JPH0818311A - Nrd guide distributing coupler - Google Patents
Nrd guide distributing couplerInfo
- Publication number
- JPH0818311A JPH0818311A JP6152080A JP15208094A JPH0818311A JP H0818311 A JPH0818311 A JP H0818311A JP 6152080 A JP6152080 A JP 6152080A JP 15208094 A JP15208094 A JP 15208094A JP H0818311 A JPH0818311 A JP H0818311A
- Authority
- JP
- Japan
- Prior art keywords
- line
- branch
- mode
- main line
- branch line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Waveguide Switches, Polarizers, And Phase Shifters (AREA)
- Waveguides (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、NRDガイドで構成さ
れるT字型分岐線路またはL字型折線分岐線路で、主線
路端部と分岐線路端部の一部が直角に密着し、ここで主
線路側LSM−分岐線路側LSEとモード変換する構造
とした、従来よりも小型となり伝送周波数帯域幅が広が
り、主線路と分岐線路が直交するため各線路の相互位置
設置精度が向上し、結合量調整や周波数調整が定量的に
設定可能になり、組立再現性が向上したNRDガイド分
配結合器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a T-shaped branch line or an L-shaped broken line branch line composed of an NRD guide, in which the main line end portion and a part of the branch line end portion are closely contacted at right angles. The main line side LSM-branch line side LSE has a structure for mode conversion, which is smaller than the conventional one, the transmission frequency bandwidth is widened, and since the main line and the branch line are orthogonal to each other, the mutual position installation accuracy of each line is improved, The present invention relates to an NRD guide distributor / combiner in which adjustment of coupling amount and frequency adjustment can be quantitatively set and assembly reproducibility is improved.
【0002】[0002]
【従来の技術】図11はNRDガイドの基本構成を示す
図である。図中、1は上下導体板、2は誘電体線路(高
さa、幅b)で、aは自由空間での信号周波数の波長の
半分以下(例えば60GHzの空間波長は5mmなの
で、導体板間が空気の場合、aは2.5mm以下)であ
る。図12は不要モードサプレッサ4を示す図で、誘電
体線路2の中に信号伝送方向に導体よりなるチョークパ
ターン3を配置して、NRDガイド中で低損失なので主
モードとしているLSM(Longitudinal Section Magne
tic)モード以外のモード例えばLSE(Longitudinal Se
ction Electric)モード、TEMモード、TEモード等
を抑圧させる。LSMモードの例として、最低次モード
であるLSM01モードについて説明すると、図13
(a)に示すように、誘電体線路の伝送方向と垂直な断
面では、上下導体板と垂直に磁界が生じ、上下導体板に
平行に電界が生じているモードである。また、LSEモ
ードの例として、最低次モードであるLSE01モードに
ついて説明すると、図13(b)に示すように、誘電体
線路に垂直な断面では上下導体板に垂直に電界が生じ、
上下導体板と平行に磁界が生じているモードである。N
RDガイド線路ではLSMモードとLSEモードで別個
の遮断周波数が存在し、一般に線路幅bを小さくすれ
ば、遮断周波数が高くなるが、LSEモードの遮断周波
数よりもLSMモードの遮断周波数の方が高い値を示
す。よって線路幅bを調整することにより(例えば、信
号周波数が60GHzで、被誘電率εr≒2の誘電体線
路を用いる場合、線路幅2.5mmならばLSMモー
ド、LSEモード共に伝送されるが、線路幅を1.5m
mにするとLSEモードのみ伝送される)LSEモード
のみを伝送する線路を実現することができる。2. Description of the Related Art FIG. 11 is a diagram showing a basic structure of an NRD guide. In the figure, 1 is the upper and lower conductor plates, 2 is the dielectric line (height a, width b), and a is less than half the wavelength of the signal frequency in free space (for example, the spatial wavelength of 60 GHz is 5 mm, so there is a gap between the conductor plates). A is 2.5 mm or less). FIG. 12 is a diagram showing the unnecessary mode suppressor 4, in which the choke pattern 3 made of a conductor is arranged in the dielectric line 2 in the signal transmission direction, and the main mode is LSM (Longitudinal Section Magne) because of its low loss in the NRD guide.
modes other than tic mode, such as LSE (Longitudinal Se
(ction electric) mode, TEM mode, TE mode, etc. are suppressed. As an example of the LSM mode, the LSM 01 mode which is the lowest order mode will be described.
As shown in (a), in a cross section perpendicular to the transmission direction of the dielectric line, a magnetic field is generated vertically to the upper and lower conductor plates, and an electric field is generated in parallel to the upper and lower conductor plates. Further, as an example of the LSE mode, the LSE 01 mode which is the lowest order mode will be described. As shown in FIG. 13B, an electric field is generated vertically in the upper and lower conductor plates in a cross section perpendicular to the dielectric line,
This is a mode in which a magnetic field is generated parallel to the upper and lower conductor plates. N
In the RD guide line, different cutoff frequencies exist for the LSM mode and the LSE mode, and generally, if the line width b is made smaller, the cutoff frequency becomes higher, but the cutoff frequency in the LSM mode is higher than the cutoff frequency in the LSE mode. Indicates a value. Therefore, by adjusting the line width b (for example, when using a dielectric line having a signal frequency of 60 GHz and a dielectric constant εr≈2, if the line width is 2.5 mm, both LSM mode and LSE mode are transmitted, Track width 1.5m
When m is set, only the LSE mode is transmitted.) It is possible to realize a line that transmits only the LSE mode.
