JPH08189891A - Non-invasive biochemical measuring device - Google Patents
Non-invasive biochemical measuring deviceInfo
- Publication number
- JPH08189891A JPH08189891A JP172395A JP172395A JPH08189891A JP H08189891 A JPH08189891 A JP H08189891A JP 172395 A JP172395 A JP 172395A JP 172395 A JP172395 A JP 172395A JP H08189891 A JPH08189891 A JP H08189891A
- Authority
- JP
- Japan
- Prior art keywords
- light
- photodetector
- light source
- glucose
- measuring device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012545 processing Methods 0.000 claims abstract description 4
- 239000004065 semiconductor Substances 0.000 claims description 18
- 239000012472 biological sample Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical group [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims 1
- 229910000673 Indium arsenide Inorganic materials 0.000 claims 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 1
- 229910052787 antimony Inorganic materials 0.000 claims 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims 1
- 229910052785 arsenic Inorganic materials 0.000 claims 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims 1
- 238000011325 biochemical measurement Methods 0.000 claims 1
- 229910052733 gallium Inorganic materials 0.000 claims 1
- 229910052732 germanium Inorganic materials 0.000 claims 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims 1
- 229910052738 indium Inorganic materials 0.000 claims 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 claims 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 claims 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims 1
- 229910052981 lead sulfide Inorganic materials 0.000 claims 1
- 229940056932 lead sulfide Drugs 0.000 claims 1
- 229910052698 phosphorus Inorganic materials 0.000 claims 1
- 239000011574 phosphorus Substances 0.000 claims 1
- GGYFMLJDMAMTAB-UHFFFAOYSA-N selanylidenelead Chemical compound [Pb]=[Se] GGYFMLJDMAMTAB-UHFFFAOYSA-N 0.000 claims 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 abstract description 24
- 239000008103 glucose Substances 0.000 abstract description 24
- 239000008280 blood Substances 0.000 abstract description 5
- 210000004369 blood Anatomy 0.000 abstract description 5
- 230000035945 sensitivity Effects 0.000 abstract description 5
- 238000004458 analytical method Methods 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 3
- 230000031700 light absorption Effects 0.000 abstract description 3
- 238000004445 quantitative analysis Methods 0.000 abstract description 3
- 230000005855 radiation Effects 0.000 abstract 4
- 238000010521 absorption reaction Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 102000001554 Hemoglobins Human genes 0.000 description 3
- 108010054147 Hemoglobins Proteins 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000012742 biochemical analysis Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 210000000624 ear auricle Anatomy 0.000 description 1
- 238000007446 glucose tolerance test Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000007310 pathophysiology Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
(57)【要約】
【目的】血液中グルコースの定量分析を無侵襲に行うこ
とができる装置を提供する。
【構成】光源,光検出器,信号処理・演算部を含み、2
000nmから2220nmの波長範囲で放射感度を有し、
2065nmから2085nmの波長範囲に放射感度の
極大値を有する光源、又は1450nmから1650n
mの範囲で放射感度を有し、1550nmに放射感度の
極大値を有する光源を用いた。
【効果】グルコースの特徴的な光吸収を利用することが
できる。また、上記波長の光は生体をある程度透過する
ことができるので、透過光強度を測定することにより無
侵襲グルコース分析を行うことができる。
(57) [Summary] [Object] To provide a device capable of non-invasively performing quantitative analysis of glucose in blood. [Structure] Including a light source, photodetector, signal processing / calculation unit, 2
Has radiation sensitivity in the wavelength range of 000nm to 2220nm,
A light source having a maximum value of radiation sensitivity in a wavelength range of 2065 nm to 2085 nm, or 1450 nm to 1650 n
A light source having a radiation sensitivity in the range of m and having a maximum value of the radiation sensitivity at 1550 nm was used. [Effect] The characteristic light absorption of glucose can be utilized. Moreover, since the light of the above wavelength can be transmitted through the living body to some extent, noninvasive glucose analysis can be performed by measuring the transmitted light intensity.
Description
【0001】[0001]
【産業上の利用分野】本発明は、医療用の生化学分析装
置に係り、特に、無採血に生体中の生化学成分を迅速に
計測する装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biochemical analysis device for medical use, and more particularly to a device for rapidly measuring biochemical components in a living body without collecting blood.
