[go: up one dir, main page]

JPH08178455A - Absorption type cold / hot water simultaneous supply type heat pump - Google Patents

Absorption type cold / hot water simultaneous supply type heat pump

Info

Publication number
JPH08178455A
JPH08178455A JP6336575A JP33657594A JPH08178455A JP H08178455 A JPH08178455 A JP H08178455A JP 6336575 A JP6336575 A JP 6336575A JP 33657594 A JP33657594 A JP 33657594A JP H08178455 A JPH08178455 A JP H08178455A
Authority
JP
Japan
Prior art keywords
heat
absorption
condenser
hot water
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6336575A
Other languages
Japanese (ja)
Other versions
JP3488953B2 (en
Inventor
Noriyuki Nishiyama
教之 西山
Hidetoshi Arima
秀俊 有馬
Toshihiro Yamada
敏宏 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Tokyo Gas Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Tokyo Gas Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP33657594A priority Critical patent/JP3488953B2/en
Publication of JPH08178455A publication Critical patent/JPH08178455A/en
Application granted granted Critical
Publication of JP3488953B2 publication Critical patent/JP3488953B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】 【目的】 吸収液の高濃度運転を可能にして装置の小型
化を図る。 【構成】 冷却水管17を流れて暖房負荷に対する仕事
で放熱し、例えば40℃に温度が低下して還流してきた
暖房用の温熱源流体、例えば温水が凝縮器4・吸収器7
の順に流入して器内を冷却し、温水自身の温度を高めて
流出するように配管接続すると共に、吸収液に従来の単
純なLiBr水溶液を使用するのではなく、晶出限界温
度を高めることのできる中性塩、例えばLiI、LiC
l、LiNO3 をLiBr100に対してそれぞれ7
5、41、25の比率(モル比)で添加した水溶液を使
用する。
(57) [Summary] [Purpose] To achieve high-concentration operation of the absorbent and to downsize the device. [Structure] A heat source fluid for heating, for example, hot water that has flowed through a cooling water pipe 17 to radiate heat by work to a heating load and has returned to a temperature of, for example, 40 ° C., is condensed in a condenser 4 and an absorber 7.
In order to cool the inside of the vessel, cool the inside of the vessel, raise the temperature of the hot water itself, and connect it to the pipe so that it does not use the conventional simple LiBr aqueous solution as the absorbing solution, but raise the crystallization limit temperature. Neutral salts capable of producing, for example LiI, LiC
l and LiNO 3 are added to LiBr100 at 7
An aqueous solution added at a ratio (molar ratio) of 5, 41, 25 is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は吸収式ヒートポンプに係
わり、特に詳しくは空調や給湯などのために冷熱源流体
(例えば、冷水)と温熱源流体(例えば、温水)を同時
に供給することのできる吸収式冷温水同時供給型ヒート
ポンプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption heat pump, and more particularly, it is possible to supply a cold heat source fluid (for example, cold water) and a hot heat source fluid (for example, hot water) simultaneously for air conditioning and hot water supply. The present invention relates to an absorption type cold / hot water simultaneous supply type heat pump.

【0002】[0002]

【従来の技術】この種の装置としては、例えば図4に示
した構成の臭化リチウム水溶液を吸収液とする二重効用
吸収式ヒートポンプが周知である。図中1はガス・灯油
などの燃焼装置2を備え、稀液を加熱することによって
冷媒(この場合は水)蒸気を発生させて中間液に濃縮す
る高温再生器、3はこの再生器からの冷媒蒸気で中間液
を加熱して濃液にする低温再生器、4は前記両再生器1
・3からの冷媒蒸気を冷却して凝縮する凝縮器、5は冷
媒分配器6から冷媒液を散布・滴下などして蒸発させる
蒸発器、7はこの蒸発器からの冷媒蒸気を前記低温再生
器3からの濃液に吸収させて器内を低圧に維持する吸収
器、8および9は低温および高温熱交換器で、これらは
中間液管10、濃液管11、吸収液ポンプ12を有する
稀液管13、冷媒導管14、冷媒液管15により接続さ
れて、冷媒と吸収液の循環サイクルを形成している。
2. Description of the Related Art As an apparatus of this type, a double-effect absorption heat pump having a lithium bromide aqueous solution as shown in FIG. In the figure, 1 is equipped with a combustion device 2 for gas, kerosene, etc., and a high-temperature regenerator for generating a refrigerant (water in this case) vapor by heating a dilute liquid and concentrating it into an intermediate liquid, 3 are from this regenerator. Low-temperature regenerator 4 that heats the intermediate liquid with refrigerant vapor to make it a concentrated liquid
A condenser for cooling and condensing the refrigerant vapor from 3 and 5 an evaporator for evaporating the refrigerant liquid from the refrigerant distributor 6 by spraying, dropping, etc. 7 a low temperature regenerator for the refrigerant vapor from this evaporator Absorbers for absorbing the concentrated liquid from 3 to maintain a low pressure inside the container, 8 and 9 are low temperature and high temperature heat exchangers, which have an intermediate liquid pipe 10, a concentrated liquid pipe 11 and an absorbent liquid pump 12. The liquid pipe 13, the refrigerant pipe 14, and the refrigerant liquid pipe 15 are connected to form a circulation cycle of the refrigerant and the absorbing liquid.