【0003】従来のNRDガイドで構成された分配結合
器には、例えば図14や図15に示すようなものがあ
る。図14(a)は従来のT字型分岐(以後T分岐と略
称)やL字型折線分岐(以後L分岐と略称)を用いた2
分配(等分配)の分配結合器の例を示し、図14(b)
は3分配の分配結合器の例を示している。図14に示す
例では、主線路2(幅b)や不要モードサプレッサ4に
対し、分岐線路5(幅b’でb’<b)は、図示のよう
にL型、T型に互いに直角に配置されている。なお、不
要モードサプレッサ4は各端部全てに必要とは限らな
い。主線路2又は不要モードサプレッサ4と、分岐線路
5とは、線路端部の角の部分だけで接するか、または其
処に僅かな隙間があって、電磁界結合するようになって
いる。図15(a)に示す例は、直線の主線路2と18
0度ベンド6とを間隔g1で配置した構造で、用いる線
路の一方だけがベンドなので、非対称型と称する。図1
5(b)に示す例は、2個のベンド6’、6”を間隔g
2で対向配置した構造で、対称型と称する。上記両者と
も、間隔g1又はg2を調整することにより結合度を調整
する。しかし、上記のような従来のNRDガイドによる
分配結合器では、図14に示した例の場合、主線路2又
は不要モードサプレッサ4と分岐線路5が互いに接する
部分は、高々、角部だけで、殆ど独立して配置されてい
るため、回路全体を組み立て調整するのに極めて手間が
かかる。また、図16(a)に示す構造が基本になって
いて、信号が一旦飛地となっている分岐線路5を経由す
るので、分岐線路5の幅b’と長さLで定まる特定の周
波数だけが狭帯域のバンドパス形で伝送される共振型の
線路構造のため、伝送周波数特性が極めて狭い。例えば
比帯域で6%程度しかない。また、図15(a)、
(b)に示した例では、図中のイ、ロ、ハの3点でLS
Mモードになるように設計(ベンドの特定点でLSMモ
ードのみにしようとすると、曲率半径は特定点(角度)
位置と伝送信号周波数に対応する離散的な値に選定しな
ければならない)するため、曲率半径Rは通常R≧5〜
10bと大きくなり、回路の小型化を大きく阻む要因に
なり、他の回路素子と組み合わせて使用する場合に配置
場所や構成が制約されていた。更にベンドを用いるた
め、図示の如くロ点がうまく対向するように間隔g1又
はg2を設置できれば良いが、ロ点から多少なりとも位
置がずれて対向線路に面する形で配置されると、通過特
性に不要モードによるリップルが大きく立ったり、損失
が大きくなったりする欠点もあり、ベンドの設置位置、
傾き精度により、回路特性が大きく限定されていた。加
えて、この形の結合器は、ベンドのほぼ1点、ロ点で結
合するのに等しい動作をするので、図15(c)に示す
ように、結合帯域幅が極めて狭く、ほとんど1点の周波
数のみで結合している特性しか得られない(比帯域0.
1%以下)。なお、上記各NRDガイドの図では、簡単
化のため、いずれも上下導体板の図示を省略してある。A conventional distributor / combiner composed of an NRD guide is, for example, one shown in FIGS. FIG. 14A shows a conventional T-shaped branch (hereinafter abbreviated as T-branch) or an L-shaped broken line branch (hereinafter abbreviated as L-branch) 2
An example of a distribution (equal distribution) distribution coupler is shown in FIG.
Shows an example of a three-way distribution coupler. In the example shown in FIG. 14, with respect to the main line 2 (width b) and the unnecessary mode suppressor 4, the branch line 5 (width b ′ and b ′ <b) is at right angles to each other as shown in the figure. It is arranged. It should be noted that the unnecessary mode suppressor 4 is not necessarily required at each end. The main line 2 or the unwanted mode suppressor 4 and the branch line 5 are in contact with each other only at the corners of the line ends, or there is a slight gap therebetween, so that they are electromagnetically coupled. In the example shown in FIG. 15A, the straight main lines 2 and 18
The structure is such that the 0 degree bend 6 and the 0 degree bend 6 are arranged at an interval g 1 , and since only one of the lines used is a bend, it is called an asymmetric type. FIG.
In the example shown in FIG. 5 (b), two bends 6 ′ and 6 ″ are arranged at intervals g.
The structure is such that the two are opposed to each other, and is called a symmetric type. In both of the above, the degree of bonding is adjusted by adjusting the gap g 1 or g 2 . However, in the case of the conventional distributed coupler using the NRD guide as described above, in the case of the example shown in FIG. 14, the main line 2 or the unnecessary mode suppressor 4 and the branch line 5 are in contact with each other only at the corners at most. Since they are arranged almost independently, it is extremely troublesome to assemble and adjust the entire circuit. In addition, since the structure shown in FIG. 16 (a) is basic and the signal passes through the branch line 5 which is once a place, only a specific frequency determined by the width b ′ and the length L of the branch line 5 is used. The transmission line characteristic is extremely narrow due to the resonance type line structure in which is transmitted in a narrow band pass type. For example, the ratio band is only about 6%. In addition, FIG.
In the example shown in (b), the LS is made at the three points a, b, and c in the figure.
Designed to be M mode (If you try to use only LSM mode at a specific point of bend, the radius of curvature will be a specific point (angle)
Therefore, the radius of curvature R is usually R ≧ 5 in order to select a discrete value corresponding to the position and the transmission signal frequency.
It becomes as large as 10b, which is a factor that greatly hinders the miniaturization of the circuit, and when it is used in combination with other circuit elements, the location and the configuration are restricted. Further, since a bend is used, it suffices if the gap g 1 or g 2 can be set so that the points B are well opposed to each other as shown in the figure, but if they are arranged so that they are slightly displaced from the points B and face the opposing line. There is also a drawback that ripple due to unnecessary mode rises significantly in the passage characteristic and loss increases, so the bend installation position,
The circuit characteristics are largely limited by the inclination accuracy. In addition, since this type of coupler operates as if it were coupled at approximately one point of the bend, point B, the coupling bandwidth is extremely narrow, as shown in FIG. Only the characteristics of coupling only at the frequency can be obtained (ratio of 0.
1% or less). In the drawings of the above NRD guides, the upper and lower conductor plates are not shown for simplification.