【0002】[0002]
【従来の技術】近赤外光を用い、生体中の酸素飽和度を
無侵襲に計測する装置が病態生理,第10巻,1991
年,第558頁から第588頁に記載されている。この
論文では、波長780nm,805nm,830nmの
半導体レーザを用い、時間分割方式により生体組織に順
次レーザ光を照射し、反射又は透過光を検出し、酸素飽
和度を算出するシステムが論じられている。2. Description of the Related Art An apparatus for non-invasively measuring oxygen saturation in a living body using near infrared light is a pathophysiology, vol. 10, 1991.
Year pp. 558-588. This paper discusses a system that uses semiconductor lasers having wavelengths of 780 nm, 805 nm, and 830 nm, sequentially irradiates a living tissue with laser light by a time division method, detects reflected or transmitted light, and calculates oxygen saturation. .
【0003】[0003]
【発明が解決しようとする課題】しかし、従来技術は7
80nmから830nmの波長の光を用いているので、
酸素化ヘモグロビン又は還元ヘモグロビンの測定にしか
用いることができず、臨床検査でより重要な生化学成分
の計測ができない。However, the prior art is 7
Since light with a wavelength of 80 nm to 830 nm is used,
It can be used only for the measurement of oxygenated hemoglobin or reduced hemoglobin, and the more important biochemical component cannot be measured by clinical examination.
【0004】本発明の目的は、ヘモグロビン以外の生体
物質、特に血液中グルコースの定量分析を無侵襲に行う
ことができる装置を提供することにある。It is an object of the present invention to provide an apparatus capable of non-invasively quantitatively analyzing biological substances other than hemoglobin, particularly glucose in blood.
【0005】[0005]
【課題を解決するための手段】生化学項目の中でグルコ
ースは2075nm及び1550nmに赤外吸収ピーク
を有する。本発明は、上記波長の光を生体に照射し、透
過光の強度を上記波長範囲に感度を有する光検出器で検
出することにより、血液を採取せずに血液中グルコース
濃度を定量化する構成としたものである。Among the biochemical items, glucose has infrared absorption peaks at 2075 nm and 1550 nm. The present invention irradiates a living body with light of the above wavelength and detects the intensity of transmitted light with a photodetector having sensitivity in the above wavelength range, thereby quantifying blood glucose concentration without collecting blood. It is what
【0006】[0006]
【作用】従来、1300nm以上の波長の光は生体中の
水分による吸収が大きいため、透過光の測定が困難であ
り、無侵襲計測用には用いられなかった。しかし、水の
吸収は全波長にわたって大きいわけではなく、水の吸収
が小さい波長領域が存在する。したがって、水の吸収が
小さい波長領域で吸収を持つ生化学成分があれば、その
生化学成分の測定が可能となる。また、測定する生体の
厚さと照射光強度を最適化することにより、信号/雑音
比を大きくすることができ、従って上記課題を解決する
ことができる。In the past, light having a wavelength of 1300 nm or more was absorbed by water in the living body, so that it was difficult to measure transmitted light and it was not used for non-invasive measurement. However, water absorption is not large over all wavelengths, and there is a wavelength region in which water absorption is small. Therefore, if there is a biochemical component having absorption in a wavelength range where water absorption is small, the biochemical component can be measured. Further, the signal / noise ratio can be increased by optimizing the thickness of the living body to be measured and the irradiation light intensity, and thus the above-mentioned problem can be solved.
【0007】上記光源及び光検出器は半導体材料を用い
て、小型で比較的安価に製作することができるため、小
型で安価な無侵襲グルコース分析装置を提供することが
できる。Since the light source and the photodetector are made of a semiconductor material and can be manufactured in a small size and at a relatively low cost, a small and inexpensive non-invasive glucose analyzer can be provided.
