することを特徴とする請
求項1記載の組電池の充電方法。
2. The power supplying step supplies a constant current charging current to the assembled battery, and the current controlling step applies the constant current charging current to the reference unit battery as it is, and the other unit units. According to the detected voltage, the constant current charging current is distributed to the secondary flow paths connected in parallel to each unit secondary battery so that a charging current smaller than the constant current charging current is applied to the secondary battery. The method for charging an assembled battery according to claim 1, wherein
【請求項3】前記電流制御工程は、前記の充電電流の制
御を各単位二次電池の検出電圧が各単位二次電池の略満
充電電圧に相当する所定電圧に略達するまで行い、各単
位二次電池の検出電圧が所定電圧に略達した後には前記
組電池にその満充電電圧に対応する定電圧を付与して各
単位電池の充電を行う定電圧充電工程を備えたことを特
徴とする請求項1又は2記載の組電池の充電方法。
3. The current control step is carried out until the detected voltage of each unit secondary battery substantially reaches a predetermined voltage corresponding to a substantially full charge voltage of each unit secondary battery, and controls each charging unit. After the detection voltage of the secondary battery substantially reaches a predetermined voltage, a constant voltage charging step of charging each unit battery by applying a constant voltage corresponding to the full charge voltage to the assembled battery is provided. The method of charging the assembled battery according to claim 1 or 2.
【請求項4】前記単位二次電池は、リチウムイオン二次
電池又はリチウムポリマー二次電池であることを特徴と
する請求項3記載の組電池の充電方法。
4. The method of charging an assembled battery according to claim 3, wherein the unit secondary battery is a lithium ion secondary battery or a lithium polymer secondary battery.
【請求項5】複数の単位二次電池を直列に接続してなる
組電池の充電装置において、前記組電池に接続されて該
組電池に充電電流を給電する給電手段と、前記各単位二
次電池に接続され、前記給電手段による充電電流の給電
時に各単位二次電池の電圧を時々刻々検出する電圧検出
手段と、前記電圧検出手段による各単位電池の電圧の各
検出時点において該電圧検出手段から得られる各単位二
次電池の検出電圧のうちの最低電圧を把握する最低電圧
把握手段と、各単位二次電池を流れる充電電流を調整可
能に各単位二次電池に並列に接続された分流路と、前記
最低電圧把握手段により時々刻々把握された最低電圧に
対応する単位二次電池の単位時間当たりの電圧上昇率を
他の各単位二次電池よりも大きくすべく前記各分流路に
流れる分流電流を調整して各単位電池を流れる充電電流
を制御する充電電流制御手段とを備えたことを特徴とす
る組電池の充電装置。
5. A charging device for an assembled battery comprising a plurality of unit secondary batteries connected in series, a power supply means connected to the assembled battery for supplying a charging current to the assembled battery, and each unit secondary battery. A voltage detection unit connected to a battery for detecting the voltage of each unit secondary battery momentarily when the charging current is supplied by the power supply unit, and the voltage detection unit at each time when the voltage of each unit battery is detected by the voltage detection unit. The minimum voltage grasping means for grasping the minimum voltage of the detected voltage of each unit secondary battery obtained from the, and the shunt connected in parallel to each unit secondary battery so that the charging current flowing through each unit secondary battery can be adjusted. And the unitary secondary battery corresponding to the lowest voltage momentarily grasped by the lowest voltage grasping means per unit time to flow into each branch passage so as to make the rate of increase in voltage per unit time larger than that of each other unit secondary battery. Shunt current Charging of the assembled battery, characterized in that a charging current control means for controlling the charging current flowing through each unit cell and integer.
【請求項6】前記給電手段は、前記組電池に定電流の充
電電流を給電する定電流給電手段であり、前記充電電流
制御手段は、前記最低電圧の単位二次電池については該
単位二次電池に接続された前記分流路の分流電流を遮断
して前記定電流の充電電流を該単位二次電池にそのまま
流すと共に、他の各単位二次電池については該単位二次
電池に接続された各分流路に該単位二次電池の前記検出
電圧に応じた分流電流を流すことにより該単位電池を流
れる充電電流を前記定電流の充電電流よりも少なく制御
することを特徴とする請求項5記載の組電池の充電装
置。
6. The power supply means is a constant current power supply means for supplying a constant current charging current to the assembled battery, and the charging current control means is a unit secondary battery for the minimum voltage unit secondary battery. The shunt current of the shunt flow path connected to the battery was cut off, and the constant-current charging current was allowed to flow to the unit secondary battery as it was, and the other unit secondary batteries were connected to the unit secondary battery. The charging current flowing through the unit battery is controlled to be smaller than the charging current of the constant current by causing a shunt current according to the detection voltage of the unit secondary battery to flow in each branch flow path. Battery pack charger.
【請求項7】前記組電池に定電圧を付与して各単位二次
電池を充電する定電圧給電手段と、前記電圧検出手段か
ら得られる各単位電池の検出電圧が各単位二次電池の略
満充電電圧に相当する所定電圧に略達するまで前記定電
流給電手段により前記組電池に充電電流を給電せしめ、
その後は前記定電圧給電手段により前記組電池に充電す
る充電方式切換手段とを備え、前記充電電流制御手段
は、前記定電流給電手段による充電時にのみ各単位二次
電池の充電電流を前記各分流路の分流電流により制御す
ることを特徴とする請求項5又は6記載の組電池の充電
装置。
7. A constant voltage feeding means for applying a constant voltage to the assembled battery to charge each unit secondary battery, and a detection voltage of each unit battery obtained from the voltage detecting means is an abbreviation for each unit secondary battery. The charging current is supplied to the assembled battery by the constant current supply means until the predetermined voltage corresponding to the full charge voltage is substantially reached,
After that, it comprises a charging system switching means for charging the assembled battery by the constant voltage power supply means, and the charging current control means divides the charging current of each unit secondary battery into each of the shunts only when charging by the constant current power supply means. 7. The battery pack charging apparatus according to claim 5, wherein the charging is controlled by a shunt current of the path.
【請求項8】前記各単位二次電池は、リチウムイオン二
次電池又はリチウムポリマー二次電池であることを特徴
とする請求項7記載の組電池の充電装置。
8. The battery charger for an assembled battery according to claim 7, wherein each of the unit secondary batteries is a lithium ion secondary battery or a lithium polymer secondary battery.
JP7020363A 1995-02-08 1995-02-08 Charging method of battery pack and its device Pending JPH08213055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7020363A JPH08213055A (en) 1995-02-08 1995-02-08 Charging method of battery pack and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7020363A JPH08213055A (en) 1995-02-08 1995-02-08 Charging method of battery pack and its device