【0004】[0004]
【発明が解決しようとする課題】本発明は上記したよう
な従来のNRDガイド分配結合器にかかわる種々の問題
が解消され、回路全体を小型化することができ、伝送周
波数帯域幅が広がり、各線路の相互位置調整や設置精度
を向上させ易く、結合量調整や周波数調整が定量的に設
定可能になり、組立再現性が向上した生産性に富むNR
Dガイド分配結合器を提供することを課題とする。SUMMARY OF THE INVENTION The present invention solves the various problems associated with the conventional NRD guide distribution coupler as described above, makes it possible to downsize the entire circuit, widens the transmission frequency bandwidth, and It is easy to improve mutual position adjustment of lines and installation accuracy, and it is possible to quantitatively set coupling amount adjustment and frequency adjustment, and assembly reproducibility is improved.
It is an object to provide a D-guide distribution coupler.
【0005】[0005]
【課題を解決するための手段】上記課題を解決するため
に本発明においては、NRDガイドで構成されるT分岐
用NRDガイド分配結合器において、主線路はNRDガ
イドの主モードであるLSMモードで動作し、分岐線路
は主に副モードであるLSEモードで動作する線路で構
成し、分岐線路と主線路が直交する個所で、主線路の幅
をbとするとき、分岐線路端部が主線路端部のb/2以
下の長さの(0ではない)有限長部分に直角に密着また
は分岐線路端部が主線路側面に直角に密着した構造、又
は、予め上記のような状態に主線路と分岐線路を一体化
した構造を持つようにし、また、NRDガイドで構成さ
れるL分岐用NRDガイド分配結合器において、主線路
はNRDガイドの主モードであるLSMモードで動作
し、分岐線路はLSEモード又はLSMモードの何れで
も動作する線路で構成し、分岐線路と主線路が直交する
個所で、主線路の幅をbとするとき、分岐線路端部が主
線路端部のb/2以下の長さの(0ではない)有限長部
分に直角に密着した構造、又は予め上記のような状態に
主線路と分岐線路を一体化した構造を持つようにし、か
つ、分岐線路と主線路が直交する個所で、主線路端部に
分岐線路端部が実際に密着または一体化されている長さ
が、たとえb/2以上であっても、分岐線路の体積平均
で計算すればb/2以下となるように設計することにし
た。In order to solve the above-mentioned problems, in the present invention, in a T-branch NRD guide distribution coupler composed of an NRD guide, the main line is in the LSM mode which is the main mode of the NRD guide. The branch line is mainly composed of lines that operate in the LSE mode, which is a sub mode, and the end of the branch line is the main line when the width of the main line is b at a point where the branch line and the main line are orthogonal to each other. A structure in which a finite length portion (not 0) having a length of b / 2 or less at the end portion is closely contacted at right angles or a branch line end portion is closely contacted at right angle with the side surface of the main line, or the main line is preliminarily set in the above state. In the L-branching NRD guide distribution coupler composed of the NRD guide, the main line operates in the LSM mode which is the main mode of the NRD guide, and the branch line is LS When the width of the main line is b at a point where the branch line and the main line are orthogonal to each other, the branch line end is less than b / 2 of the main line end. It has a structure in which it is in close contact with a finite length portion (not 0) of the length at a right angle, or has a structure in which the main line and the branch line are integrated in advance in the above state, and the branch line and the main line are orthogonal to each other. At the point where the branch line end is actually closely attached to or integrated with the main line end, even if the length is b / 2 or more, it is b / 2 or less if calculated by the volume average of the branch line. I decided to design it so that.
【0006】[0006]
【作用】先に図16(a)(図中、2は主線路、4は不
要モードサプレッサ、5は分岐線路)に示した従来のL
分岐は、主線路2と分岐線路5が、角だけで接するか、
又は其処で僅かに離れた構造で、分岐線路5が飛地にな
っていて共振効果が大きく影響するため、共振により通
過損は小さくなるが、通過周波数帯域は極めて狭い構造
であった。これに対し、本発明によるL分岐は図16
(b)に示すようになる。構成要素が主線路2と不要モ
ードサプレッサ4、分岐線路5’である点は、図16
(a)に示した上記従来の場合と変わらない。なお、不
要モードサプレッサ4は必ずしも各主線路端部に設置し
なくても良い。本発明によるL分岐では、分岐線路5’
の両端のうち少なくとも一方は、主線路2又は主線路に
接続する不要モードサプレッサ4との間に僅かな隙間も
なく、0ではない或る長さd(主線路の幅をbとすると
きd≦b/2が好ましい)の個所で密着し、線路が途切
れていない構造になっているのが特徴である。この構造
を以後、線路結合型と呼ぶ。この構造にすれば、線路的
に連続に信号が伝送されるため、図16(a)に示した
従来の場合のように、分岐線路の長さLで回路特性が拘
束されることはない。すなわち、図16(b)に示す本
発明によるL分岐の分岐線路長L’は、上記従来の場合
と異なり、任意の長さにして差支えない点が特徴であ
る。但し、短めの場合は、L’≒n/2・λg(n:1
〜3、λg:使用周波数での線路内波長)程度が使い易
い。また、分岐線路の幅b’は、分岐線路内では使用周
波数のLSEモードが主となり、LSMモードが少なく
なる幅とする(既述のように線路幅を小さくするとLS
Mモードの遮断周波数が高くなって、LSEモードの遮
断周波数よりも高くなり、分岐線路ではLSEモードだ
けが実在するようにできる)。例えば、主線路の幅bに
対して、分岐線路の幅b’≦0.6b程度の範囲が好ま
しい。同様の効果を、図16(d)に示す主線路2の側
面に分岐線路5’の端面を密着させた場合にも期待でき
る。また、図16(c)は、以上の考え方を、T分岐、
L分岐に同時に利用したY字型分岐回路(以後Y分岐と
略称)である。なお、図16(d)の構造では、図16
(c)の構造よりも分岐側への伝送電力(ポート出
力)は少なくなる。なお、図3(b)は上記図16
(b)に示す本発明に係る主線路2、不要波モードサプ
レッサ4と分岐線路5’との直交個所の状態を示してい
るが、このように主線路(不要モードサプレッサ)の端
部のb/2の長さの個所に分岐線路を密着させる代り
に、図3(a)、(c)、(d)に示すように分岐線路
端部の体積平均で計算すればb/2以下となるように設
計しても良い。なお、図3(e)はL分岐線路部分を、
別々に線路部分を形成して組み合わせるのではなく、予
め一体化形成した実施例を示す。The conventional L shown in FIG. 16 (a) (in the figure, 2 is the main line, 4 is the unnecessary mode suppressor, and 5 is the branch line).