【0008】[0008]
【実施例】図1はグルコース水溶液の赤外吸収スペクト
ルを示したものである。図中矢印で示した波数4818
(1/cm)、すなわち、波長2075nmの吸収ピーク
はグルコースに基づくものである。したがって、波長2
075nmはグルコースを測定する上で、特別に重要な
意味を有する。一方、波数6452(1/cm)すなわち
波長1550nmのグルコースの吸収は水の吸収に重な
り、明確には吸収ピークとして現れていないが、波長1
550nmの光の吸収強度とグルコース濃度との関係を
調べると図2に示すように相関関係が得られる。したが
って、波長1550nmの光もグルコースの定量分析に
有効であることがわかる。以上より、波長2075nm
及び1550nmの光源と上記波長に感度を有する光検
出器はグルコースの定量分析に必須のものであり、他の
波長では得られない特性が得られる。EXAMPLE FIG. 1 shows an infrared absorption spectrum of a glucose aqueous solution. Wave number 4818 indicated by the arrow in the figure
(1 / cm), that is, the absorption peak at a wavelength of 2075 nm is based on glucose. Therefore, wavelength 2
075 nm has a special significance in measuring glucose. On the other hand, the absorption of glucose having a wave number of 6452 (1 / cm), that is, a wavelength of 1550 nm overlaps with the absorption of water and does not clearly appear as an absorption peak.
When the relationship between the absorption intensity of light at 550 nm and the glucose concentration is examined, a correlation is obtained as shown in FIG. Therefore, it is understood that the light having the wavelength of 1550 nm is also effective for the quantitative analysis of glucose. From the above, the wavelength is 2075 nm
A light source of 1550 nm and a photodetector sensitive to the above wavelengths are indispensable for the quantitative analysis of glucose, and have characteristics that cannot be obtained at other wavelengths.
【0009】図3は光源及び光検出器を用いる無侵襲グ
ルコース分析の構成を示したものである。半導体レーザ
1と半導体光検出器2を対面させて設置し、その間に生
体試料3を置く。半導体レーザ駆動回路4により半導体
レーザから光を放射して生体試料に照射し、透過光を光
検出器で測定し、信号処理回路5を介してコンピュータ
6で濃度換算などの演算処理をする構成である。波長を
用いることにより、このように簡単な構成で生体中のグ
ルコースを無侵襲に定量分析することができる。FIG. 3 shows the configuration of a non-invasive glucose analysis using a light source and a photodetector. The semiconductor laser 1 and the semiconductor photodetector 2 are placed facing each other, and the biological sample 3 is placed therebetween. The semiconductor laser drive circuit 4 emits light from the semiconductor laser to irradiate the biological sample, the transmitted light is measured by the photodetector, and the computer 6 through the signal processing circuit 5 performs arithmetic processing such as concentration conversion. is there. By using the wavelength, glucose in a living body can be non-invasively quantitatively analyzed with such a simple configuration.
【0010】図4は本発明の第1の実施例である。分析
装置本体7に指などの生体を挿入する孔8を設けた。孔
周辺部の断面構造を(b)図に示すが、孔の内面には半
導体レーザ1及び光検出器2が対面して設置されてお
り、孔に挿入した生体の光吸収を測定することができ
る。分析装置本体の前面パネルには表示部9が設置され
ており、測定したグルコース濃度が表示される。FIG. 4 shows a first embodiment of the present invention. A hole 8 for inserting a living body such as a finger is provided in the analyzer main body 7. The cross-sectional structure of the periphery of the hole is shown in (b). The semiconductor laser 1 and the photodetector 2 are installed facing each other on the inner surface of the hole, and the light absorption of the living body inserted in the hole can be measured. it can. A display unit 9 is installed on the front panel of the analyzer body, and the measured glucose concentration is displayed.
【0011】図5は本発明の第2の実施例である。支持
構造10に半導体レーザ1及び光検出器2をそれぞれ設
置し、半導体レーザと光検出器が対面するように支持構
造を配置して、結合部11で結合する。結合部にはばね
が設けられており、半導体レーザと光検出器が常に一定
の圧力でお互いに押されるようにする。生体試料は半導
体レーザと光検出器が設けられた支持構造を開き、半導
体レーザと光検出器との間に設置する。半導体レーザ及
び光検出器はフレキシブルな配線12により装置本体1
3に接続されている。本実施例では、半導体レーザと光
検出器で生体試料を挾むことにより、例えば耳朶のよう
な生体に常に装着しておくことができ、グルコースの連
続モニタリングに適している。FIG. 5 shows a second embodiment of the present invention. The semiconductor laser 1 and the photodetector 2 are respectively installed on the support structure 10, the support structure is arranged so that the semiconductor laser and the photodetector face each other, and the semiconductor laser 1 and the photodetector 2 are coupled by the coupling portion 11. The coupling is provided with a spring so that the semiconductor laser and the photodetector are always pressed against each other with a constant pressure. The biological sample is installed between the semiconductor laser and the photodetector by opening a support structure provided with the semiconductor laser and the photodetector. The semiconductor laser and the photodetector are connected to the device main body 1 by flexible wiring 12.