Publications (1)

Publication Number Publication Date
JPH08213055A true JPH08213055A (en) 1996-08-20

Family

ID=12025014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7020363A Pending JPH08213055A (en) 1995-02-08 1995-02-08 Charging method of battery pack and its device

Country Status (1)

Country Link
JP (1) JPH08213055A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000083327A (en) * 1998-09-03 2000-03-21 Denso Corp Voltage adjusting equipment for combined battery and voltage adjusting method of combined battery
US6081095A (en) * 1998-03-13 2000-06-27 Denso Corporation Voltage balancer device for combination battery
US6984961B2 (en) 2002-01-17 2006-01-10 Matsushita Electric Industrial Co., Ltd. Battery assembly system and electric-motor vehicle system using the same
JP2007513594A (en) * 2003-11-20 2007-05-24 ペラン(ソシエテ・アノニム) Method for balance charging a lithium ion or lithium polymer battery
JP2008527963A (en) * 2005-01-14 2008-07-24 ペラン(ソシエテ・アノニム) Method for balance charging a lithium ion or lithium polymer battery
JP2008220167A (en) * 1997-07-25 2008-09-18 3M Co Equalization system and method for energy storage devices connected in series
JP2012239326A (en) * 2011-05-12 2012-12-06 Fdk Twicell Co Ltd Charging device
CN103339817A (en) * 2011-01-20 2013-10-02 威伦斯技术公司 Rechargeable battery systems and rechargeable battery system operational method
KR20140034132A (en) * 2011-01-20 2014-03-19 발렌스 테크놀로지, 인코포레이티드 Rechargeable battery systems and rechargeable battery system operational methods
CN104377396A (en) * 2014-11-07 2015-02-25 惠州市亿能电子有限公司 Lithium battery pack charging method
JP2015223058A (en) * 2014-05-23 2015-12-10 株式会社Evtd研究所 Cell balance device for power storage device
CN111983481A (en) * 2019-05-24 2020-11-24 苏州安靠电源有限公司 Lithium battery overdischarge testing method
JP2022530977A (en) * 2019-05-15 2022-07-05 エルジー エナジー ソリューション リミテッド Overcurrent application prevention device and method
WO2023143485A1 (en) * 2022-01-29 2023-08-03 维沃移动通信有限公司 Electronic device and control method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008220167A (en) * 1997-07-25 2008-09-18 3M Co Equalization system and method for energy storage devices connected in series
US6081095A (en) * 1998-03-13 2000-06-27 Denso Corporation Voltage balancer device for combination battery
JP2000083327A (en) * 1998-09-03 2000-03-21 Denso Corp Voltage adjusting equipment for combined battery and voltage adjusting method of combined battery
US6984961B2 (en) 2002-01-17 2006-01-10 Matsushita Electric Industrial Co., Ltd. Battery assembly system and electric-motor vehicle system using the same
US7091700B2 (en) 2002-01-17 2006-08-15 Matsushita Electric Industrial Co., Ltd. Battery assembly system and electric-motor vehicle system using the same
JP2007513594A (en) * 2003-11-20 2007-05-24 ペラン(ソシエテ・アノニム) Method for balance charging a lithium ion or lithium polymer battery
US7719231B2 (en) 2003-11-20 2010-05-18 Pellenc (Societe Anonyme) Equilibrated charging method for a lithium-ion or lithium-polymer battery
JP2008527963A (en) * 2005-01-14 2008-07-24 ペラン(ソシエテ・アノニム) Method for balance charging a lithium ion or lithium polymer battery