【0003】そして、蒸発器6の内部を経由して配管し
た冷水管16を介して冷房用の冷水と、吸収器7・凝縮
器4の内部を経由して配管した冷却水管17を介して暖
房用や給湯用の温水が同時に供給できるようになってい
る。
[0003] Then, cold water for cooling is provided through a cold water pipe 16 which is provided through the inside of the evaporator 6, and heating is provided through a cooling water pipe 17 which is provided through the inside of the absorber 7 and the condenser 4. Hot water for hot water and hot water can be supplied at the same time.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記構成の臭
化リチウム水溶液を吸収液とした従来の吸収式ヒートポ
ンプにおいては、空調用冷水(7℃程度)の製造と同時
に暖房用あるいは給湯用の温水(45℃程度)を製造す
る場合は、吸収液の結晶化の問題があるため濃度を極端
に高めることが困難であり、このため機器の伝熱面積を
大きく選定する必要があって、コスト高になると云った
問題点があり、この点の解決が課題となっていた。
However, in the conventional absorption heat pump using the aqueous solution of lithium bromide having the above-mentioned constitution, the hot water for heating or hot water supply is produced at the same time as the production of cold water for air conditioning (about 7 ° C.). When manufacturing (about 45 ° C), it is difficult to raise the concentration extremely because of the problem of crystallization of the absorbing liquid, and therefore it is necessary to select a large heat transfer area for the equipment, resulting in high cost. There was a problem that was said to be, and the solution to this point was a problem.

【0005】[0005]

【課題を解決するための手段】本発明は上記した従来技
術の課題を解決するためになされたもので、吸収器・蒸
発器・凝縮器・再生器・熱交換器・吸収液ポンプなどを
配管接続して冷媒と吸収液の循環サイクルを形成し、晶
出限界温度を高める中性塩を複数種含有する水−臭化リ
チウム溶液を吸収液とすると共に、蒸発器からの冷熱源
流体の供給と吸収器・凝縮器からの温熱源流体の供給を
同時に可能とした第1の構成の吸収式冷温水同時供給型
ヒートポンプと、
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, in which an absorber, an evaporator, a condenser, a regenerator, a heat exchanger, an absorption liquid pump, and the like are piped. A water-lithium bromide solution containing a plurality of neutral salts that raises the crystallization limit temperature is used as an absorption liquid, and a cold heat source fluid is supplied from an evaporator. And the absorption-type cold / hot-water simultaneous supply heat pump of the first configuration capable of simultaneously supplying the heat source fluid from the absorber / condenser,

【0006】前記第1の構成の吸収式冷温水同時供給型
ヒートポンプにおいて、温熱源流体が凝縮器・吸収器の
順に熱交換して供給されるように設けた第2の構成の吸
収式冷温水同時供給型ヒートポンプと、
In the absorption-type cold / hot water simultaneous supply type heat pump of the first structure, the absorption-type cold / hot water of the second structure is provided so that the heat source fluid is heat-exchanged and supplied in the order of the condenser and the absorber. Simultaneous supply heat pump,

【0007】前記第1の構成の吸収式冷温水同時供給型
ヒートポンプにおいて、温熱源流体の略半分が吸収器で
熱交換して凝縮器をバイパスし、残余の略半分が凝縮器
で熱交換して吸収器をバイパスして供給されるように設
けた第3の構成の吸収式冷温水同時供給型ヒートポンプ
と、を提供することにより、前記従来技術の課題を解決
するものである。
In the absorption-type cold / hot water simultaneous supply heat pump of the first construction, about half of the heat source fluid exchanges heat with the absorber to bypass the condenser, and about half of the remaining heat exchanges with the condenser. The absorption type cold / hot water simultaneous supply heat pump of the third configuration provided so as to be supplied by bypassing the absorber.