Connected to 3. In this embodiment, by sandwiching a biological sample with a semiconductor laser and a photodetector, the sample can be always attached to a biological body such as an earlobe and is suitable for continuous glucose monitoring.
【0012】図6に本実施例の効果を示す。これは第1
の実施例を用い、糖負荷試験を行ったときの、グルコー
ス濃度の時間変化を示したものである。光源には207
5nmの半導体レーザを用いた。図中実線が本発明によ
って測定したグルコース濃度変化を連続的に測定した結
果であり、測定点は従来法により一点ごとに測定した結
果である。これより本発明と従来法は良く一致してお
り、かつ本発明の連続測定が可能なため、本発明の有効
性が示された。FIG. 6 shows the effect of this embodiment. This is the first
4 shows the time-dependent change in glucose concentration when a glucose tolerance test was carried out using the above-mentioned Example. 207 for the light source
A 5 nm semiconductor laser was used. The solid line in the figure is the result of continuous measurement of changes in glucose concentration measured according to the present invention, and the measurement points are the results of point-by-point measurement by the conventional method. From this, the present invention and the conventional method are in good agreement, and since the continuous measurement of the present invention is possible, the effectiveness of the present invention was shown.
【0013】[0013]
【発明の効果】本発明によれば、2075nmまたは1
550nmの光を用いているので、グルコースの特徴的
な光吸収を利用することができる。また、上記波長の光
は生体をある程度透過することができるので、透過光強
度を測定することにより無侵襲グルコース分析を行うこ
とができる。According to the present invention, 2075 nm or 1
Since the light of 550 nm is used, the characteristic light absorption of glucose can be utilized. Moreover, since the light of the above wavelength can be transmitted through the living body to some extent, noninvasive glucose analysis can be performed by measuring the transmitted light intensity.
【図1】グルコース水溶液の赤外吸収スペクトルの特性
図。FIG. 1 is a characteristic diagram of an infrared absorption spectrum of a glucose aqueous solution.
【図2】グルコース濃度と透過光強度の関係を示す特性
図。FIG. 2 is a characteristic diagram showing the relationship between glucose concentration and transmitted light intensity.
【図3】本発明の構成を示すブロック図。FIG. 3 is a block diagram showing a configuration of the present invention.
【図4】本発明の第1の実施例の説明図。FIG. 4 is an explanatory diagram of the first embodiment of the present invention.
【図5】本発明の第2の実施例の説明図。FIG. 5 is an explanatory diagram of a second embodiment of the present invention.
【図6】本発明の効果を示した説明図。FIG. 6 is an explanatory view showing the effect of the present invention.
1…光源、2…光検出器、7…分析装置本体、8…孔、
9…表示部。1 ... Light source, 2 ... Photodetector, 7 ... Analytical apparatus body, 8 ... Hole,
9 ... Display section.
Claims (3)
み、光を直接生体に照射して光の吸収により生体中の生
化学物質の濃度を求める生化学計測装置であり、少なく
とも2000nmから2220nmの波長範囲で放射エ
ネルギを有し、2065nmから2085nmの波長範
囲に放射エネルギの極大値を有する光源、又は少なくと
も1450nmから1650nmの範囲で放射エネルギ
を有し、1550nmに放射エネルギの極大値を有する
光源を用いたことを特徴とする無侵襲生化学計測装置。1. A biochemical measurement device including a light source, a photodetector, a signal processing / calculation unit, which directly irradiates light on a living body to obtain the concentration of a biochemical substance in the living body by absorbing the light, and at least 2000 nm Source having a radiant energy in the wavelength range from 20 to 2220 nm and a radiant energy maximum in the wavelength range from 2065 nm to 2085 nm, or having a radiant energy in the range from at least 1450 nm to 1650 nm and a radiant energy maximum at 1550 nm. A non-invasive biochemical measuring device characterized by using an existing light source.