KR20140034132A (en) * 2011-01-20 2014-03-19 발렌스 테크놀로지, 인코포레이티드 Rechargeable battery systems and rechargeable battery system operational methods
CN103339817A (en) * 2011-01-20 2013-10-02 威伦斯技术公司 Rechargeable battery systems and rechargeable battery system operational method
CN103339817B (en) * 2011-01-20 2018-01-19 威伦斯技术公司 Chargeable cell system and rechargeable battery system operational
US9912178B2 (en) 2011-01-20 2018-03-06 Valence Technology, Inc. Rechargeable battery systems and rechargeable battery system operational methods
US10056764B2 (en) 2011-01-20 2018-08-21 Lithium Werks B.V. Rechargeable battery systems and rechargeable battery system operational methods
US10903661B2 (en) 2011-01-20 2021-01-26 Lithium Werks Technology Bv Rechargeable battery systems and rechargeable battery system operational methods
US11616375B2 (en) 2011-01-20 2023-03-28 Lithion Battery Inc. Rechargeable battery systems and rechargeable battery system operational methods
JP2012239326A (en) * 2011-05-12 2012-12-06 Fdk Twicell Co Ltd Charging device
JP2015223058A (en) * 2014-05-23 2015-12-10 株式会社Evtd研究所 Cell balance device for power storage device
CN104377396A (en) * 2014-11-07 2015-02-25 惠州市亿能电子有限公司 Lithium battery pack charging method
JP2022530977A (en) * 2019-05-15 2022-07-05 エルジー エナジー ソリューション リミテッド Overcurrent application prevention device and method
CN111983481A (en) * 2019-05-24 2020-11-24 苏州安靠电源有限公司 Lithium battery overdischarge testing method
WO2023143485A1 (en) * 2022-01-29 2023-08-03 维沃移动通信有限公司 Electronic device and control method

Similar Documents

Publication Publication Date Title
JP3279071B2 (en) Battery pack charging device
JP3869585B2 (en) Discharge method of multiple secondary batteries and assembled battery
US20170288417A1 (en) Fast Charging Apparatus and Method
JP2010528576A (en) Storage battery assembly and power system using the same
CA2250098A1 (en) Method and apparatus for charging batteries
JPH08213055A (en) Charging method of battery pack and its device
JPH07255134A (en) Series connection circuit of secondary cells
JPH0946916A (en) Charging controller
JPH0974689A (en) Power unit using battery pack
JP3989107B2 (en) How to balance the charge of secondary batteries
JPH10302846A (en) Battery pack and its charging device
JP3629791B2 (en) Charge control device for battery pack
JP2000312442A (en) Serial battery charging/discharging device
EP3649719A1 (en) Battery management
JP3419115B2 (en) Battery charge / discharge protection device
JP2000270483A (en) Battery state control device
JP2003070178A (en) Charging state adjusting device and charging state detection device
KR101988027B1 (en) Blancing Apparatus for Battery and Method thereof
WO2022186194A1 (en) Charging amount regulating device, and vehicle
JP2004236474A (en) Charger and discharger of secondary battery
JP3768106B2 (en) Charger
JP4025678B2 (en) Charging apparatus and charging method
JPH0731073A (en) Charging method for secondary battery
JP2001268817A (en) Series secondary cell group
CN220973968U (en) Battery replacement station and battery replacement station charging system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050308