For branching, whether the main line 2 and the branch line 5 contact at only the corner,
Alternatively, the branch line 5 has a slightly separated structure, and the resonance effect is greatly affected by the branch line 5. Therefore, although the pass loss is reduced by resonance, the pass frequency band is extremely narrow. On the other hand, the L branch according to the present invention is shown in FIG.
As shown in (b). FIG. 16 shows that the constituent elements are the main line 2, the unnecessary mode suppressor 4, and the branch line 5 ′.
This is the same as the conventional case shown in (a). The unnecessary mode suppressor 4 does not necessarily have to be installed at the end of each main line. In the L branch according to the present invention, the branch line 5 '
At least one of both ends of the above has no certain gap between the main line 2 or the unnecessary mode suppressor 4 connected to the main line, and has a length d which is not 0 (when the width of the main line is b ≦ d ≦ d The feature is that the structure is such that the line is not interrupted by closely adhering at a position of (b / 2 is preferable). This structure is hereinafter referred to as a line coupling type. According to this structure, since the signal is continuously transmitted along the line, the circuit characteristic is not restricted by the length L of the branch line as in the conventional case shown in FIG. That is, the branch line length L ′ of the L-branch according to the present invention shown in FIG. 16 (b) is different from the above-mentioned conventional case in that it can be set to an arbitrary length. However, when the length is short, L'≈n / 2 · λ g (n: 1
˜3, λ g : wavelength in line at operating frequency) is easy to use. Further, the width b ′ of the branch line is a width in which the LSE mode of the used frequency is mainly in the branch line and the LSM mode is reduced (if the line width is reduced as described above, the LS is reduced).
(The M-mode cut-off frequency becomes higher than the LSE-mode cut-off frequency, and only the LSE mode can exist in the branch line.) For example, the width b of the main line is preferably in the range of b ′ ≦ 0.6b. The same effect can be expected when the end face of the branch line 5 ′ is brought into close contact with the side face of the main line 2 shown in FIG. 16 (d). In addition, FIG. 16C shows the above concept based on the T branch,
It is a Y-shaped branch circuit (hereinafter abbreviated as Y-branch) used at the same time for L-branching. In addition, in the structure of FIG.
The transmission power (port output) to the branch side is smaller than that of the structure of (c). Note that FIG. 3B is the same as FIG.
The state of the main line 2 according to the present invention shown in (b), the unnecessary wave mode suppressor 4 and the branch line 5'is shown in a state of being orthogonal to each other. Thus, the end portion b of the main line (unnecessary mode suppressor) is indicated by b. Instead of adhering the branch line closely to the location of / 2, the volume average of the ends of the branch line as shown in FIGS. 3 (a), (c), and (d) results in b / 2 or less. It may be designed as. 3 (e) shows the L branch line portion,
An example is shown in which the line portions are not separately formed and combined, but are integrally formed in advance.
【0007】通常のマイクロ波、ミリ波回路では、例え
ば図18(a)に示す矩形型導波管方向性結合器や図1
8(b)に示す誘電体基板(裏面接地)マイクロストリ
ップライン方向性結合器の例では、T分岐、Y分岐、L
分岐の各分岐路での伝送電磁界モードは、導波管ならT
E又はTMのどちらか一方、マイクロストリップ線路で
は準TEMモードのみであり、別のモードに変換して伝
送する例は極めて少ない。しかるに、本発明によるNR
Dガイド分配結合器の基礎となるT分岐、L分岐は、図
16(a)に示した従来型も含めて、主線路では主モー
ドLSMのみなのが、分岐線路ではLSE(またはLS
EとLSM混在)モードに変換されて伝送される点が大
きく異なっている。従って本質的には本発明による各回
路は、分岐路の線路幅b’(又はb”)によって決まる
伝送帯域幅をもっているといえる。なお、LSM、LS
Eモードを示す図13を見れば、図13(a)に示すL
SMモードをy−z面で切りだしてみると、図13
(b)に示すLSEモードと同一の電磁界分布になって
いることが判る。図17に2等分配回路の通過特性を、
横軸に周波数、縦軸に主線路から分岐線路へ通過する際
の通過損をとって示してあるが、伝送帯域は、本発明の
場合、例えば図17(b)に示すように比帯域13%以
上となり、図17(a)に示す従来例の6%の2倍以上
の伝送帯域が実現できている。In a usual microwave or millimeter wave circuit, for example, a rectangular waveguide directional coupler shown in FIG.
In the example of the dielectric substrate (back side ground) microstrip line directional coupler shown in FIG. 8 (b), T branch, Y branch, L branch
The transmission electromagnetic field mode in each branch path is T
Either E or TM, which is the quasi-TEM mode only in the microstrip line, is extremely rare to be converted into another mode for transmission. Therefore, the NR according to the present invention
The T-branch and the L-branch, which are the basis of the D-guide distribution coupler, including the conventional type shown in FIG. 16 (a), are all the main mode LSMs in the main line, but LSE (or LS) in the branch line.
The difference is that it is converted into E and LSM mixed mode and transmitted. Therefore, it can be said that each circuit according to the present invention essentially has a transmission bandwidth determined by the line width b ′ (or b ″) of the branch path. LSM, LS
Looking at FIG. 13 showing the E mode, L shown in FIG.
When the SM mode is cut out on the yz plane, FIG.