【0008】[0008]

【作用】第1の構成の吸収式冷温水同時供給型ヒートポ
ンプにおいては、複数の中性塩が添加されて晶出限界温
度が臭化リチウム水溶液より上昇しているので、大気圧
力下で高濃度運転が可能であり、したがって伝熱面積を
減らして装置の小型化が図れる。
In the absorption-type cold / hot-water simultaneous supply type heat pump of the first structure, since a plurality of neutral salts are added and the crystallization limit temperature is higher than that of the lithium bromide aqueous solution, a high concentration is obtained under atmospheric pressure. It can be operated, and therefore the heat transfer area can be reduced and the device can be downsized.

【0009】また、前記第1の構成の吸収式冷温水同時
供給型ヒートポンプにおいて、温熱源流体が凝縮器・吸
収器の順に流れて熱交換するように設けた第2の構成の
吸収式冷温水同時供給型ヒートポンプでは、凝縮器内の
温度と圧力が温熱源流体を吸収器・凝縮器の順に熱交換
して流れる従来の吸収式ヒートポンプほど上昇しないの
で、再生圧力の低下と高濃度化が図れる。このため、大
気圧力下で吸収液濃度を充分に上昇させることが可能で
あり、この面でも装置の小型化が図れる。
In the absorption-type cold / hot water simultaneous supply heat pump of the first structure, the absorption-type cold / hot water of the second structure is provided so that the heat source fluid flows in the order of the condenser and the absorber to exchange heat. In the simultaneous supply heat pump, the temperature and pressure in the condenser do not rise as much as the conventional absorption heat pump that flows by exchanging heat with the heat source fluid in the order of the absorber and the condenser, so the regeneration pressure can be lowered and the concentration can be increased. . For this reason, it is possible to sufficiently increase the concentration of the absorbing liquid under atmospheric pressure, and in this respect, the device can be downsized.

【0010】また、前記第1の構成の吸収式冷温水同時
供給型ヒートポンプにおいて、温熱源流体の略半分が吸
収器で熱交換して凝縮器をバイパスし、残余の略半分が
凝縮器で熱交換して吸収器をバイパスするように設けた
第3の構成の吸収式冷温水同時供給型ヒートポンプで
も、一般に吸収器で冷媒が吸収液に吸収される時に生じ
る発熱量より、凝縮器で冷媒蒸気を凝縮する為に必要と
される熱量の方が少ないので、凝縮器内の温度と圧力が
温熱源流体の全量を吸収器・凝縮器の順に熱交換して流
れる従来の吸収式ヒートポンプほど上昇せず、したがっ
てこの場合も再生圧力の低下と高濃度化が図れることか
ら、前記第2の構成の吸収式冷温水同時供給型ヒートポ
ンプと同様の作用効果で装置の小型化が図れる。
Further, in the absorption-type cold / hot water simultaneous supply heat pump of the first structure, about half of the heat source fluid exchanges heat with the absorber to bypass the condenser, and about half of the remaining heat with the condenser. Even in the absorption-type cold / hot-water simultaneous supply heat pump of the third configuration provided so as to replace the absorber and bypass the absorber, the refrigerant vapor in the condenser is generally larger than the calorific value generated when the refrigerant absorbs the absorbing liquid in the absorber. Since the amount of heat required to condense the heat is smaller, the temperature and pressure in the condenser must rise as much as the conventional absorption heat pump that flows by exchanging the entire amount of the heat source fluid in the order of the absorber and the condenser. Therefore, in this case as well, the regeneration pressure can be lowered and the concentration can be increased, so that the apparatus can be downsized with the same operational effect as the absorption type cold / hot water simultaneous supply heat pump of the second configuration.