インジウム,ヒ素,アンチモン,リン,アルミニウムの
中から複数種類組み合わせて、適切な組成で混合した材
料からなる半導体レーザ、光検出器はゲルマニウム,イ
ンジウムヒ素,インジウムアンチモン,硫化鉛またはセ
レン化鉛を材料とする半導体光検出器である無侵襲生化
学計測装置。2. The light source according to claim 1, wherein the light source is gallium,
A semiconductor laser made of a material in which a plurality of indium, arsenic, antimony, phosphorus, and aluminum are combined and mixed with an appropriate composition, and a photodetector is made of germanium, indium arsenide, indium antimony, lead sulfide, or lead selenide. A non-invasive biochemical measuring device that is a semiconductor photodetector.
検出器の受光面を所定の間隔を隔てて配置し、生体試料
を前記光放射面と受光面の間に設置する無侵襲生化学計
測装置。3. The light emitting surface of the light source according to claim 1 and the light receiving surface of the photodetector are arranged at a predetermined interval, and the biological sample is placed between the light emitting surface and the light receiving surface. Invasive biochemical measuring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP172395A JPH08189891A (en) | 1995-01-10 | 1995-01-10 | Non-invasive biochemical measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP172395A JPH08189891A (en) | 1995-01-10 | 1995-01-10 | Non-invasive biochemical measuring device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08189891A true JPH08189891A (en) | 1996-07-23 |
Family
ID=11509494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP172395A Pending JPH08189891A (en) | 1995-01-10 | 1995-01-10 | Non-invasive biochemical measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08189891A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012105809A (en) * | 2010-11-17 | 2012-06-07 | Fujitsu Ltd | Biological component measuring device and biological component measuring method |
-
1995
- 1995-01-10 JP JP172395A patent/JPH08189891A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012105809A (en) * | 2010-11-17 | 2012-06-07 | Fujitsu Ltd | Biological component measuring device and biological component measuring method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5348002A (en) | Method and apparatus for material analysis | |
US5348003A (en) | Method and apparatus for chemical analysis | |
US5222495A (en) | Non-invasive blood analysis by near infrared absorption measurements using two closely spaced wavelengths | |
US5222496A (en) | Infrared glucose sensor | |
US5372135A (en) | Blood constituent determination based on differential spectral analysis | |
US5028787A (en) | Non-invasive measurement of blood glucose | |
US5460177A (en) | Method for non-invasive measurement of concentration of analytes in blood using continuous spectrum radiation | |
US6622032B1 (en) | Method for non-invasive blood analyte measurement with improved optical interface | |
JP2965212B2 (en) | Method and apparatus for determining the similarity of biological analytes from models made from known biological fluids | |
EP0919180B1 (en) | Method and apparatus for noninvasive measurement of blood glucose by photoacoustics | |
US9915608B2 (en) | Optical sensor for determining the concentration of an analyte | |
US7343185B2 (en) | Measurement of body compounds | |
US5617852A (en) | Method and apparatus for non-invasively determining blood analytes | |
US8406839B2 (en) | Method and apparatus for determining blood analytes | |
JP2003245266A (en) | Highly reliable non-invasive blood gas measurement method | |
JP4472794B2 (en) | Glucose concentration determination device | |
US5246004A (en) | Infrared cholesterol sensor | |
US20090168049A1 (en) | Method and apparatus for measuring analytes | |
JPH09308623A (en) | Non-invasive biochemical measurement device | |
WO2007060583A2 (en) | Method and apparatus for determining concentrations of analytes in a turbid medium | |
JPH09113439A (en) | Method and apparatus for measuring organic component | |
JPH11178799A (en) | Vital method and device for analyzing superficial tissue of organism | |
JPH08189891A (en) | Non-invasive biochemical measuring device | |
JPH0113852B2 (en) | ||
JPH10179557A (en) | Bio measurement device and bio measurement method |