It can be seen that the electromagnetic field distribution is the same as the LSE mode shown in (b). FIG. 17 shows the pass characteristic of the equal distribution circuit.
The horizontal axis represents frequency, and the vertical axis represents pass loss when passing from the main line to the branch line. In the case of the present invention, the transmission band is, for example, as shown in FIG. %, Which is more than twice the transmission bandwidth of 6% of the conventional example shown in FIG. 17A.
【0008】[0008]
【実施例】図1は本発明の第1実施例図で、Y分岐型に
T分岐とL分岐を配した例である。図1(a)はポート
からポート、へ信号電力が分配される例で、ポー
トに2/3、ポートへは1/3分配される。これ
は、信号の直進性が強いため、それだけポートの電力
が多くなるためである。図1(b)は、逆にポートか
ら入力した場合で、この場合、ポート、は対等な位
置関係なので互いに1/2の電力に分配される。図1
(c)は図1(a)の応用例で、分岐線路の端面が主線
路の(端部ではなく途中の)側面に密着しており、ポー
トからの入力は、ポートに2/3、ポートに1/
3出力される。FIG. 1 is a first embodiment of the present invention, which is an example in which T-branch and L-branch are arranged in a Y-branch type. FIG. 1A shows an example in which signal power is distributed from port to port, which is 2/3 to ports and 1/3 to ports. This is because the straightness of the signal is strong and the power of the port is increased accordingly. In FIG. 1B, conversely, the case of inputting from the port, and in this case, the ports and the ports have an equal positional relationship, and the power is distributed to ½ of each other. FIG.
1C is an application example of FIG. 1A, in which the end face of the branch line is in close contact with the side face of the main line (in the middle, not at the end), and the input from the port is 2/3 of the port, 1 /
3 is output.
【0009】図2は本発明の第2実施例図で、2等分
配、3等分配の例を示す。図2(a)に示す2等分配の
例では図示のように、分岐路と主線路の密着部を、d1
≒b/3、d2≦b/2とすることによって広帯域性を
実現している。図2(b)に示す3等分配の例では、主
線路のポートと他の線路を密着しない形にすることに
より、ポート、、に3等分配する特性が実現され
ている。なお、分岐線路の他端は分岐先の主線路の端部
にd≦b/2で密着していることは勿論である。このよ
うな構造により、図2(a)に示した2等分配の例では
図17(b)に示すような広帯域特性を実現している。
なお、図17(a)は、図14(a)に示した従来の2
等分配回路の周波数特性である。図4は本発明の第3実
施例図で、本発明による変則的な2分配路の実施例を示
す。FIG. 2 is a second embodiment of the present invention, showing an example of equal distribution and equal distribution. In the example of the two equal distributions shown in FIG. 2A, as shown in the drawing, the contact portion between the branch path and the main line is d 1
Broadband performance is realized by setting ≈b / 3 and d 2 ≤b / 2. In the example of three equal distribution shown in FIG. 2B, the characteristic that the ports of the main line and the other lines are not in close contact with each other is equally distributed. It is needless to say that the other end of the branch line is in close contact with the end of the main line at the branch destination with d ≦ b / 2. With such a structure, the wide band characteristic as shown in FIG. 17B is realized in the example of the equal distribution shown in FIG.
It should be noted that FIG. 17A shows the conventional 2 shown in FIG.
It is a frequency characteristic of an equal distribution circuit. FIG. 4 is a diagram of a third embodiment of the present invention, showing an embodiment of an irregular two-divided path according to the present invention.
【0010】図5は、本発明によるT分岐を複数用いる
ことにより井の字型回路を構成した第4実施例を示す。
図5(a)、(b)は井の字部分が1個所の例で、
(a)は井の字内の主線路に不要モードサプレッサがな
い例、(b)は不要モードサプレッサがある例、(c)
は井の字型を複数個用いた例として2個の場合を示す。
図5に示した各回路の動作は、ポートへ入力した信号
がポート、、へ適宜分配されるものであるが、線
路長L1、L2、L3を特定値に設計すると、所謂T型、
π型のフィルタが構成でき、フィルタ効果をもった分配
器となる。また、分岐路長L1をL1=(2n−1)λE
/4(λE:分岐路内主モードの線路内波長、n:正整
数)、井の字部主線路長L2(及びL3)を、L2=(2m−
1)λM/4(L3=(2m−1)λM/4)、又は、L2=
mλM/2(L3=mλM/2)(λM:主線路内主モード
の線路内波長、m:正整数)とすることにより、図5で
は、ポート入力とすると、ポートがアイソレート端
子、ポート、がそれぞれ90°位相差となるHYB
型方向性結合器か実現できることになる。従って、本実
施例によれば、周波数帯域が図15に示した従来例NR
Dガイドライン間結合を用いた方向性結合器よりも十分
広く、しかも直角構造を基本とし、直角分岐路が互いに
接するため、位置決め、寸法精度が出し易く、小形な方
向性結合器が実現できることになる。FIG. 5 shows a fourth embodiment in which an I-shaped circuit is constructed by using a plurality of T branches according to the present invention.
5 (a) and 5 (b) are an example of a single well portion,
(A) is an example in which there is no unnecessary mode suppressor in the main line in the square shape, (b) is an example in which there is an unnecessary mode suppressor, (c)
Shows the case of two well-shaped cases.
The operation of each circuit shown in FIG. 5 is such that the signal input to the port is appropriately distributed to the ports ,. However, if the line lengths L 1 , L 2 and L 3 are designed to have specific values, the so-called T-type ,
A π-type filter can be configured, and the distributor has a filter effect. In addition, the branch path length L 1 is L 1 = (2n−1) λ E
/ 4 (λ E : wavelength in line of main mode in branch path, n: positive integer), L-shaped main line length L 2 (and L 3 ) is L 2 = (2m−
1) λ M / 4 (L 3 = (2m-1) λ M / 4) or L 2 =
mλ M / 2 (L 3 = mλ M / 2) (λ M : wavelength of main mode in main line, in-line wavelength of main mode, m: positive integer). HYB with 90 ° phase difference between terminals and ports
A mold directional coupler could be realized. Therefore, according to the present embodiment, the frequency band is the conventional example NR shown in FIG.