【0011】[0011]

【実施例】以下、本発明を図1〜図3に基づいてさらに
詳しく説明する。これらの図において前記図4の符号と
同一符号で示した部分は、図4によって説明したものと
同様の機能を持つ部分であり、本発明の理解を妨げない
範囲で説明は省略した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail below with reference to FIGS. In these figures, the parts denoted by the same reference numerals as those in FIG. 4 have the same functions as those described with reference to FIG. 4, and description thereof has been omitted within the range that does not hinder the understanding of the present invention.

【0012】(実施例1)図1に基づいて本発明の第1
の実施例を説明すると、この吸収式冷温水同時供給型ヒ
ートポンプは各機器の配置・連結などでは前記図4に示
した従来の二重効用吸収式ヒートポンプと殆ど同じ構成
であるが、冷却水管17を流れて図示しない暖房負荷や
給湯負荷(以下、暖房負荷などと云う)に対する仕事で
放熱し、例えば40℃に温度が低下して還流してきた暖
房用の温熱源流体、例えば温水が凝縮器4・吸収器7の
順に流入して器内を冷却し、温水自身の温度を高めて流
出するように配管接続すると共に、吸収液に従来の単純
なLiBr水溶液を使用するのではなく、晶出限界温度
を高めることのできる中性塩、例えばLiI、LiC
l、LiNO3 をLiBr100に対してそれぞれ7
5、41、25の比率(モル比)で添加した水溶液を使
用する構成としたものである。
(Embodiment 1) A first embodiment of the present invention based on FIG.
This embodiment of the absorption-type cold / hot water simultaneous supply heat pump has almost the same structure as the conventional double-effect absorption heat pump shown in FIG. The heat source fluid for heating, for example, warm water, which has circulated through the work and radiates heat by work (not shown) such as a heating load and a hot water supply load (hereinafter, referred to as a heating load) and has recirculated after being cooled to 40 ° C., for example, warm water. -In order to cool the inside of the absorber 7 in order, cool the inside of the absorber, increase the temperature of the hot water itself, and connect it to the pipe so that the absorbing liquid does not use a conventional simple LiBr aqueous solution, but the crystallization limit. Neutral salts capable of increasing temperature, eg LiI, LiC
l and LiNO 3 are added to LiBr100 at 7
The aqueous solution added at a ratio (molar ratio) of 5, 41, 25 is used.

【0013】このため、図2に実線にて示した上記第1
の実施例の二重効用吸収式冷温水同時供給型ヒートポン
プにおける晶出限界ラインaは、例えば12℃に温度上
昇して蒸発器5に還流してきた冷房用の冷熱源流体、例
えば冷水を7℃に冷却して冷水管16から図示しない冷
房負荷に供給する一方、40℃に温度低下して凝縮器4
・吸収器7に還流した温水を45℃に加熱して冷却水管
17から図示しない暖房負荷などに供給する時の運転で
比較すると、図2に破線で示した吸収液にLiBr水溶
液を使用した従来の二重効用吸収式ヒートポンプの晶出
限界ラインbよりも、図2に示したように10℃程度緩
和されており、濃溶液濃度と晶出限界ラインa(晶出限
界濃度)との差が拡大し、本発明の方が従来技術より結
晶化し難くなっていることが分かる。
For this reason, the first line indicated by the solid line in FIG.
The crystallization limit line a in the double-effect absorption-type cold / hot water simultaneous supply type heat pump according to the embodiment of FIG. While cooling to 40 ° C. and supplying it to the cooling load (not shown) from the cold water pipe 16, the temperature drops to 40 ° C. and the condenser 4
When comparing the operation when the hot water refluxed to the absorber 7 is heated to 45 ° C. and supplied from the cooling water pipe 17 to a heating load (not shown) or the like, the conventional method using the LiBr aqueous solution as the absorbent shown by the broken line in FIG. As shown in FIG. 2, the crystallization limit line b of the double-effect absorption heat pump is relaxed by about 10 ° C., and the difference between the concentrated solution concentration and the crystallization limit line a (crystallization limit concentration) is Expanding, it can be seen that the present invention is more difficult to crystallize than the prior art.

【0014】また、図2に示したサイクル線図からは、
符号Aで実線にて示した本発明の二重効用吸収式冷温水
同時供給型ヒートポンプの方が、符号Bで破線にて示し
た従来の二重効用吸収式ヒートポンプよりも、再生圧力
の低下と高濃度化が図られていることが分かる。したが
って、本発明の吸収式冷温水同時供給型ヒートポンプに
おいては、伝熱面積を減少したり、大気圧力下で吸収液
濃度を充分に上昇させることができることから、従来の
吸収式ヒートポンプよりも装置の小型化が図れる。
From the cycle diagram shown in FIG. 2,
The double-effect absorption cold / hot water simultaneous supply type heat pump of the present invention indicated by the solid line with the symbol A has a lower regeneration pressure than the conventional double-effect absorption heat pump indicated by the dashed line with the symbol B. It can be seen that the concentration is increased. Therefore, in the absorption-type cold / hot-water simultaneous supply heat pump of the present invention, the heat transfer area can be reduced, or the absorption liquid concentration can be sufficiently increased under atmospheric pressure. Can be miniaturized.

【0015】(実施例2)図3に基づいて本発明の第2
の実施例を説明すると、この第2の実施例の吸収式冷温
水同時供給型ヒートポンプは、前記第1の実施例と同一
の溶液を吸収液に用い、冷却水管17を流れて図示しな
い暖房負荷などに対する仕事で放熱し、例えば40℃に
温度低下して還流してきた暖房用の温熱源流体、例えば
温水の略半分が吸収器7に流れて凝縮器4をバイパス
し、残余の略半分が吸収器7をバイパスして凝縮器4に
流れるように構成した二重効用吸収冷温水同時供給型ヒ
ートポンプである。
(Second Embodiment) A second embodiment of the present invention will be described with reference to FIG.
The absorption type cold / hot water simultaneous supply heat pump of the second embodiment uses the same solution as that of the first embodiment as the absorption liquid, and flows through the cooling water pipe 17 to cause a heating load (not shown). For example, about half of the warm heat source fluid for heating, which has recirculated after being cooled to 40 ° C., for example, warm water flows to the absorber 7 to bypass the condenser 4 and the remaining half is absorbed. It is a double-effect absorption cold / hot water simultaneous supply heat pump configured to bypass the vessel 7 and flow to the condenser 4.

【0016】通常、凝縮器4で冷媒蒸気を凝縮する為に
消費される冷熱は、吸収器7で冷媒が吸収液に吸収され
る時に生じる熱量に比較すると半分以下であるので、上
記のように40℃に温度低下して還流してきた温水の略
半分を凝縮器4に流すことにより、温水の全量を吸収器
7・凝縮器4の順に流入させていた従来の二重効用吸収
式ヒートポンプの場合より、凝縮器4内の温度と圧力が
低下する。
Normally, the cold heat consumed for condensing the refrigerant vapor in the condenser 4 is less than half the amount of heat generated when the refrigerant is absorbed in the absorbing liquid in the absorber 7, and therefore, as described above. In the case of the conventional double-effect absorption heat pump in which the entire amount of warm water is made to flow into the absorber 7 and the condenser 4 in this order by flowing approximately half of the warm water that has cooled to 40 ° C and has recirculated to the condenser 4. As a result, the temperature and pressure inside the condenser 4 decrease.

【0017】このため、この第2の実施例の吸収式冷温
水同時供給型ヒートポンプにおいても、再生圧力の低下
と高濃度化が前記第1の実施例の吸収式冷温水同時供給
型ヒートポンプと同様に図れることから、伝熱面積を減
少したり、大気圧力下で吸収液濃度を充分に上昇させる
ことが可能である。したがって、この場合も従来の吸収
式ヒートポンプより装置を小型化することができる。
Therefore, also in the absorption type cold / hot water simultaneous supply type heat pump of the second embodiment, the reduction of regeneration pressure and the increase in concentration are similar to those of the absorption type cold / hot water simultaneous supply type heat pump of the first embodiment. Therefore, it is possible to reduce the heat transfer area and sufficiently increase the concentration of the absorbing solution under atmospheric pressure. Therefore, also in this case, the device can be made smaller than the conventional absorption heat pump.