D It is sufficiently wider than the directional coupler using the inter-guideline coupling, and it is based on a right-angled structure, and since the right-angled branch paths are in contact with each other, positioning and dimensional accuracy are easy to obtain, and a small directional coupler can be realized. .
【0011】図6(a)、(b)、(c)は何れも、分
岐路の側面に平行に他の線路を配置することにより実現
される結合器の第5実施例を示す。空間的に結合するた
め、90度位相差が得られることになる。なお、図6に
示す形の結合器では分岐路長Lにより主に結合する中心
周波数が決められる。FIGS. 6A, 6B and 6C all show a fifth embodiment of the coupler realized by arranging another line in parallel with the side surface of the branch path. Since they are spatially coupled, a 90-degree phase difference will be obtained. In the coupler shown in FIG. 6, the center frequency to be mainly coupled is determined by the branch path length L.
【0012】図7は本発明の第6実施例図で、図7
(a)はT分岐応用の空間結合器の例、図7(b)は図
7(a)の別構成実施例である。FIG. 7 shows a sixth embodiment of the present invention.
7A is an example of a spatial combiner for T-branch application, and FIG. 7B is another embodiment of the configuration of FIG. 7A.
【0013】図8は本発明の第7実施例図である。図8
(a)は分岐路の両側に空間結合する結合器の実施例
で、ポートからの入力信号がポート、へ2分配さ
れるが、ギャップH、Iと線路重なり長さL1、L2によ
りフィルタ効果の入った結合器となる。図8(b)は主
線路側にギャップJと線路重なり長Lを設けた例であ
る。FIG. 8 is a diagram showing a seventh embodiment of the present invention. FIG.
(A) is an embodiment of a coupler that spatially couples on both sides of a branch path, and an input signal from a port is divided into two parts, which are filtered by gaps H, I and line overlapping lengths L 1 , L 2. It becomes a coupler with an effect. FIG. 8B is an example in which the gap J and the line overlapping length L are provided on the main line side.
【0014】図9は本発明の第8実施例図である。図9
(a)は本発明の方向性結合器の応用例として井の字型
回路によるバランス型ミキサの実施例を示す。線路長L
1、L2を図5について述べた寸法規程を用いることによ
り分配方向性が生じる。ここでIF出力(fIF)取り出
しに用いるパターン基板7では、図9(b)に示すよう
に、誘電体薄板8の片面にRFチョークパターン9が形
成され、ポート、に接するK、M部のパターン電極
にはそれぞれダイオード10が装荷されている。ポート
からRF(fRF)入力、ポートからLO(ローカル
fLO)入力すると、ポート、にはRFとLOが同時
に入るが、各々位相差90°の条件となり、本回路がバ
ランス型ミキサとして動作することになる。FIG. 9 shows an eighth embodiment of the present invention. Figure 9
(A) shows an embodiment of a balanced mixer having a square-shaped circuit as an application example of the directional coupler of the present invention. Track length L
Distributing directionality is created by using the dimensional rules for L 1 and L 2 described with reference to FIG. Here, in the pattern substrate 7 used for extracting the IF output (f IF ), as shown in FIG. 9B, the RF choke pattern 9 is formed on one surface of the dielectric thin plate 8, and the K and M portions contacting the port are formed. Each pattern electrode is loaded with a diode 10. When RF (f RF ) is input from the port and LO (local f LO ) is input from the port, RF and LO are simultaneously input to the port, but the phase difference is 90 °, and this circuit operates as a balanced mixer. It will be.
【0015】図10は、図14に示した従来の分配結合
器を用いた従来のバランスドミキサの例を示す。この例
では、上記本発明の第8実施例とは異なり、主線路と分
岐線路の結合部は、角で接しているか僅かに離れてい
る。従って主線路と分岐路との結合は上記実施例のよう
に強くはない。FIG. 10 shows an example of a conventional balanced mixer using the conventional distributor / combiner shown in FIG. In this example, unlike the above-described eighth embodiment of the present invention, the coupling portion between the main line and the branch line is in contact with each other at a corner or is slightly apart. Therefore, the coupling between the main line and the branch path is not as strong as in the above embodiment.
【0016】図19は、ベンドカプラを用いた従来型の
バランス型ミキサの一例を示す図であり、(a)は非対
称型ベンドカプラ(方向性結合器)を用いたバランス型
ミキサ、(b)は対称型ベンドカプラ(方向性結合器)
を用いたバランス型ミキサを示す。この型の従来のバラ
ンスドハンドミキサでは、2枚のダイオード実装基板を
結線して用いていたのに対し、本例では1枚のダイオー
ド実装基板で補え、IF信号が同一平面上を伝送される
ため、伝送損失も小さくなるという効果がある。FIG. 19 is a diagram showing an example of a conventional balanced mixer using a bend coupler, (a) is a balanced mixer using an asymmetric bend coupler (directional coupler), and (b) is symmetric. Type bend coupler (directional coupler)
A balanced mixer using is shown. In this type of conventional balanced hand mixer, two diode mounting boards are connected and used, but in this example, one diode mounting board is used for supplementation, and the IF signal is transmitted on the same plane. Therefore, there is an effect that the transmission loss is also reduced.
【0017】[0017]
【発明の効果】主線路とそれに直交する分岐線路の一部
が密着する形の、T分岐またはL分岐を基本とする線路
結合型分岐構成とし、NRDガイドの直交分岐個所で、
主線路と分岐線路とでモード変換する構造としため、小
型化可能となり、伝送周波数帯域幅が広がり、各線路の
相互位置や設置精度が向上し、結合量調整や周波数調整
が定量的に設定可能になり、組立再現性が向上した。EFFECTS OF THE INVENTION A main line and a part of a branch line orthogonal to the main line are in close contact with each other, and a line coupling type branch structure based on a T branch or an L branch is provided, and an orthogonal branch point of an NRD guide,
Since it is a mode conversion structure between the main line and the branch line, it can be downsized, the transmission frequency bandwidth is widened, the mutual position of each line and the installation accuracy are improved, and the coupling amount adjustment and frequency adjustment can be set quantitatively. As a result, assembly reproducibility is improved.