【0018】なお、本発明は上記実施例に限定されるも
のではないので、特許請求の範囲に記載の趣旨から逸脱
しない範囲で各種の変形実施が可能である。
Since the present invention is not limited to the above embodiments, various modifications can be made without departing from the spirit of the claims.

【0019】例えば、蒸発器5で冷却して冷房負荷に供
給する冷熱源流体としては、水以外にも低沸点熱媒(フ
ロン)などが使用できるし、凝縮器4・吸収器7で加熱
して暖房負荷などに供給する温熱源流体としても、水以
外に低沸点熱媒(フロン)などが使用できる。
For example, as the cold heat source fluid that is cooled in the evaporator 5 and supplied to the cooling load, a low boiling point heat medium (CFC) or the like can be used in addition to water, and the condenser 4 and the absorber 7 heat it. In addition to water, a low boiling point heat medium (CFC) can also be used as the heat source fluid that is supplied to the heating load.

【0020】また、蒸発器5で冷却して冷房負荷に供給
する冷熱源流体の温度が所定温度(例えば、7℃)にな
るように燃焼装置2の火力を調節するための制御手段、
前記冷熱源流体の温度とは独立して、凝縮器4・吸収器
7で加熱して暖房負荷などに供給する温熱源流体の温度
を所定温度(例えば、45℃)に調節するための配管や
制御手段などは、従来周知の技術がそのまま利用され
る。
Control means for adjusting the heating power of the combustion device 2 so that the temperature of the cold heat source fluid cooled by the evaporator 5 and supplied to the cooling load becomes a predetermined temperature (for example, 7 ° C.),
Pipes for adjusting the temperature of the hot heat source fluid, which is heated by the condenser 4 / absorber 7 and supplied to the heating load, to a predetermined temperature (for example, 45 ° C.), independently of the temperature of the cold heat source fluid, For the control means and the like, conventionally known techniques are used as they are.

【0021】[0021]

【発明の効果】以上説明したように吸収器・蒸発器・凝
縮器・再生器・熱交換器・吸収液ポンプなどを配管接続
して冷媒と吸収液の循環サイクルを形成する吸収式ヒー
トポンプにおいて、
As described above, in the absorption heat pump for forming the circulation cycle of the refrigerant and the absorption liquid by connecting the absorber, the evaporator, the condenser, the regenerator, the heat exchanger, the absorption liquid pump, etc. by piping,

【0022】晶出限界温度を高める中性塩を複数種含有
する水−臭化リチウム溶液を吸収液とすると共に、蒸発
器からの冷熱源流体の供給と吸収器・凝縮器からの温熱
源流体の供給を同時に可能とした第1の構成の吸収式冷
温水同時供給型ヒートポンプでは、晶出限界温度が臭化
リチウム水溶液を吸収液とした従来の吸収式ヒートポン
プより上昇しているので、高濃度運転が可能であり、こ
れにより伝熱面積を減らして装置を小型化することがで
きる。
A water-lithium bromide solution containing a plurality of neutral salts for increasing the crystallization limit temperature is used as an absorption liquid, and a cold heat source fluid is supplied from an evaporator and a heat heat source fluid is supplied from an absorber / condenser. In the absorption-type cold / hot-water simultaneous supply heat pump of the first configuration that is capable of simultaneously supplying water, the crystallization limit temperature is higher than that of the conventional absorption heat pump using the lithium bromide aqueous solution as the absorption liquid. It can be operated, which reduces the heat transfer area and allows the device to be downsized.

【0023】また、温熱源流体が凝縮器・吸収器の順に
熱交換して供給されるように設けた第2の構成の吸収式
冷温水同時供給型ヒートポンプにおいては、凝縮器内の
温度と圧力が温熱源流体を吸収器・凝縮器の順に熱交換
して流れるように構成された従来の吸収式ヒートポンプ
ほど上昇しないため、再生圧力の低下と高濃度化が図れ
る。したがって、大気圧力下で吸収液濃度を充分に上昇
させることが可能であり、この面でも装置の小型化が図
れる。
Further, in the absorption type cold / hot water simultaneous supply type heat pump of the second structure provided so that the heat source fluid is heat-exchanged and supplied in the order of the condenser / absorber, the temperature and pressure in the condenser Does not rise as much as the conventional absorption heat pump configured to flow the heat source fluid by exchanging heat with the absorber and the condenser in this order, so that the regeneration pressure can be reduced and the concentration can be increased. Therefore, it is possible to sufficiently increase the concentration of the absorbing liquid under atmospheric pressure, and in this respect, the device can be downsized.