【図1】本発明の第1実施例図である。FIG. 1 is a diagram of a first embodiment of the present invention.
【図2】本発明の第2実施例図である。FIG. 2 is a diagram illustrating a second embodiment of the present invention.
【図3】本発明により主線路端部に分岐線路端部を直角
に密着させるか又はそのように一体化形成させた直交部
の形状を工夫して、両者の密着部の長さを、主線路の幅
の半分よりも長くした例を示す図である。FIG. 3 is a schematic cross-sectional view of a main portion of a main line end according to the present invention. It is a figure which shows the example made longer than the half of the width of a track | line.
【図4】本発明の第3実施例図である。FIG. 4 is a diagram of a third embodiment of the present invention.
【図5】本発明の第4実施例図である。FIG. 5 is a diagram of a fourth embodiment of the present invention.
【図6】本発明の第5実施例図である。FIG. 6 is a diagram of a fifth embodiment of the present invention.
【図7】本発明の第6実施例図である。FIG. 7 is a diagram of a sixth embodiment of the present invention.
【図8】本発明の第7実施例図である。FIG. 8 is a diagram of a seventh embodiment of the present invention.
【図9】本発明の第8実施例図である。FIG. 9 is a diagram of an eighth embodiment of the present invention.
【図10】従来の分配結合器を用いたバランスドミキサ
の例を示す図である。FIG. 10 is a diagram showing an example of a balanced mixer using a conventional distributor / combiner.
【図11】NRDガイドの基本構成を示す図である。FIG. 11 is a diagram showing a basic configuration of an NRD guide.
【図12】NRDガイドの主線路に信号伝送方向に設け
る不要モードサプレッサを説明するための図である。FIG. 12 is a diagram for explaining an unnecessary mode suppressor provided in the signal transmission direction on the main line of the NRD guide.
【図13】NRDガイドの線路に生ずるLSMモードと
LSEモードを説明するための図である。FIG. 13 is a diagram for explaining an LSM mode and an LSE mode which occur in the line of the NRD guide.
【図14】従来のT分岐やL分岐を用いた2等分配用や
3等分配用の分配結合器の例を示す図である。FIG. 14 is a diagram showing an example of a conventional distribution coupler for 2-division distribution and 3-division distribution using T-branch and L-branch.
【図15】NRDガイドのベンドを用いて構成された従
来の分配結合器の例を示す図である。FIG. 15 is a diagram showing an example of a conventional distributor / coupler constructed by using a bend of an NRD guide.
【図16】従来のNRDガイドのL分岐と、本発明によ
るNRDガイドのL分岐、Y分岐を、比較して示す図で
ある。FIG. 16 is a diagram showing a comparison between the L branch of the conventional NRD guide and the L branch and Y branch of the NRD guide according to the present invention.
【図17】従来のNRDガイドのL分岐、本発明による
NRDガイドのL分岐、それぞれの周波数帯域特性を比
較して示す図である。FIG. 17 is a diagram showing a comparison of the frequency band characteristics of the L branch of the conventional NRD guide and the L branch of the NRD guide of the present invention.
【図18】従来のマイクロ波やミリ波の回路に用いられ
た矩形型導波管方向性結合器やマイクロストリップライ
ン方向性結合器の例を示す図である。FIG. 18 is a diagram showing an example of a rectangular waveguide directional coupler or a microstrip line directional coupler used in a conventional microwave or millimeter wave circuit.
【図19】従来のベンド型カプラ(方向性結合器)を用
いた従来型のバランス型ミキサの一例図であり、(a)
は非対称型ベンドカプラ(方向性結合器)を用いたバラ
ンス型ミキサ、(b)は対称型ベンドカプラ(方向性結
合器)を用いたバランス型ミキサを示す。FIG. 19 is an example diagram of a conventional balanced mixer using a conventional bend-type coupler (directional coupler);
Shows a balanced mixer using an asymmetric bend coupler (directional coupler), and (b) shows a balanced mixer using a symmetrical bend coupler (directional coupler).
1…NRDガイドの上下導体板 2…誘電体より
なる主線路 3…チョークパターン 4…不要モード
サプレッサ 5、5’…分岐線路 6…ベンド 7…パターン基板 8…誘電体薄板 9…RFチョークパターン 10…ダイオード 11…高誘電率薄板1 ... Upper and lower conductor plates of NRD guide 2 ... Main line made of dielectric 3 ... Choke pattern 4 ... Unwanted mode suppressor 5, 5 '... Branch line 6 ... Bend 7 ... Pattern substrate 8 ... Dielectric thin plate 9 ... RF choke pattern 10 ... Diode 11 ... High permittivity thin plate
Claims (6)
の自由空間波長の半分以下の間隔で挾む上下導体板より
なるNRDガイドで構成されるT字型分岐線路用NRD
ガイド分配結合器において、主線路はNRDガイドの主
モードであるLSMモードで動作し、分岐線路は主に副
モードであるLSEモードで動作し、分岐個所でLSM
−LSEモード変換するように構成され、分岐線路と主
線路が直交する個所で、主線路の幅をbとするとき、分
岐線路両端のうち少なくとも一方には主線路端部に直角
に密着している有限長個所が必ず存在して密着部の長さ
はb/2以下であるか若しくは分岐線路両端の少なくと
も一方が主線路側面に直角に密着した構造、又は、上記
のような状態に主線路と分岐線路を予め一体化形成した
構造を持つことを特徴とするNRDガイド分配結合器。1. An NRD for a T-shaped branch line, which is composed of a dielectric line for signal transmission and an NRD guide composed of upper and lower conductor plates sandwiching the dielectric line at intervals less than half of a free space wavelength of a signal frequency.
In the guide distribution coupler, the main line operates in the LSM mode which is the main mode of the NRD guide, the branch line operates mainly in the LSE mode which is the sub mode, and the LSM operates at the branch point.
-Where the branch line and the main line are orthogonal to each other when configured to perform LSE mode conversion, and when the width of the main line is b, at least one of both ends of the branch line is in close contact with the end of the main line at a right angle. There is always a finite length location and the length of the close contact part is b / 2 or less, or at least one of both ends of the branch line is in close contact with the side surface of the main line at a right angle, or in the above-mentioned state the main line An NRD guide distribution coupler having a structure in which a branch line and a branch line are integrally formed in advance.
の自由空間波長の半分以下の間隔で挾む上下導体板より
なるNRDガイドで構成されるL字型折線分岐線路用N
RDガイド分配結合器において、主線路はNRDガイド
の主モードであるLSMモードで動作し、分岐線路はL
SEモード又はLSMモードの何れでも動作し、分岐個
所でLSM−LSEモード変換するように構成され、分
岐線路と主線路が直交する個所で、主線路の幅をbとす
るとき、分岐線路両端のうち少なくとも一方には主線路
端部に直角に密着している有限長個所が必ず存在して密
着部の長さはb/2以下である構造、又は予め上記のよ
うな状態に主線路と分岐線路を一体化形成した構造を持
つことを特徴とするNRDガイド分配結合器。2. An N-shaped bent line branch line composed of an NRD guide composed of a dielectric line for signal transmission and an upper and lower conductive plates sandwiching the dielectric line at intervals less than half of the free space wavelength of the signal frequency.
In the RD guide distribution coupler, the main line operates in the LSM mode which is the main mode of the NRD guide, and the branch line is L
It operates in either SE mode or LSM mode and is configured to perform LSM-LSE mode conversion at a branch point, and at a point where the branch line and the main line are orthogonal to each other, when the width of the main line is b, At least one of them has a finite length part that is in close contact with the end of the main line at a right angle, and the length of the close contact part is b / 2 or less, or branched to the main line in the above-mentioned state in advance. An NRD guide distribution coupler having a structure in which lines are integrally formed.
路端部に分岐線路端部が実際に密着または一体化形成さ
れている長さはb/2以上あるが、分岐線路の体積平均
で計算すればb/2以下となるように設計されているこ
とを特徴とする請求項1または2記載のNRDガイド分
配結合器。3. The branch line and the main line are orthogonal to each other, and the length of the main line end where the end of the branch line is actually adhered or integrally formed is b / 2 or more, but the volume of the branch line is large. 3. The NRD guide distributor / combiner according to claim 1, wherein the NRD guide distributor / combiner is designed so as to have an average value of b / 2 or less.
またはL字型折線分岐線路を、主に信号または電力の分
配、合成に用いるようにしたことを特徴とする請求項1
〜3の何れか1項記載のNRDガイド分配結合器。4. A T-shaped branch line or an L-shaped broken line branch line composed of an NRD guide is mainly used for distribution and combination of signals or electric power.
4. The NRD guide distribution coupler according to any one of 3 to 3.
分岐線路を、井の字型に組み合わせて分配合成器または
フィルタまたは方向性結合器を形成したことを特徴とす
る請求項1または3記載のNRDガイド分配結合器。5. A distribution combiner, a filter, or a directional coupler is formed by combining T-shaped branch lines composed of a plurality of sets of NRD guides in a square shape. 3. The NRD guide distribution coupler according to 3.
定間隔で平行に設置した線路により結合器回路またはフ
ィルタ回路を構成したことを特徴とする請求項1〜3の
何れか1項記載のNRDガイド分配結合器。6. A coupler circuit or a filter circuit is constituted by lines installed in parallel at regular intervals on a side surface of a branch line branched from a main line. NRD guide distribution coupler.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6152080A JPH0818311A (en) | 1994-07-04 | 1994-07-04 | Nrd guide distributing coupler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6152080A JPH0818311A (en) | 1994-07-04 | 1994-07-04 | Nrd guide distributing coupler |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0818311A true JPH0818311A (en) | 1996-01-19 |
Family
ID=15532621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6152080A Pending JPH0818311A (en) | 1994-07-04 | 1994-07-04 | Nrd guide distributing coupler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0818311A (en) |
-
1994
- 1994-07-04 JP JP6152080A patent/JPH0818311A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105098295B (en) | Apparatus and method for electromagnetic signal conversion | |
US7132906B2 (en) | Coupler having an uncoupled section | |
US5264860A (en) | Metal flared radiator with separate isolated transmit and receive ports | |
US4383227A (en) | Suspended microstrip circuit for the propagation of an odd-wave mode | |
US7138887B2 (en) | Coupler with lateral extension | |
US5303419A (en) | Aperture-coupled line Magic-Tee and mixer formed therefrom | |
US20020021196A1 (en) | Dielectric waveguide | |
US7973615B2 (en) | RF module | |
EP0417590B1 (en) | Planar airstripline-stripline magic-tee | |
WO2022227598A1 (en) | High-isolation rectangular waveguide microstrip 0-degree phase difference broadband power divider | |
US6400241B1 (en) | Microwave circuit module and a device for connecting it to another module | |
US4882555A (en) | Plural plane waveguide coupler | |
US6931246B2 (en) | Line coupling structure, mixer, and receiving/transmitting apparatus comprised of suspended line and dielectric waveguide | |
JPH0818311A (en) | Nrd guide distributing coupler | |
EP0827269B1 (en) | Balance-type mixer | |
US9966646B1 (en) | Coupler with lumped components | |
CN117638444B (en) | Waveguide filter power divider | |
KR20010112034A (en) | Power combining structure using waveguide-to-microstrip transition | |
WO2025047229A1 (en) | Phase shifter | |
CN117937086A (en) | Waveguide Power Divider | |
JP2003168906A (en) | Directional coupler for nrd guide |