【0024】また、温熱源流体の略半分が吸収器で熱交
換して凝縮器をバイパスし、残余の略半分が凝縮器で熱
交換して吸収器をバイパスして流れるように設けた第3
の構成の吸収式冷温水同時供給型ヒートポンプにおいて
も、一般に吸収器で冷媒が吸収液に吸収される時に生じ
る発熱量より、凝縮器で冷媒蒸気を凝縮する為に必要と
される熱量の方が少ないので、凝縮器内の温度と圧力が
温熱源流体の全量を吸収器・凝縮器の順に熱交換して流
れる従来の吸収式ヒートポンプほど上昇せず、したがっ
て再生圧力の低下と高濃度化が図れることから、この場
合も前記第2の構成の吸収式冷温水同時供給型ヒートポ
ンプと同様の理由で装置の小型化が図れる。
In addition, about half of the heat source fluid is heat-exchanged by the absorber to bypass the condenser, and the other half is heat-exchanged by the condenser to bypass the absorber.
Even in the absorption-type cold / hot water simultaneous supply type heat pump having the configuration described above, the amount of heat required for condensing the refrigerant vapor in the condenser is generally larger than the amount of heat generated when the refrigerant absorbs the absorbing liquid in the absorber. Because it is small, the temperature and pressure inside the condenser do not rise as much as the conventional absorption heat pump that flows by exchanging heat with the heat source fluid in the order of the absorber and the condenser. Therefore, the regeneration pressure can be lowered and the concentration can be increased. Therefore, also in this case, the device can be downsized for the same reason as the absorption-type cold / hot water simultaneous supply heat pump of the second configuration.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の説明図である。FIG. 1 is an explanatory diagram of a first embodiment.

【図2】晶出限界ラインなどの説明図である。FIG. 2 is an explanatory diagram of a crystallization limit line and the like.

【図3】実施例2の説明図である。FIG. 3 is an explanatory diagram of a second embodiment.

【図4】従来技術の説明図である。FIG. 4 is an explanatory diagram of a conventional technique.

【符号の説明】[Explanation of symbols]

1 高温再生器 2 燃焼装置 3 低温再生器 4 凝縮器 5 蒸発器 7 吸収器 8 低温熱交換器 9 高温熱交換器 10 中間液管 11 濃液管 12 吸収液ポンプ 13 稀液管 14 冷媒導管 15 冷媒液管 16 冷水管 17 冷却水管 18 冷媒ポンプ a (本発明の)晶出限界ライン b (従来技術の)晶出限界ライン A (本発明の)サイクル線図 B (従来技術の)サイクル線図 1 High Temperature Regenerator 2 Combustion Device 3 Low Temperature Regenerator 4 Condenser 5 Evaporator 7 Absorber 8 Low Temperature Heat Exchanger 9 High Temperature Heat Exchanger 10 Intermediate Liquid Pipe 11 Concentrated Liquid Pipe 12 Absorption Liquid Pump 13 Rare Liquid Pipe 14 Refrigerant Conduit 15 Refrigerant liquid pipe 16 Cold water pipe 17 Cooling water pipe 18 Refrigerant pump a (Invention) crystallization limit line b (Prior art) crystallization limit line A (Invention) cycle diagram B (Prior art) cycle diagram

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 敏宏 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Toshihiro Yamada 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 吸収器・蒸発器・凝縮器・再生器・熱交
換器・吸収液ポンプなどを配管接続して冷媒と吸収液の
循環サイクルを形成し、晶出限界温度を高める中性塩を
複数種含有する水−臭化リチウム溶液を吸収液とすると
共に、蒸発器からの冷熱源流体の供給と吸収器・凝縮器
からの温熱源流体の供給を同時に可能としたことを特徴
とする吸収式冷温水同時供給型ヒートポンプ。
1. A neutral salt for increasing a crystallization limit temperature by forming a circulation cycle of a refrigerant and an absorption liquid by connecting an absorber, an evaporator, a condenser, a regenerator, a heat exchanger, an absorption liquid pump, etc. with a pipe. Is a water-lithium bromide solution containing a plurality of kinds of as the absorption liquid, it is possible to simultaneously supply the cold heat source fluid from the evaporator and the hot heat source fluid from the absorber / condenser Absorption type cold / hot water simultaneous supply type heat pump.
【請求項2】 温熱源流体が凝縮器・吸収器の順に熱交
換して供給されることを特徴とする請求項1記載の吸収
式冷温水同時供給型ヒートポンプ。
2. The absorption-type cold / hot water simultaneous supply heat pump according to claim 1, wherein the heat-source fluid is heat-exchanged and supplied in the order of the condenser and the absorber.
【請求項3】 温熱源流体の略半分が吸収器で熱交換し
て凝縮器をバイパスし、残余の略半分が凝縮器で熱交換
して吸収器をバイパスして供給されることを特徴とする
請求項1記載の吸収式冷温水同時供給型ヒートポンプ。
3. About half of the heat source fluid exchanges heat with an absorber to bypass the condenser, and about half of the remaining heat exchanges with a condenser to bypass the absorber. The absorption-type cold / hot water simultaneous supply type heat pump according to claim 1.
JP33657594A 1994-12-26 1994-12-26 Absorption type simultaneous cooling / heating water supply type heat pump Expired - Fee Related JP3488953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33657594A JP3488953B2 (en) 1994-12-26 1994-12-26 Absorption type simultaneous cooling / heating water supply type heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33657594A JP3488953B2 (en) 1994-12-26 1994-12-26 Absorption type simultaneous cooling / heating water supply type heat pump

Publications (2)

Publication Number Publication Date
JPH08178455A true JPH08178455A (en) 1996-07-12
JP3488953B2 JP3488953B2 (en) 2004-01-19

Family

ID=18300569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33657594A Expired - Fee Related JP3488953B2 (en) 1994-12-26 1994-12-26 Absorption type simultaneous cooling / heating water supply type heat pump

Country Status (1)

Country Link
JP (1) JP3488953B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111780201A (en) * 2020-07-01 2020-10-16 双良节能系统股份有限公司 Lithium bromide absorption type heat exchange system with three paths of water supplying heat simultaneously

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111780201A (en) * 2020-07-01 2020-10-16 双良节能系统股份有限公司 Lithium bromide absorption type heat exchange system with three paths of water supplying heat simultaneously

Also Published As

Publication number Publication date
JP3488953B2 (en) 2004-01-19

Similar Documents

Publication Publication Date Title
JP2592625B2 (en) Heat absorbing device and method
JPS61119954A (en) Absorption heat pump/refrigeration system
JPS61110852A (en) Absorption heat pump/refrigeration system
CN105783023A (en) Device and method for driving air heater through absorption type heat pump
JP2011089722A (en) Method and device for refrigeration/air conditioning
US4307577A (en) Air conditioning system making use of waste heat
CN107477905B (en) Absorption type circulating system combining reabsorption and absorption heat exchange and method thereof
JP2000121196A (en) Cooling/heating system utilizing waste heat
JP3488953B2 (en) Absorption type simultaneous cooling / heating water supply type heat pump
JP4315854B2 (en) Absorption refrigerator
JP5583435B2 (en) Refrigeration and air conditioning method and apparatus
JPH05256535A (en) Sorption heat pump system
KR20080094985A (en) Absorption Chiller with Hot Water
JPH11257777A (en) Solar heating / cooling system
JP2000274860A (en) Heat pump cycle type absorption refrigeration and heating simultaneous removal machine and method
CN108397939A (en) A kind of absorption heat pump apparatus of air source based on multiple-energy-source driving
JPS6113885Y2 (en)
JPH04268170A (en) Absorption heat pump device
JP3723372B2 (en) Waste heat input type absorption chiller / heater
JP2543258B2 (en) Absorption heat source device
JPH11344268A (en) Absorption refrigeration equipment
JPS61265463A (en) Method of operating absorption type heat pump
JP2892519B2 (en) Absorption heat pump equipment
JPS6110137Y2 (en)
JPS60117065A (en) Heat recovery device for absorption cold and hot water machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees