JPH08166706A - Charging device - Google Patents
Charging deviceInfo
- Publication number
- JPH08166706A JPH08166706A JP6308919A JP30891994A JPH08166706A JP H08166706 A JPH08166706 A JP H08166706A JP 6308919 A JP6308919 A JP 6308919A JP 30891994 A JP30891994 A JP 30891994A JP H08166706 A JPH08166706 A JP H08166706A
- Authority
- JP
- Japan
- Prior art keywords
- charging
- current
- photoconductor
- charging member
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
- Control Or Security For Electrophotography (AREA)
Abstract
(57)【要約】
【目的】 雰囲気環境の温度・湿度の変化や感光体の膜
減りに影響されずに感光体の表面電位を一定にする。
【構成】 移動する感光体1に接触または近接する帯電
ローラ2に、電源4から少なくとも2種類の電圧を選択
的に印加し、帯電ローラ2に対する第1の印加電圧Vin
1によって発生する電流Ir1および第2の印加電圧Vin2
によって発生する電流Ir2を電流測定手段11により測定
する。その電流値を制御手段10が入力しかつ記憶し、帯
電ローラ2に印加した電圧、電流測定手段11が測定した
電流および予め測定した電源4から帯電ローラ2の帯電
領域までの抵抗値Rrに基づいて演算を行い、作画工程
における感光体1を所望電位にするための帯電ローラ2
に印加する最適電圧Vin_optを決定し、その最適電圧V
in_optを帯電ローラ2に印加するように電源4を制御す
る。
(57) [Summary] [Purpose] The surface potential of the photoconductor is kept constant without being affected by changes in the temperature and humidity of the ambient environment and film loss of the photoconductor. [Structure] At least two kinds of voltages are selectively applied from a power source 4 to a charging roller 2 which is in contact with or in proximity to a moving photosensitive member 1, and a first applied voltage Vin to the charging roller 2 is applied.
The current Ir1 generated by 1 and the second applied voltage Vin2
The current Ir2 generated by is measured by the current measuring means 11. The current value is input and stored by the control means 10, and is based on the voltage applied to the charging roller 2, the current measured by the current measuring means 11 and the resistance value Rr from the power source 4 to the charging area of the charging roller 2 measured in advance. And a charging roller 2 for performing a calculation to set the photoconductor 1 to a desired potential in the drawing process.
The optimum voltage Vin_opt to be applied to the
The power supply 4 is controlled so that in_opt is applied to the charging roller 2.
Description
【0001】[0001]
【産業上の利用分野】本発明は、複写機やファクシミ
リ,プリンタ等、電子写真方式で画像を形成する画像形
成装置に関し、特に、ドラムやベルト状の感光体を含む
被帯電体を、その被帯電体に接触または近接させた帯電
部材によって帯電する帯電装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image forming apparatus for forming an image by an electrophotographic method such as a copying machine, a facsimile machine, a printer, etc., and more particularly, to a body to be charged including a drum or a belt-shaped photoreceptor. The present invention relates to a charging device that charges by a charging member that is in contact with or close to a charged body.
【0002】[0002]
【従来の技術】近年、オゾンに対する規制が厳しく、帯
電においてはオゾン発生量の多いスコロトロン方式に代
わって、ローラやブラシ,ブレードなどの帯電部材を被
帯電体に接触または近接させて帯電を行い、オゾン発生
量を減少させた帯電方法が提案さている。2. Description of the Related Art In recent years, ozone is strictly regulated, and in charging, instead of the scorotron method, which generates a large amount of ozone, charging is performed by bringing a charging member such as a roller, a brush, or a blade into contact with or close to an object to be charged, A charging method with reduced ozone generation has been proposed.
【0003】従来、上記帯電部材への印加は、一定の直
流電圧か、または直流電圧に交流電圧または交流電流を
重畳したものであった。Conventionally, the charging member has been applied with a constant DC voltage or with a DC voltage superposed with an AC voltage or an AC current.
【0004】[0004]
(第1の課題)ところが、一定の直流電圧を帯電部材に印
加する方法では、雰囲気温度や湿度の影響を受け、帯電
後の被帯電体の表面電位が変わることがあった。その結
果、画像形成装置が出力する画像濃度が変動した。以
下、被帯電体の一例として、感光体を例に説明する。(First Problem) However, in the method of applying a constant DC voltage to the charging member, the surface potential of the charged body may change due to the influence of ambient temperature and humidity. As a result, the image density output by the image forming apparatus changed. Hereinafter, a photosensitive member will be described as an example of the member to be charged.
【0005】感光体表面の電位変動の許容範囲は、作画
される中間調濃度の変動によって決められる値で、次の
ように求めることができる。まず、電子写真方式の画像
形成装置で、作画面の少なくとも直径10mm以上の円内に
おける平均反射濃度が0.4以上0.9以下の範囲内である画
像を作画する。仮に、このときの平均反射濃度をD1と
する。発明者らは、種々ある反射濃度測定手段の一例と
してマクベス濃度計RD914を用いた。D1は、マクベス
濃度計RD914にて直径50mmの円内における反射濃度を
ランダムに30点測定した後、平均をとった値で、0.4以
上0.9以下の値である。反射濃度測定時には、被測定画
像の裏面に白紙を10枚重ね、紙裏からの光の散乱条件を
一定とした。The allowable range of the potential fluctuation on the surface of the photoconductor is a value determined by the fluctuation of halftone density to be imaged and can be obtained as follows. First, an electrophotographic image forming apparatus forms an image having an average reflection density within a range of 0.4 to 0.9 within a circle having a diameter of at least 10 mm on the screen. Suppose that the average reflection density at this time is D1. The inventors used the Macbeth densitometer RD914 as an example of various reflection density measuring means. D1 is a value obtained by randomly measuring 30 reflection densities in a circle having a diameter of 50 mm with a Macbeth densitometer RD914, and taking an average, which is a value of 0.4 or more and 0.9 or less. During measurement of the reflection density, 10 sheets of white paper were overlaid on the back side of the image to be measured, and the light scattering conditions from the back side of the paper were kept constant.
【0006】次に、感光体の表面電位以外の作画条件は
一定に保ちながら感光体の表面電位のみを徐々に変化さ
せ作画する。感光体の表面電位が変化すると、画像濃度
も変化するが、濃度変化後の作画面における直径10mm以
上の円内の平均反射濃度が、元の平均反射濃度D1と比
較して0.07以上変化したときの感光体の表面電位の変動
量△Vo_thを求める。この△Vo_thが該画像形成装置に
おける感光体の表面電位変動の許容範囲である。ここで
反射濃度の変動0.07は、発明者らが目視評価を行った結
果、濃度変動を検知した閾値である。目視評価は、標準
光源のもと、公知の主観評価手法に従って被験者35人に
対して行い、公知の統計処理手法によって閾値を求め
た。Next, while drawing conditions other than the surface potential of the photoconductor are kept constant, only the surface potential of the photoconductor is gradually changed for printing. When the surface potential of the photoconductor changes, the image density also changes, but when the average reflection density in a circle with a diameter of 10 mm or more on the screen after changing the density changes by 0.07 or more compared with the original average reflection density D1. Then, the variation amount ΔVo_th of the surface potential of the photoconductor is obtained. This ΔVo_th is the allowable range of the surface potential fluctuation of the photoconductor in the image forming apparatus. Here, the variation 0.07 in the reflection density is a threshold value at which the variation in the density is detected as a result of the visual evaluation by the inventors. The visual evaluation was performed on 35 subjects under a standard light source according to a known subjective evaluation method, and a threshold value was obtained by a known statistical processing method.
【0007】上記濃度変化の閾値と、現在実用化されて
いる電子写真の現像特性とを比較検討した結果、感光体
の表面電位が35V以上変化すると濃度変化が検知され、
表面電位変化50V以上で顕著な濃度変化が認められた。
すなわち目視評価の結果、感光体の表面電位変動の許容
範囲△Vo_th=35Vであった。As a result of a comparative examination of the threshold value of the density change and the development characteristics of the electrophotography currently put into practical use, the density change is detected when the surface potential of the photoconductor changes by 35 V or more.
A remarkable change in concentration was observed at a surface potential change of 50 V or more.
That is, as a result of visual evaluation, the permissible range ΔVo_th of the surface potential fluctuation of the photoconductor was 35V.
【0008】発明者らが雰囲気温度や湿度による帯電特
性の変動原因を鋭意探求した結果、電源から帯電部材の
帯電領域に接する感光体表面までの抵抗値が影響してい
ることがわかった。ここで、帯電部材の帯電領域とは、
帯電部材の表面および帯電部材と感光体との間の空隙の
うち、感光体の帯電に関与する電荷の移動が行われる領
域である。As a result of intensive investigations by the inventors on the cause of fluctuations in charging characteristics due to ambient temperature and humidity, it has been found that the resistance value from the power source to the surface of the photosensitive member in contact with the charging region of the charging member has an effect. Here, the charging area of the charging member is
Of the surface of the charging member and the gap between the charging member and the photoconductor, this is a region where the charge relating to the charging of the photoconductor is transferred.
【0009】以下、電源から帯電領域に接する感光体表
面までの抵抗値を帯電抵抗Rrと呼ぶ。帯電抵抗Rrは、
帯電部材の抵抗、および帯電領域における帯電部材表面
から感光体表面までの空気層の抵抗が支配的である。Hereinafter, the resistance value from the power source to the surface of the photosensitive member in contact with the charging area will be referred to as charging resistance Rr. The charging resistance Rr is
The resistance of the charging member and the resistance of the air layer in the charging region from the surface of the charging member to the surface of the photoconductor are dominant.
【0010】帯電部材の一例として、ウレタンなどの柔
軟な材料にカーボンや各種の導電性分子を分散させた構
成の帯電部材の場合を示す。図2は本発明の実施例に使
用される帯電部材としての帯電ローラの構成を示した図
である。2は帯電ローラで長さ29cm、直径φ6mmの芯金
の周囲に肉厚3mmの導電処理を施したウレタンをローラ
状に形成したものである。芯金の両端8mmずつはウレタ
ンが形成されていない。帯電ローラ2はウレタンが形成
されていない芯金の両端で保持される。また、芯金の一
端から電圧が印加される。As an example of the charging member, a charging member having a structure in which carbon and various conductive molecules are dispersed in a flexible material such as urethane will be shown. FIG. 2 is a diagram showing the structure of a charging roller as a charging member used in the embodiment of the present invention. Reference numeral 2 is a charging roller, which is a roller-shaped urethane core around a core metal having a length of 29 cm and a diameter of 6 mm and having a thickness of 3 mm. Urethane is not formed on both ends of the core metal 8 mm. The charging roller 2 is held by both ends of a cored bar on which urethane is not formed. Further, a voltage is applied from one end of the cored bar.
【0011】また、本発明の実施例に使用される感光体
の概略図を図3に示す。図3において、1は感光体で、
長さ30cm、直径φ30mm、肉厚1mmのアルミ素管表面に膜
厚26μmの有機感光体を塗布したものである。また、有
機感光体の比誘電率ε=3.0であった。FIG. 3 is a schematic view of the photoconductor used in the embodiment of the present invention. In FIG. 3, 1 is a photoconductor,
An aluminum photoreceptor having a length of 30 cm, a diameter of 30 mm, and a wall thickness of 1 mm is coated with an organic photoreceptor having a film thickness of 26 μm. The relative dielectric constant ε of the organic photoconductor was 3.0.
【0012】帯電ローラ2の帯電抵抗Rrは、7℃湿度2
0%の雰囲気環境下で約10MΩであった。また、30℃湿
度80%の雰囲気環境下で約2MΩであった。すなわち、
雰囲気環境の変動により帯電抵抗Rrは8MΩ変動し
た。The charging resistance Rr of the charging roller 2 is 7 ° C. and humidity 2
It was about 10 MΩ in an atmosphere environment of 0%. Further, it was about 2 MΩ under an atmosphere environment of 30 ° C. and 80% humidity. That is,
The charging resistance Rr fluctuated by 8 MΩ due to the fluctuation of the atmospheric environment.
【0013】次に、帯電抵抗Rrの変動が、感光体の帯
電電位に及ぼす影響について調べた。説明のため、感光
体を0Vから作画時の最適表面電位Vo_optに帯電する
とき、帯電部材に印加した電圧をVin_opt、帯電部材に
流れる電流をIr_optとする。Next, the influence of the fluctuation of the charging resistance Rr on the charging potential of the photoconductor was examined. For the sake of explanation, when the photosensitive member is charged from 0 V to the optimum surface potential Vo_opt during image formation, the voltage applied to the charging member is Vin_opt, and the current flowing through the charging member is Ir_opt.
【0014】印加電圧Vin_optのうちRr×Ir_optの電
圧が、帯電部材の抵抗成分および帯電領域での空気層の
抵抗成分で損失され、感光体の帯電に寄与しない。一定
電圧を印加する帯電方法では、予め帯電抵抗での電圧損
失分を補償した値を、最適な印加電圧とすればよい。Of the applied voltage Vin_opt, the voltage of Rr × Ir_opt is lost due to the resistance component of the charging member and the resistance component of the air layer in the charging region, and does not contribute to the charging of the photoconductor. In the charging method in which a constant voltage is applied, a value obtained by previously compensating for the voltage loss in the charging resistance may be set as the optimum applied voltage.
【0015】ところが、雰囲気環境により帯電抵抗Rr
が△Rrだけ変動するとき、作画時の最適印加電圧は、
△Rr×Ir_optだけ変動する。この最適印加電圧の変動
が、一定電圧を印加する帯電方法においては、感光体表
面電位の誤差となる。帯電抵抗Rrの雰囲気環境による
変動が、上記△Vo_thを用いて、 |△Rr×Ir_opt|≧△Vo_th ………………………………… (1) ただし、| |は絶対値記号 の条件に入るとき、画像濃度の変化が発生する。現在実
用化されている電子写真の特性から、△Vo_th=35Vで
ある。However, depending on the ambient environment, the charging resistance Rr
When fluctuates by ΔRr, the optimum applied voltage during printing is
It changes by ΔRr × Ir_opt. In the charging method in which a constant voltage is applied, this fluctuation in the optimum applied voltage causes an error in the photosensitive member surface potential. The fluctuation of the charging resistance Rr due to the atmospheric environment is: | ΔRr × Ir_opt | ≧ ΔVo_th ………………………………… (1) However, | | is an absolute value symbol When the above condition is entered, a change in image density occurs. From the characteristics of electrophotography currently in practical use, ΔVo_th = 35V.
【0016】実測では、感光体を所望の電位にするため
の電流は約5μA程度であった。したがって、帯電抵抗
Rrの変動分との積、8MΩ×5μA=40Vが雰囲気環境
の温度や湿度によって変化した。従来の帯電装置におけ
るこの問題点を解決することが本発明の第1の課題であ
る。In actual measurement, the current for bringing the photoconductor to a desired potential was about 5 μA. Therefore, the product of the variation of the charging resistance Rr and 8 MΩ × 5 μA = 40 V changed depending on the temperature and humidity of the atmosphere environment. It is the first object of the present invention to solve this problem in the conventional charging device.
【0017】(第2の課題)次に、感光体の帯電メカニズ
ムから導き出せる下記の帯電制御方法を試みた。非露光
時の感光体は誘電体とみなせるので、表面電位0Vの感
光体を電位Voまで帯電するときに帯電部材に流れる電
流をIrとするとき、 |Vo|=k・|Ir| …………………………………………… (2) ただし、| |は絶対値記号 なる比例関係が成り立つ。ここに、dを感光体の膜厚、
εを感光体の比誘電率、ε0を真空の誘電率、Lを感光
体の被帯電面の感光体軸方向の長さ、vpを感光体の移
動速度とすると係数kは、 k=d/(ε0×ε×L×vp) …………………………………… (3) として予め与えられる。以下、kを帯電係数、また、感
光体帯電時に帯電部材に流れる電流を帯電電流と呼ぶこ
ともある。また感光体と帯電部材との帯電開始電圧をV
thとする。(Second Problem) Next, the following charging control method that can be derived from the charging mechanism of the photoconductor was tried. Since the photoconductor at the time of non-exposure can be regarded as a dielectric, when the current flowing through the charging member when charging the photoconductor having a surface potential of 0 V to the potential Vo is Ir, | Vo | = k · | Ir | ………………………………………… (2) However, | | has a proportional relationship that is an absolute value symbol. Where d is the thickness of the photoconductor,
When ε is the relative permittivity of the photoconductor, ε0 is the dielectric constant of the vacuum, L is the length of the charged surface of the photoconductor in the axial direction of the photoconductor, and vp is the moving speed of the photoconductor, the coefficient k is k = d / (ε0 × ε × L × vp) ………………………………………… (3) is given in advance. Hereinafter, k may be called a charging coefficient, and the current flowing through the charging member at the time of charging the photoconductor may be called a charging current. In addition, the charging start voltage between the photosensitive member and the charging member is V
Let th.
【0018】試作した制御装置は、作画工程に先立ち非
作画時に帯電部材に、絶対値がVth以上で、極性が作画
工程における感光体の最適表面電位Vo_optと同じ電圧
Vin1を印加し、帯電部材に流れる電流値を測定する。
(式2)に従い、測定された電流値Ir1に係数kを乗じ、
感光体の表面電位Vo1を推定する。所望の表面電位Vo_
optを得るために帯電部材に印加する最適電圧の絶対値
Vin_optを(式4) Vin_opt=|Vo_opt|+|Vin1|−k・|Ir1| ……………… (4) ただし、| |は絶対値記号 で算出する。The prototype control device applies a voltage Vin1 having an absolute value of Vth or more and the same polarity as the optimum surface potential Vo_opt of the photoconductor in the image forming process to the charging member before the image forming process to make the charging member. Measure the flowing current value.
According to (Equation 2), the measured current value Ir1 is multiplied by a coefficient k,
The surface potential Vo1 of the photoconductor is estimated. Desired surface potential Vo_
The absolute value Vin_opt of the optimum voltage applied to the charging member to obtain opt is (Equation 4) Vin_opt = | Vo_opt | + | Vin1 | -k ・ | Ir1 | ……………… (4) However, | | Calculate with absolute value symbol.
【0019】ところが、実際に(式4)で求められる電圧
Vin_optを加えたところ、感光体の表面電位は目標電位
と35V以上の誤差を生じ、実用化できなかった。以下、
実測値を示す。帯電部材として、図2の帯電ローラを用
いた。また、感光体の概略を図3に示す。図3において
感光体は、長さ30cm、直径φ30mm、肉厚1mmのアルミ素
管表面に膜厚26μmの有機感光体を塗布したものであ
る。また、有機感光体の比誘電率ε=3.0であった。However, when the voltage Vin_opt actually calculated by (Equation 4) was applied, the surface potential of the photoconductor had an error of 35 V or more from the target potential and could not be put to practical use. Less than,
The measured value is shown. The charging roller shown in FIG. 2 was used as the charging member. Further, an outline of the photoconductor is shown in FIG. In FIG. 3, the photosensitive member is such that an organic photosensitive member having a film thickness of 26 μm is applied on the surface of an aluminum tube having a length of 30 cm, a diameter of 30 mm and a wall thickness of 1 mm. The relative dielectric constant ε of the organic photoconductor was 3.0.
【0020】図5は感光体1の表面電位を測定する帯電
試験機の構成図で、1は感光体、2は帯電ローラ、3は
除電光、4は定電圧電源、11は電流測定手段、41は表面
電位測定プローブ、42は表面電位計である。表面電位計
42は表面電位測定プローブ41が測定した感光体1の表面
電位を表示する。FIG. 5 is a block diagram of a charging tester for measuring the surface potential of the photosensitive member 1. Reference numeral 1 is a photosensitive member, 2 is a charging roller, 3 is static elimination light, 4 is a constant voltage power source, 11 is a current measuring means, Reference numeral 41 is a surface potential measuring probe, and 42 is a surface potential meter. Surface electrometer
Reference numeral 42 indicates the surface potential of the photoconductor 1 measured by the surface potential measuring probe 41.
【0021】感光体1の膜厚や誘電率などから(式3)で
求められた帯電係数kは、k=100(V/μA)。また非作
画時に仮の印加電圧Vin=−900Vを印加したときの帯
電部材に流れ込む電流は2.6μAであった。したがって、
感光体を目標電位−450Vとするための最適印加電圧は
(式4)よりVin_opt=−1060Vと算出される。ところ
が、実際に帯電部材に−1060Vを印加すると感光体の表
面電位は−404Vとなった。すなわち目標電位−450Vと
35V以上のずれがあった。この原因は帯電抵抗Rrでの
電圧損失にあった。The charging coefficient k obtained from the equation (3) from the film thickness and the dielectric constant of the photoconductor 1 is k = 100 (V / μA). The current flowing into the charging member when the temporary applied voltage Vin = -900V was applied during non-image formation was 2.6 μA. Therefore,
The optimum applied voltage to set the photoconductor to the target potential of -450V is
From Equation 4, Vin_opt = -1060V is calculated. However, when -1060V was actually applied to the charging member, the surface potential of the photoconductor became -404V. That is, the target potential is -450V
There was a deviation of more than 35V. The cause was the voltage loss at the charging resistance Rr.
【0022】所望の電位を得るための帯電電流をIr_op
tとすると、帯電時に、帯電抵抗でRr×Ir_optだけの
電圧低下がある。帯電抵抗Rrと帯電電流Ir_optが、以
下の関係、 |Rr×Ir_opt|≧△Vo_th …………………………………… (5) を満足するとき、画像濃度の変化が発生する。The charging current for obtaining a desired potential is Ir_op.
When t is set, there is a voltage drop of Rr × Ir_opt due to the charging resistance during charging. When the charging resistance Rr and the charging current Ir_opt satisfy the following relationship: | Rr × Ir_opt | ≧ ΔVo_th ……………………………… (5), the image density changes. .
【0023】帯電抵抗Rrにおける電圧損失を防止する
には、帯電部材の抵抗値はできるだけ小さい方が望まし
い。ところが、感光体に接触または近接させる帯電部材
には、ある値以上の抵抗値が必要である。その理由は、
帯電部材が低抵抗であると、局所的に放電が集中し、異
常放電が生じ、均一帯電ができないからである。また長
期使用の過程で、感光体表面が傷つき、ピンホールと呼
ばれる感光体表面に導電層が露出する状態になるとき、
低抵抗の帯電部材ではピンホールに向かって異常放電が
生じ、均一帯電ができない。これら異常放電を防止する
ため、帯電部材は低抵抗にはできない。例えば、B4幅
の感光体を帯電させるための帯電部材の場合、帯電部材
の電圧印加端子から帯電領域に接する帯電部材表面まで
の抵抗値は1MΩ以上が望ましい。In order to prevent voltage loss in the charging resistance Rr, it is desirable that the resistance value of the charging member be as small as possible. However, the charging member that is brought into contact with or close to the photosensitive member needs to have a resistance value of a certain value or more. The reason is,
This is because if the charging member has a low resistance, discharge is locally concentrated and abnormal discharge occurs, so that uniform charging cannot be performed. Also, in the process of long-term use, when the photoconductor surface is damaged and the conductive layer is exposed on the photoconductor surface called a pinhole,
With a low-resistance charging member, abnormal discharge occurs toward the pinhole, and uniform charging cannot be performed. In order to prevent these abnormal discharges, the charging member cannot have a low resistance. For example, in the case of a charging member for charging a photosensitive member of B4 width, it is desirable that the resistance value from the voltage application terminal of the charging member to the surface of the charging member in contact with the charging area is 1 MΩ or more.
【0024】具体的に実測値を示すと、図3の感光体で
感光体表面電位を目標電位−450Vに帯電するのに必要
な電流は約4.5μA程度であった。一方、図2の帯電ロー
ラの場合、帯電抵抗は、芯金から帯電領域に接する感光
体表面まで約10MΩあった。したがって、4.5μA流れた
ときの帯電ローラの抵抗成分による電圧降下は45Vあ
る。この45Vは帯電に寄与せず、制御誤差となる。この
問題点を解決することが本発明の第2の課題である。Specifically, when actually measured, the current required to charge the surface potential of the photosensitive member to the target potential of −450 V in the photosensitive member of FIG. 3 was about 4.5 μA. On the other hand, in the case of the charging roller shown in FIG. 2, the charging resistance was about 10 MΩ from the core metal to the surface of the photosensitive member in contact with the charging area. Therefore, the voltage drop due to the resistance component of the charging roller is 45V when 4.5 μA flows. This 45V does not contribute to charging and causes a control error. The second object of the present invention is to solve this problem.
【0025】(第3の課題)画像形成装置の長期間の使用
により感光体の膜は摩耗し膜厚が変化する。その結果、
感光体の帯電係数kが変化する。感光体の摩耗の程度
は、感光体の硬度によって異なる。硬度の高いアモルフ
ァスシリコン感光体では感光体の膜の摩耗は問題になら
ないほど小さい。他方、硬度の低いセレン感光体や有機
感光体などでは、長期使用で感光体の膜厚の減少が生じ
る。感光体の摩耗は、感光体に接触しているクリーニン
グブレード,紙および紙粉,トナーおよびトナーに含有
された添加剤などであり、それらが複合的に作用して感
光体の表面を削る。(Third Problem) When the image forming apparatus is used for a long period of time, the film of the photoconductor wears and the film thickness changes. as a result,
The charging coefficient k of the photoconductor changes. The degree of wear of the photoconductor depends on the hardness of the photoconductor. With an amorphous silicon photoconductor having high hardness, the abrasion of the photoconductor film is so small that it does not matter. On the other hand, in the case of a selenium photoconductor or an organic photoconductor having a low hardness, the film thickness of the photoconductor is reduced after long-term use. The abrasion of the photoconductor includes a cleaning blade in contact with the photoconductor, paper and paper dust, toner and additives contained in the toner, and these act in combination to scrape the surface of the photoconductor.
【0026】同じ印加電圧を帯電部材に与えるとき、初
期の感光体の帯電電位をVo_opt、長期使用後の感光体
の帯電電位をVo_runとすると、両者の電位差が△Vo_t
h以上、すなわち、 |Vo_opt−Vo_run|≧△Vo_th ……………………………… (6) の条件に入るとき、中間調濃度の変動が発生する。When the same applied voltage is applied to the charging member, if the initial charging potential of the photoconductor is Vo_opt and the charging potential of the photoconductor after long-term use is Vo_run, the potential difference between them is ΔVo_t.
When h or more, that is, | Vo_opt-Vo_run | ≧ ΔVo_th ……………………………… (6), the halftone density changes.
【0027】以下に、発明者らが測定した長期使用後の
感光体の帯電特性を示す。実験には、図3に示した有機
感光体と、図2に示した帯電ローラをそれぞれ使用し
た。まず新品の感光体1(感光体の膜厚26μm)を図5の
帯電試験機に装着し、室温7℃湿度20%の恒温恒湿の環
境下に3日間放置し、十分環境に馴染ませた。その後、
除電光3を点灯しながら帯電ローラ2に−1100V印加し
たところ、感光体1の表面電位は−440V、帯電電流は
4.4μAであった。The charging characteristics of the photoconductor after long-term use measured by the inventors are shown below. In the experiment, the organic photoreceptor shown in FIG. 3 and the charging roller shown in FIG. 2 were used. First, a new photoconductor 1 (photoconductor film thickness: 26 μm) was mounted on the charging tester shown in FIG. 5, and allowed to stand for 3 days in a constant temperature and constant humidity environment of room temperature 7 ° C. and humidity 20% to fully adapt to the environment. . afterwards,
When −1100 V was applied to the charging roller 2 while the charge eliminating light 3 was turned on, the surface potential of the photoconductor 1 was −440 V and the charging current was
It was 4.4 μA.
【0028】次に同じ感光体1を市販の電子写真方式の
画像形成装置(松下電送(株)製ファックス Panafax B6
6)に装着し、連続通紙ランニング試験10万枚を行った。
感光体に接触しているのは、クリーニングブレード,転
写ローラ,紙,トナーおよびトナーに含有された添加剤
などであり、それらが複合的に作用して感光体の表面膜
を摩耗させる。連続通紙試験する前の感光体1の膜厚は
26μmであったが、連続通紙試験10万枚後の膜厚は18μm
であった。Next, the same photoconductor 1 was used as a commercially available electrophotographic image forming apparatus (Fax Panafax B6 manufactured by Matsushita Electric Transmission Co., Ltd.).
It was attached to 6) and 100,000 continuous running tests were conducted.
The cleaning blade, the transfer roller, the paper, the toner, and the additives contained in the toner are in contact with the photoconductor, and these act in a complex manner to abrade the surface film of the photoconductor. The film thickness of the photoconductor 1 before the continuous paper passing test is
Although it was 26 μm, the film thickness after continuous sheet feeding test 100,000 sheets was 18 μm
Met.
【0029】膜厚18μmの感光体1を図5の帯電試験機
に装着し、室温7℃湿度20%の恒温恒湿の環境下に3日
間放置し、十分環境に馴染ませた。その後、除電光3を
点灯しながら帯電ローラ2に−1100V印加したところ、
感光体1の表面電位は−480V、帯電電流は6.9μAであ
った。新品の感光体表面電位との差40Vは、感光体の膜
厚の減少によるものである。この一定電圧を印加する従
来の帯電装置の問題点を解決するのが本発明の第3の課
題である。The photosensitive member 1 having a film thickness of 18 μm was mounted on the charging tester shown in FIG. 5, and allowed to stand for 3 days in a constant temperature and constant humidity environment of room temperature of 7 ° C. and humidity of 20% to allow it to fully adapt to the environment. After that, when -1100 V was applied to the charging roller 2 while turning on the static elimination light 3,
The surface potential of the photoconductor 1 was −480 V and the charging current was 6.9 μA. The difference of 40 V from the surface potential of the new photoconductor is due to the reduction of the film thickness of the photoconductor. It is a third object of the present invention to solve the problem of the conventional charging device that applies a constant voltage.
【0030】(第4の課題)理想的には、電源から帯電部
材に印加された電流はすべて感光体の帯電に使われる。
ところが発明者らが鋭意研究を重ねたところ、帯電部材
に流れる電流の一部に感光体の帯電に寄与しない電流が
存在することがあった。以下、帯電に寄与しない電流を
リーク電流と呼ぶ。リーク電流は発生が不安定で、原因
究明および対策が困難である。また、帯電部材の雰囲気
環境の温度と湿度によってリーク電流は変化し、特に高
温多湿の場合にリーク電流は増加した。リーク電流の測
定結果を以下に示す。(Fourth Problem) Ideally, all the current applied from the power source to the charging member is used for charging the photosensitive member.
However, as a result of intensive studies by the inventors, there was a case where a part of the current flowing through the charging member had a current that did not contribute to the charging of the photoconductor. Hereinafter, a current that does not contribute to charging will be referred to as a leak current. The generation of leak current is unstable, and it is difficult to investigate the cause and take countermeasures. Further, the leak current changed depending on the temperature and humidity of the atmosphere environment of the charging member, and the leak current increased especially in the case of high temperature and high humidity. The measurement results of the leak current are shown below.
【0031】図5に示した帯電試験機を5台用意し、そ
れぞれに図2の帯電ローラ2および図3の感光体1を組
み込み、室温20℃湿度50%の恒温恒湿の環境下に3日間
放置し、十分環境に馴染ませた。Five charging testers shown in FIG. 5 are prepared, and the charging roller 2 shown in FIG. 2 and the photoconductor 1 shown in FIG. 3 are installed in each of them. It was left to stand for a day to fully adapt to the environment.
【0032】その後、除電光3を点灯せずに、絶対値が
帯電開始電圧Vth以上で、極性が作画工程における感光
体1の最適表面電位Vo_optと同じ電圧Vin=−1100V
を印加して帯電を行った。帯電開始前の感光体1の表面
電位は0Vであった。After that, without turning on the static elimination light 3, the voltage Vin = -1100V whose absolute value is equal to or higher than the charging start voltage Vth and whose polarity is the same as the optimum surface potential Vo_opt of the photoconductor 1 in the image forming process.
Was applied to charge. The surface potential of the photoconductor 1 before the start of charging was 0V.
【0033】感光体1が5周以上回転すると、感光体1
の表面電位は安定し一定値となった。ところが、5台の
うち1台の帯電試験機では、表面電位安定後も、帯電部
材には約0.4μAの電流が流れ続けた。この帯電試験機を
帯電試験機Aと名付ける。明らかに、感光体1の表面電
位安定後に流れる電流0.4μAは帯電に寄与していないの
で、リーク電流である。残り4台の帯電試験機では、帯
電安定後、帯電部材に電流は流れなかった。When the photoconductor 1 rotates for 5 or more turns, the photoconductor 1
The surface potential of was stable and became a constant value. However, in one of the five charging testers, a current of about 0.4 μA continued to flow through the charging member even after the surface potential was stabilized. This charging tester is named charging tester A. Apparently, the current 0.4 μA flowing after the surface potential of the photoconductor 1 is stabilized does not contribute to the charging and is a leak current. In the remaining four charging testers, no current flowed to the charging member after the charging was stabilized.
【0034】次に上記5台の帯電装置を、室温33℃湿度
80%の恒温恒湿の環境下に3日間放置し、十分環境に馴
染ませた。その後、除電光3を点灯せずに電圧Vin=−
1100Vを印加して帯電を行った。帯電開始前の感光体1
の表面電位は0Vであった。Next, the above-mentioned five charging devices were set at room temperature and 33 ° C. humidity.
The sample was left in an environment of 80% constant temperature and humidity for 3 days to fully adapt to the environment. After that, the voltage Vin = − without turning on the static elimination light 3
Charging was performed by applying 1100V. Photoreceptor 1 before charging starts
Had a surface potential of 0V.
【0035】感光体1が5周以上回転すると、感光体1
の表面電位は安定し一定値となった。ところが、帯電試
験機Aにおいて、表面電位安定後も、帯電部材には0.6
μAの電流が流れ続けた。この電流0.6μAは感光体1の
帯電に寄与していないので、リーク電流である。また、
別の1台の帯電試験機において、表面電位安定後、帯電
部材に約0.2μAの電流が流れ続けた。この0.2μAの電流
も、感光体1の帯電に寄与していないのでリーク電流で
ある。残り3台の帯電試験機では、帯電安定後、帯電部
材に電流は流れなかった。When the photoconductor 1 rotates for more than 5 turns, the photoconductor 1
The surface potential of was stable and became a constant value. However, in the charging tester A, even after the surface potential is stabilized, the charging member has 0.6
The current of μA continued to flow. This current of 0.6 μA is a leak current because it does not contribute to the charging of the photoconductor 1. Also,
In another charging tester, after the surface potential was stabilized, a current of about 0.2 μA continued to flow to the charging member. This 0.2 μA current is also a leak current because it does not contribute to the charging of the photoconductor 1. In the remaining three charging testers, no current flowed to the charging member after the charging was stabilized.
【0036】以上のように、リーク電流には個体差があ
り、同じ仕様で作られた帯電試験機にもかかわらず、発
生したり、しなかったりした。また、雰囲気温度と湿度
によってリーク電流の値が変化した。このリーク電流の
原因としては、(ア)電源の漏れ電流、(イ)電源から帯電
部材までの電流経路途中での漏れ電流、(ウ)帯電部材を
保持するホルダーからの漏れ電流、(エ)帯電部材から周
辺部材への放電、(オ)帯電部材の周辺空気の電離に使わ
れる電流など多くの原因があげられる。As described above, there are individual differences in the leak current, and although the charging tester was made to have the same specifications, it did or did not occur. Moreover, the value of the leak current changed depending on the ambient temperature and the humidity. The causes of this leakage current are (a) leakage current of the power source, (b) leakage current in the middle of the current path from the power source to the charging member, (c) leakage current from the holder holding the charging member, (d) There are many causes such as discharge from the charging member to the peripheral members, and (e) current used for ionizing the air around the charging member.
【0037】発明者らは、帯電試験機および画像形成装
置で、リーク電流の分析を精力的に試みたが、リーク電
流の発生は不安定で、装置の個体差により発生したり、
また、一旦リーク電流の発生した画像形成装置が、別の
日にはリーク電流の発生が全く検出されなかったりし
た。発明者らは種々の対策を試みたが、これらのリーク
電流の原因を特定し、効果的な対策を施すのは非常に困
難であった。The inventors vigorously tried to analyze the leak current in the charging tester and the image forming apparatus, but the leak current is unstable and may occur due to individual differences in the apparatus.
Further, the image forming apparatus in which the leak current once occurred may not detect the occurrence of the leak current on another day. The inventors have tried various measures, but it has been very difficult to identify the cause of these leak currents and take effective measures.
【0038】本発明で、作画工程における印加電圧また
は印加電流を決定するのに用いられる電流に、リーク電
流が混在すると、帯電電流と表面電位の間の比例関係が
崩れ、決定される最適印加電圧に誤差が生じる。特に、
感光体の帯電係数kとリーク電流Ir_Lとの積(k・Ir_
L)の絶対値が△Vo_th以上のとき、すなわち、 |k・Ir_L|≧△Vo_th ……………………………………… (7) の条件に入るとき、画像形成装置の出力画像に濃度むら
が発生する。ここに、発明者らの目視評価から、△Vo_
th=35Vである。この問題点を解決することが本発明の
第4の課題である。In the present invention, when the leak current is mixed in the current used for determining the applied voltage or the applied current in the image forming process, the proportional relationship between the charging current and the surface potential is broken, and the optimum applied voltage determined. Error occurs. In particular,
The product of the charging coefficient k of the photoconductor and the leak current Ir_L (k · Ir_
When the absolute value of (L) is equal to or greater than ΔVo_th, that is, when | k · Ir_L | ≧ ΔVo_th ………………………………………… (7) The output image has uneven density. Based on the visual evaluation by the inventors, ΔVo_
th = 35V. It is the fourth object of the present invention to solve this problem.
【0039】(第5の課題)発明者らが鋭意研究を重ねた
ところ、帯電電流に過渡状態が観測された。図5の帯電
試験機を、室温20℃湿度50%の恒温恒湿の環境下に3日
放置し、十分環境に馴染ませた。放置中は、帯電ローラ
2への電圧印加および感光体1の回転および除電光3の
照射はない。以下、説明のため、帯電部材への電圧印加
がなく、かつ感光体が停止し、かつ除電手段が作用して
いない状態を無帯電状態と呼ぶことにする。(Fifth Problem) As a result of intensive studies by the inventors, a transient state was observed in the charging current. The electrification tester of FIG. 5 was left for 3 days in a constant temperature and constant humidity environment of room temperature 20 ° C. and humidity 50% to allow it to fully adapt to the environment. During standing, no voltage is applied to the charging roller 2, the photoconductor 1 is rotated, and the static elimination light 3 is not irradiated. Hereinafter, for the sake of explanation, a state in which no voltage is applied to the charging member, the photosensitive member is stopped, and the charge eliminating unit is not operating will be referred to as an uncharged state.
【0040】その後、感光体1を周速vpで回転させ、
除電光3を照射しながら、帯電部材に、絶対値が帯電開
始電圧Vth以上で、極性が作画工程における感光体1の
最適表面電位Vo_optと同じ電圧Vin_5を印加した。電
圧Vin_5の印加開始後から感光体1が3周以上回転した
後、感光体表面電位Vo_51、および帯電ローラ2に流れ
る帯電電流Ir51をそれぞれ観測した。以下、これを第
1回目の帯電と呼ぶ。Then, the photosensitive member 1 is rotated at the peripheral speed vp,
A voltage Vin_5 having an absolute value equal to or higher than the charging start voltage Vth and the same polarity as the optimum surface potential Vo_opt of the photoconductor 1 in the image forming process was applied to the charging member while irradiating the charge removing light 3. After the application of the voltage Vin_5 was started, the photoconductor 1 was rotated three times or more, and then the photoconductor surface potential Vo_51 and the charging current Ir51 flowing through the charging roller 2 were observed. Hereinafter, this is called the first charging.
【0041】更に、上記帯電試験機を、同じ室温20℃湿
度50%の恒温恒湿の環境下に12時間放置した。放置中は
無帯電状態であった。12時間の放置直後に、帯電部材に
直流電圧Vin_5を再度印加し帯電を行った。以下、これ
を第2回目の帯電と呼ぶ。Further, the above charging tester was left for 12 hours in the same environment of constant temperature and temperature of 20 ° C. and humidity of 50%. It was in a non-charged state during standing. Immediately after leaving for 12 hours, the direct current voltage Vin_5 was applied to the charging member again to perform charging. Hereinafter, this is called the second charging.
【0042】測定の結果、第2回目の帯電において、帯
電開始から感光体が1周するまでの間に帯電部材に流れ
る帯電電流は不安定で、その絶対値は第1回目の帯電に
おける帯電電流Ir51よりも大きかった。また、第2回
目の帯電における感光体の帯電電位の絶対値は、第1回
目の帯電における感光体表面電位Vo_51の絶対値よりも
小さい値であった。As a result of the measurement, in the second charging, the charging current flowing through the charging member is unstable from the start of charging until the photosensitive member makes one revolution, and the absolute value thereof is the charging current in the first charging. It was larger than Ir51. Further, the absolute value of the charging potential of the photoconductor in the second charging was smaller than the absolute value of the photoconductor surface potential Vo_51 in the first charging.
【0043】しかし、第2回目の帯電において、感光体
1を2周以上連続的に帯電させ続けると、帯電電流は安
定し、Ir51と一致した。それとともに感光体1の帯電
電位も安定し、Vo_51と一致した。However, in the second charging, when the photosensitive member 1 was continuously charged for two turns or more, the charging current was stable and coincided with Ir51. At the same time, the charging potential of the photoconductor 1 was stabilized and coincided with Vo_51.
【0044】以下に実測値を示す。図3の感光体1と図
2の帯電ローラ2を図5の帯電試験機に組み込んだ後、
室温20℃湿度50%の恒温恒湿の環境下に3日放置し、十
分環境に馴染ませた。放置中は、無帯電状態であった。The measured values are shown below. After incorporating the photoconductor 1 of FIG. 3 and the charging roller 2 of FIG. 2 into the charging tester of FIG.
It was left for 3 days in a constant temperature and constant humidity environment of room temperature 20 ° C and humidity 50%, and was sufficiently acclimated to the environment. It was in a non-charged state during standing.
【0045】その後、感光体1を周速33mm/秒で回転さ
せ、除電光3を点灯しながら電圧−1100Vを帯電ローラ
2に印加し、帯電を開始した。帯電開始から感光体1が
1回転するまでの間の帯電電流は4.9μA、感光体回転1
周以上2周までの間の帯電電流は4.4μA、感光体回転3
周目以降、帯電電流は安定し、2周目と同じ4.4μAであ
った。一方、感光体の表面電位は、感光体1が1回転す
るまでが406V、感光体1周以上2周目までが436V、感
光体回転3周目以降、帯電電位は安定し、2周目と同じ
436Vであった。After that, the photosensitive member 1 was rotated at a peripheral speed of 33 mm / sec, a voltage of −1100 V was applied to the charging roller 2 while the discharging light 3 was turned on, and charging was started. The charging current from the start of charging until the photoconductor 1 rotates once is 4.9 μA, and the photoconductor rotation 1
Charging current is 4.4μA between the two and more laps, 3 rotations of the photoconductor
After the first lap, the charging current was stable and was 4.4 μA, which was the same as the second lap. On the other hand, the surface potential of the photoconductor is 406V until the photoconductor 1 makes one revolution, 436V from the first revolution to the second revolution of the photoconductor, and the charging potential is stable after the third revolution of the photoconductor and the second revolution. the same
It was 436V.
【0046】すなわち、帯電開始後から感光体1が1周
回転するまでの間に流れる帯電電流は、感光体1の回転
1周以上するときの帯電電流に比べて0.5μA大きかっ
た。ところが、帯電電位の絶対値は、感光体1が1周す
るまでの方が、1周以上のときに比べて30V小さかっ
た。すなわち、3日間、無帯電状態で放置した直後の帯
電電流には、感光体の帯電に寄与していない電流成分が
含まれていた。これらは、感光体に起因する過渡状態で
ある。感光体1の帯電係数kは、100(V/μA)なので、
(式2)から、測定時の0.5μAの差は50Vの制御誤差とな
った。That is, the charging current flowing from the start of charging until the photosensitive member 1 makes one rotation is 0.5 μA larger than the charging current when the photosensitive member 1 makes one rotation or more. However, the absolute value of the charging potential was smaller by 30 V until the photoconductor 1 completed one revolution than when the photoconductor 1 completed one revolution. That is, the charging current immediately after being left uncharged for 3 days contained a current component that did not contribute to the charging of the photoconductor. These are transient states due to the photoreceptor. Since the charging coefficient k of the photoconductor 1 is 100 (V / μA),
From (Equation 2), the difference of 0.5 μA at the time of measurement resulted in a control error of 50V.
【0047】一般に、1時間以上、無帯電状態で放置し
た直後の帯電工程で、帯電開始から感光体が1周するま
での間に流れる電流Ir11と1周以上するときに流れる
電流Ir12とする。このとき、電流Ir11から(式4)に従
って作画時の最適印加電圧を求めると、感光体の帯電係
数kとの積、k・(Ir11−Ir12)だけ目標電位からの誤
差を生じる。電位誤差が△Vo_th以上のとき、形成され
る画像に濃度変化が生じる。ここに、△Vo_thは、発明
者らの目視評価の結果35Vである。この問題点を解決す
るのが本発明の第5の課題である。In general, in the charging step immediately after being left in the uncharged state for one hour or more, the current Ir11 flows from the start of charging until the photosensitive member makes one revolution, and the current Ir12 flows when the photosensitive member makes one revolution or more. At this time, if the optimum applied voltage at the time of image formation is calculated from the current Ir11 according to (Equation 4), an error from the target potential by the product of the charging coefficient k of the photoconductor, k.multidot. (Ir11-Ir12), occurs. When the potential error is ΔVo_th or more, the density of the formed image changes. Here, ΔVo_th is 35V as a result of visual evaluation by the inventors. The fifth object of the present invention is to solve this problem.
【0048】(第6の課題)更に発明者らが鋭意研究を重
ねたところ、帯電部材として回転するローラ状の帯電部
材(以後、帯電ローラと呼ぶこともある)を用いると、帯
電開始から帯電ローラが1周するまでの間に発生する帯
電電流に過渡状態が観測された。(Sixth Problem) Further, the inventors of the present invention have made extensive studies and found that when a rotating roller-shaped charging member (hereinafter also referred to as a charging roller) is used as the charging member, charging is started from the start of charging. A transient state was observed in the charging current generated until the roller made one revolution.
【0049】すなわち、図5の帯電試験機を恒温恒湿の
環境下に3日放置し、十分環境に馴染ませた。放置中
は、無帯電状態であった。その後、感光体1を周速vp
で回転させ、除電光3を照射しながら、帯電部材に、絶
対値が帯電開始電圧Vth以上で、極性が作画工程におけ
る感光体1の最適表面電位Vo_optと同じ電圧Vin_6を
印加した。電圧Vin_6を印加開始後から帯電ローラ2が
3周以上回転した後、感光体表面電位Vo_61、および帯
電ローラ2に流れる帯電電流Ir61をそれぞれ観測し
た。これを第3回目の帯電と呼ぶ。第3回目の帯電の
後、10分間放置後、再度、帯電部材に直流電圧Vin_6を
印加し帯電を行った。これを第4回目の帯電と呼ぶ。第
4回目の帯電において、帯電開始から帯電ローラ2が1
周するまでの間に帯電部材に流れる帯電電流は不安定
で、その絶対値は第3回目の帯電の帯電電流Ir61の絶
対値よりも大きい。また、第4回目の帯電の感光体の帯
電電位の絶対値は、第3回目の帯電の感光体表面電位V
o_61の絶対値よりも小さい値であった。That is, the charging tester shown in FIG. 5 was left in a constant temperature and constant humidity environment for 3 days to allow it to fully adapt to the environment. It was in a non-charged state during standing. Then, rotate the photoconductor 1 at the peripheral speed vp.
Then, the voltage Vin_6 whose absolute value is equal to or higher than the charging start voltage Vth and whose polarity is the same as the optimum surface potential Vo_opt of the photoconductor 1 in the image forming step is applied to the charging member while being rotated by. After the charging roller 2 has rotated three times or more after the start of applying the voltage Vin_6, the photoreceptor surface potential Vo_61 and the charging current Ir61 flowing through the charging roller 2 were observed. This is called the third charging. After the third charging, after left for 10 minutes, the charging member was charged again by applying the DC voltage Vin_6. This is called the fourth charging. In the fourth charging, the charging roller 2 is set to 1 from the start of charging.
The charging current flowing through the charging member is unstable until it goes around, and its absolute value is larger than the absolute value of the charging current Ir61 of the third charging. Further, the absolute value of the charging potential of the photoconductor of the fourth charge is equal to the surface potential V of the photoconductor of the third charge.
It was smaller than the absolute value of o_61.
【0050】しかし、第4回目の帯電において、帯電ロ
ーラ2を2周以上連続的に電圧Vin_6を印加し続ける
と、帯電電流は安定し、Ir61と一致した。それととも
に、感光体1の帯電電位も安定し、Vo_61と一致した。However, in the fourth charging, when the voltage Vin_6 was continuously applied to the charging roller 2 for two or more turns, the charging current became stable and coincided with Ir61. At the same time, the charging potential of the photoconductor 1 was stabilized and coincided with Vo_61.
【0051】上記の現象を認めた後、条件を変えながら
帯電実験を繰り返し行った結果、発明者らは次の知見を
得た。すなわち、無帯電状態が1分以下のときに、帯電
開始から帯電ローラ2が1周するまでの間に流れる帯電
電流は、帯電ローラ2周目以降の帯電電流と差異がな
い。ところが、無帯電状態が3分以上あると、帯電開始
から帯電ローラ2が1周するまでの間に流れる帯電電流
は不安定で、その絶対値は、帯電ローラ2が1周以上回
転するときの帯電電流の絶対値よりも大きい。同時に、
帯電開始から帯電ローラ2が1周するまでの間の感光体
1の帯電電位の絶対値は、帯電ローラ2が1周以上回転
するときの帯電電位の絶対値よりも小さい。After the above phenomenon was recognized, the charging experiment was repeated under different conditions, and the inventors obtained the following findings. That is, when the non-charged state is 1 minute or less, the charging current flowing from the start of charging until the charging roller 2 makes one revolution does not differ from the charging current after the second revolution of the charging roller. However, if the non-charged state is for 3 minutes or more, the charging current flowing from the start of charging until the charging roller 2 makes one revolution is unstable, and its absolute value is the absolute value when the charging roller 2 makes one revolution or more. It is larger than the absolute value of the charging current. at the same time,
The absolute value of the charging potential of the photoconductor 1 from the start of charging until the charging roller 2 makes one revolution is smaller than the absolute value of the charging potential when the charging roller 2 rotates one revolution or more.
【0052】また、無帯電状態の続いた時間の長さに関
係なく、帯電ローラ2に電圧が印加された後、帯電ロー
ラ2が少なくとも1周以上回転すると帯電電流は安定す
る。同時に、感光体の表面電位も安定する。Further, regardless of the length of time that the non-charged state continues, after the voltage is applied to the charging roller 2 and the charging roller 2 rotates at least one revolution, the charging current becomes stable. At the same time, the surface potential of the photoconductor becomes stable.
【0053】実測値を示すと、図3の感光体1と図2の
帯電ローラ2を図5の帯電試験機に組み込み、室温20℃
湿度50%の環境下に3日間放置し、装置を室温および湿
度に十分馴染ませた。放置中は無帯電状態であった。そ
の後、電圧−1100Vを帯電ローラ2に印加し除電光3を
点灯しながら帯電を行った。無帯電状態が1分のとき、
帯電開始から帯電電流は安定し、4.4μA、また感光体の
表面電位は−430Vであった。As the measured values, the photoconductor 1 shown in FIG. 3 and the charging roller 2 shown in FIG. 2 were installed in the charging tester shown in FIG.
The apparatus was left in an environment of 50% humidity for 3 days to allow the apparatus to fully adapt to room temperature and humidity. It was in a non-charged state during standing. After that, a voltage of −1100 V was applied to the charging roller 2 and charging was performed while the charge eliminating light 3 was turned on. When the uncharged state is 1 minute,
The charging current was stable from the start of charging, and was 4.4 μA, and the surface potential of the photosensitive member was −430V.
【0054】次に、無帯電状態が3分のときは、帯電開
始から帯電ローラ2が1回転するまでの帯電電流は4.6
μA、感光体1の帯電電位は−430V、引き続き、帯電ロ
ーラ2が1周以上2周までの帯電電流は4.4μA、感光体
1の表面電位は−440V、更に帯電ローラ2が3周以上
回転すると、帯電電流は4.4μA、感光体の表面電位は−
440Vであった。すなわち、無帯電状態が3分のとき、
帯電開始から帯電ローラ2が1周以上回転した後に、帯
電電流および感光体1の表面電位は安定した。これは帯
電ローラ2に起因する帯電電流の過渡状態である。Next, when the uncharged state is 3 minutes, the charging current from the start of charging to one rotation of the charging roller 2 is 4.6.
μA, the charging potential of the photoconductor 1 is −430 V, the charging current of the charging roller 2 is 1 μm to 2 turns, the charging current is 4.4 μA, the surface potential of the photoconductor 1 is −440 V, and the charging roller 2 rotates 3 or more turns. Then, the charging current is 4.4 μA and the surface potential of the photoconductor is −
It was 440V. That is, when the uncharged state is 3 minutes,
The charging current and the surface potential of the photosensitive member 1 became stable after the charging roller 2 rotated one round or more from the start of charging. This is a transient state of the charging current caused by the charging roller 2.
【0055】一般に、3分以上、信頼性向上のため望ま
しくは、1時間以上、無帯電状態で放置した直後の帯電
工程で、帯電開始から帯電ローラが1周するまでの間に
流れる電流をIr13、1周以上するときに流れる電流を
Ir14とする。このとき、電流Ir13から(式4)に従って
作画時の最適印加電圧を求めると、感光体の帯電係数k
との積、k・(Ir11−Ir12)だけ目標電位からの誤差を
生じる。電位誤差が△Vo_th以上のとき、形成される画
像に濃度変化が生じる。ここに、△Vo_thは、発明者ら
の目視評価の結果35Vである。この問題点を解決するの
が本発明の第6の課題である。In general, it is desirable that the current flowing from the start of charging to one round of the charging roller is Ir13 in the charging step immediately after leaving the battery in an uncharged state for 3 minutes or more, and preferably for 1 hour or more to improve reliability. The current that flows when the circuit makes one turn or more is Ir14. At this time, when the optimum applied voltage at the time of image formation is obtained from the current Ir13 according to (Equation 4), the charging coefficient k of the photoconductor is
And the product of k and (Ir11-Ir12) causes an error from the target potential. When the potential error is ΔVo_th or more, the density of the formed image changes. Here, ΔVo_th is 35V as a result of visual evaluation by the inventors. The sixth object of the present invention is to solve this problem.
【0056】(第7の課題)更に発明者らが鋭意実験を重
ねたところ、帯電部材として回転する帯電ローラを用い
帯電電流を測定するとき、帯電ローラの1回転周期で測
定電流にノイズが発生することがわかった。ノイズの原
因は、(ア)帯電ローラの製造過程で発生した抵抗ムラ、
(イ)帯電ローラ表面の凹凸による感光体との接触ムラ、
(ウ)長期使用による帯電ローラの汚れや摩耗、(エ)帯電
ローラの偏芯などである。(Seventh Problem) Further, the inventors of the present invention have conducted extensive experiments and found that when the charging current is measured using a rotating charging roller as a charging member, noise is generated in the measured current in one rotation cycle of the charging roller. I found out that The causes of noise are (a) uneven resistance generated in the manufacturing process of the charging roller,
(B) uneven contact with the photoconductor due to unevenness of the charging roller surface,
(C) Dirt and wear of the charging roller due to long-term use, and (d) eccentricity of the charging roller.
【0057】一般に、感光体の帯電係数k、前記電流I
rのノイズ成分のピーク間電流を△Ir_ppとするとき、
kと△Ir_ppの積の絶対値が35V以上ある場合、形成さ
れる画像に濃度変化が発生することが、発明者らの鋭意
研究の結果、見いだされた。作画工程における印加電圧
または印加電流を決定するのに用いられる電流に誤差が
あると、決定される最適印加電圧にも誤差が生じる。こ
れが本発明の第7の課題である。Generally, the charging coefficient k of the photosensitive member and the current I
When the peak-to-peak current of the noise component of r is ΔIr_pp,
As a result of intensive studies by the inventors, it was found that when the absolute value of the product of k and ΔIr_pp is 35 V or more, a density change occurs in the formed image. If there is an error in the current used to determine the applied voltage or applied current in the drawing process, an error will also occur in the determined optimum applied voltage. This is the seventh subject of the present invention.
【0058】(第8の課題)作画工程における印加電圧ま
たは印加電流の決定は、作画工程に先立ち実施する。ひ
とつの方法として、作画直前に実施することが可能であ
る。ところがこの帯電方法は、帯電電流測定のために感
光体を1周から5周程度回転させる。例えばφ30mmで周
速33mm/秒の感光体の場合、感光体を5回転するのに約
15秒要する。電子写真方式の画像形成装置のうち、利用
者が待機している場合の多い複写機やプリンターでは、
作画命令から作画工程終了までの時間はできるだけ短い
方が望ましい。これを解決するのが本発明の第8の課題
である。(Eighth Problem) The applied voltage or applied current in the drawing process is determined prior to the drawing process. As one method, it can be carried out immediately before printing. However, in this charging method, the photosensitive member is rotated about 1 to 5 times to measure the charging current. For example, in the case of a photoconductor with a diameter of 30 mm and a peripheral speed of 33 mm / sec, it takes about 5 rotations
It takes 15 seconds. Among electrophotographic image forming apparatuses, in copiers and printers where users are often on standby,
It is desirable that the time from the drawing command to the end of the drawing process is as short as possible. It is an eighth object of the present invention to solve this.
【0059】(第9の課題)作画工程における印加電圧ま
たは印加電流を決定するのに用いる電圧と電流は、表面
電位が0Vの感光体を帯電するときに印加または発生す
る電圧と電流である。帯電直前の感光体表面電位を0V
にするため帯電測定前に除電を実行する必要がある。と
ころが除電手段が除電光の場合、除電できる電位の極性
は、感光体が光導電性を示す極性に限られる。(Ninth Problem) The voltage and current used to determine the applied voltage or applied current in the drawing process are the voltage and current applied or generated when the photosensitive member having a surface potential of 0 V is charged. The surface potential of the photoreceptor immediately before charging is 0V
Therefore, it is necessary to remove the charge before measuring the charge. However, when the charge eliminating unit is the charge eliminating light, the polarity of the potential capable of eliminating the charge is limited to the polarity in which the photoconductor exhibits photoconductivity.
【0060】ところが、電子写真方式のうち反転現像に
対応する転写手段は、転写工程時に像担持体(例えば、
紙)に与える電荷は、感光体が光導電性を有する電圧の
逆極性である。転写手段により、感光体が光導電性のな
い極性に帯電した場合、除電光では感光体電位を0Vに
できず、バイアスが乗ったままとなる。この影響で測定
される帯電電流にも、バイアスが乗り、測定誤差とな
る。測定する電流に誤差があると、決定される最適印加
電圧にも誤差が生じる。これを解決するのが本発明の第
9の課題である。However, the transfer means corresponding to the reversal development in the electrophotographic method is used for the image carrier (for example,
The charge applied to the paper is the opposite polarity of the voltage at which the photoconductor has photoconductivity. When the photoconductor is charged by the transfer means to a polarity having no photoconductivity, the photoconductor potential cannot be set to 0 V by the neutralization light, and the bias remains. The bias also applies to the charging current measured due to this influence, resulting in a measurement error. If the measured current has an error, the determined optimum applied voltage also has an error. The ninth problem of the present invention is to solve this problem.
【0061】一方、直流バイアスに交流を重畳した電圧
を印加する帯電方法では、重畳する交流が耳障りなノイ
ズ音を発生し、静粛さの求められるオフィス環境には適
さないといった問題点があった。On the other hand, the charging method in which a voltage in which an alternating current is superimposed on the direct current bias is applied causes a problem that the superimposed alternating current produces annoying noise noise and is not suitable for an office environment where quietness is required.
【0062】本発明は、これらの問題点を解消し、感光
体を目標電位に帯電させる帯電装置を提供するものであ
る。The present invention solves these problems and provides a charging device for charging a photoconductor to a target potential.
【0063】[0063]
【課題を解決するための手段】上記課題を解決するため
に本発明の帯電装置は次のような構成を有するものであ
る。 (1) 被帯電体と、前記被帯電体に接触または近接する帯
電部材と、前記帯電部材に電圧を印加する電源と、前記
電源から前記帯電部材に流れる電流を測定する電流測定
手段と、前記電流測定手段が測定した電流および前記電
源から前記帯電部材の帯電領域までの抵抗値Rrに基づ
いて、前記被帯電体を所望電位にするための前記帯電部
材に印加する最適電圧Vin_optを決定し前記電源を制御
する制御手段とからなる構成とする。In order to solve the above problems, the charging device of the present invention has the following structure. (1) a body to be charged, a charging member in contact with or close to the body to be charged, a power supply for applying a voltage to the charging member, a current measuring means for measuring a current flowing from the power supply to the charging member, Based on the current measured by the current measuring means and the resistance value Rr from the power source to the charging area of the charging member, the optimum voltage Vin_opt to be applied to the charging member for setting the charged body to a desired potential is determined. And a control means for controlling the power supply.
【0064】(2) 公知の駆動手段により移動する被帯電
体と、前記被帯電体に接触または近接する帯電部材と、
前記帯電部材に少なくとも2種類の電圧を選択的に印加
する電源と、前記被帯電体を移動させ、前記帯電部材に
対する第1の印加電圧Vin1によって発生する電流Ir1
および前記帯電部材に対する第2の印加電圧Vin2によ
って発生する電流Ir2を測定する電流測定手段と、前記
電流測定手段が測定した電流値を入力しかつ記憶し、前
記帯電部材に印加した電圧、前記電流測定手段が測定し
た電流および予め測定した前記電源から前記帯電部材の
帯電領域までの抵抗値Rrに基づいて演算を行い、作画
工程における前記被帯電体を所望電位にするための前記
帯電部材に印加する最適電圧Vin_optを決定し前記電源
を制御する制御手段とからなる構成とする。(2) A member to be charged which is moved by a known driving means, and a charging member which is in contact with or close to the member to be charged,
A power source that selectively applies at least two types of voltages to the charging member, and a current Ir1 generated by moving the member to be charged and a first applied voltage Vin1 to the charging member.
And current measuring means for measuring the current Ir2 generated by the second applied voltage Vin2 to the charging member, and the current value measured by the current measuring means is inputted and stored, and the voltage applied to the charging member, the current Calculation is performed based on the current measured by the measuring means and the resistance value Rr measured in advance from the power source to the charging area of the charging member, and applied to the charging member to bring the charged body to a desired potential in the image forming step. A control means for determining the optimum voltage Vin_opt to be controlled and controlling the power supply.
【0065】(3) 公知の駆動手段により速度vpで循環
移動する被帯電体と、前記被帯電体に接触または近接す
る帯電部材と、前記帯電部材に少なくとも2種類の電圧
を選択的に印加する電源と、前記被帯電体を除電する除
電手段と、前記帯電部材に流れる電流を測定する電流測
定手段と、前記電源および前記除電手段を制御する制御
手段とを備え、前記電流測定手段は、速度vpで循環移
動しかつ前記除電手段により除電された前記被帯電体の
表面に前記帯電部材の帯電領域が接触している状態で前
記帯電部材に前記電源が第1の電圧Vin1を印加したと
き発生する電流Ir1を測定し、続いて、前記状態で前記
帯電部材に第2の印加電圧Vin2を印加したとき発生す
る電流Ir2を測定し、さらに、速度vpで循環移動する
前記被帯電体上の1点が、前記除電手段からの除電作用
を受ける領域から、前記帯電部材の帯電領域まで移動す
るのに要する時間をTjr、電流Ir2の測定終了時刻をT
2としたとき、前記帯電部材に第2の印加電圧Vin2を印
加した状態で、時刻(T2−Tjr)以降に前記除電手段に
よる除電を停止し、除電されている被帯電体面と除電さ
れていない被帯電体面との境界が、前記帯電部材の帯電
領域に接触するかまたは最近接する時刻をT3とする
と、時刻T3から前記被帯電体が1周するまでの間に、
前記帯電部材に流れる電流Ir3を測定し、前記制御手段
は、前記電流測定手段が測定した電流Ir1,Ir2および
Ir3に基づいて演算を行い作画工程における前記被帯電
体を所望電位にするための前記帯電部材に印加する最適
電圧Vin_optを決定し前記電源を制御することを特徴と
するものである。(3) At least two kinds of voltages are selectively applied to the charged member which circulates at a speed vp by a known driving means, the charging member which comes into contact with or comes close to the charged member, and the charging member. A power source, a static eliminator for neutralizing the body to be charged, a current measuring unit for measuring a current flowing through the charging member, and a control unit for controlling the power source and the static eliminator. Occurs when the power source applies the first voltage Vin1 to the charging member in a state where the charging region of the charging member is in contact with the surface of the member to be charged, which is circulated and moved by vp and is discharged by the discharging unit. Current Ir1 is measured, and then the current Ir2 generated when the second applied voltage Vin2 is applied to the charging member in the above state is measured. Before the point From the area which receives the neutralization effect of the discharging means, TJR the time required to move to the charging area of the charging member, the measurement end time of the current Ir2 T
When it is set to 2, the charge removal by the charge removal unit is stopped after the time (T2-Tjr) in the state where the second applied voltage Vin2 is applied to the charging member, and the charge removal is not performed on the surface of the charged body that is being discharged. Assuming that the time at which the boundary with the surface of the body to be charged contacts or is closest to the charging region of the charging member is T3, from time T3 until the body makes one revolution,
The current Ir3 flowing through the charging member is measured, and the control means performs the calculation based on the currents Ir1, Ir2 and Ir3 measured by the current measuring means to set the charged body to a desired potential in the drawing process. An optimum voltage Vin_opt applied to the charging member is determined and the power source is controlled.
【0066】(4) 公知の駆動手段により速度vpで循環
移動する被帯電体と、前記被帯電体に接触または近接す
る帯電部材と、前記帯電部材に少なくとも2種類の電圧
を選択的に印加する電源と、前記被帯電体を除電する除
電手段と、前記帯電部材に流れる電流を測定する電流測
定手段と、前記電源および前記除電手段を制御する制御
手段とを備え、前記電流測定手段は、速度vpで循環移
動しかつ前記除電手段により除電された前記被帯電体の
表面に前記帯電部材の帯電領域が接触している状態で前
記帯電部材に前記電源が第1の電圧Vin1を印加したと
き発生する電流Ir1を測定し、続いて、前記状態で前記
帯電部材に第2の印加電圧Vin2を印加したとき発生す
る電流Ir2を測定し、さらに、速度vpで循環移動する
前記被帯電体上の1点が、前記除電手段からの除電作用
を受ける領域から、前記帯電部材の帯電領域まで移動す
るのに要する時間をTjr、電流Ir2の測定終了時刻をT
2としたとき、前記帯電部材に第2の印加電圧Vin2を印
加した状態で、時刻(T2−Tjr)以降に前記除電手段に
よる除電を停止し、除電されている被帯電体面と除電さ
れていない被帯電体面との境界が、前記帯電部材の帯電
領域に接触するかまたは最近接する時刻をT3とする
と、時刻T3から前記被帯電体が1周するまでの間に、
前記帯電部材に流れる電流Ir3、および時刻T3から前
記被帯電体が1周以上するときに前記帯電部材に流れる
電流Ir4を測定し、前記制御手段は、前記電流測定手段
が測定した電流Ir1,Ir2,Ir3およびIr4に基づいて
演算を行い作画工程における前記被帯電体を所望電位に
するための前記帯電部材に印加する最適電圧Vin_optを
決定し前記電源を制御することを特徴とするものであ
る。(4) At least two kinds of voltages are selectively applied to the charging member that circulates at a speed vp by a well-known driving unit, the charging member that is in contact with or close to the charging member, and the charging member. A power source, a static eliminator for neutralizing the body to be charged, a current measuring unit for measuring a current flowing through the charging member, and a control unit for controlling the power source and the static eliminator. Occurs when the power source applies the first voltage Vin1 to the charging member in a state where the charging region of the charging member is in contact with the surface of the member to be charged, which is circulated and moved by vp and is discharged by the discharging unit. Current Ir1 is measured, and then the current Ir2 generated when the second applied voltage Vin2 is applied to the charging member in the above state is measured. Before the point From the area which receives the neutralization effect of the discharging means, TJR the time required to move to the charging area of the charging member, the measurement end time of the current Ir2 T
When it is set to 2, the charge removal by the charge removal unit is stopped after the time (T2-Tjr) in the state where the second applied voltage Vin2 is applied to the charging member, and the charge removal is not performed on the surface of the charged body that is being discharged. Assuming that the time at which the boundary with the surface of the body to be charged contacts or is closest to the charging region of the charging member is T3, from time T3 until the body makes one revolution,
The current Ir3 flowing through the charging member and the current Ir4 flowing through the charging member when the charged body makes one or more turns from time T3 are measured, and the control means measures the currents Ir1 and Ir2 measured by the current measuring means. , Ir3 and Ir4 are calculated to determine the optimum voltage Vin_opt to be applied to the charging member to bring the charged body to a desired potential in the drawing process, and to control the power supply.
【0067】(5) 公知の駆動手段により速度vpで循環
移動する被帯電体と、前記被帯電体に接触または近接す
る帯電部材と、前記帯電部材に電圧を印加する電源と、
前記被帯電体を除電する除電手段と、前記帯電部材に流
れる電流を測定する電流測定手段と、前記電源および前
記除電手段を制御する制御手段とを備え、前記電流測定
手段は、速度vpで循環移動しかつ前記除電手段により
除電された前記被帯電体の表面に前記帯電部材の帯電領
域が接触している状態で前記帯電部材に前記電源が第1
の電圧Vin1を印加したとき発生する電流Ir1を測定
し、さらに、速度vpで循環移動する前記被帯電体上の
1点が、前記除電手段からの除電作用を受ける領域か
ら、前記帯電部材の帯電領域まで移動するのに要する時
間をTjr、電流Ir1の測定終了時刻をT2としたとき、
前記帯電部材に印加電圧Vin1を印加した状態で、時刻
(T2−Tjr)以降に前記除電手段による除電を停止し、
除電されている被帯電体面と除電されていない被帯電体
面との境界が、前記帯電部材の帯電領域に接触するかま
たは最近接する時刻をT3とすると、時刻T3から前記被
帯電体が1周するまでの間に、前記帯電部材に流れる電
流Ir3を測定し、前記制御手段は、前記電流測定手段が
測定した電流Ir1およびIr3に基づいて演算を行い作画
工程における前記被帯電体を所望電位にするための前記
帯電部材に印加する最適電圧Vin_optを決定し前記電源
を制御することを特徴とするものである。(5) A charged body which is circulated and moved at a speed vp by a known driving means, a charging member which is in contact with or close to the charged body, and a power source which applies a voltage to the charging member.
The charging means includes a discharging means for discharging the charged body, a current measuring means for measuring a current flowing through the charging member, and a control means for controlling the power supply and the discharging means. The current measuring means circulates at a speed vp. The power source is applied to the charging member while the charging region of the charging member is in contact with the surface of the member to be charged that has moved and has been discharged by the discharging unit.
Current Ir1 generated when the voltage Vin1 is applied, and one point on the body to be charged that circulates at a speed vp is charged from the area subjected to the charge removal from the charge removal means to charge the charging member. When the time required to move to the region is Tjr and the measurement end time of the current Ir1 is T2,
With the applied voltage Vin1 applied to the charging member,
After (T2-Tjr), the static elimination by the static elimination means is stopped,
Assuming that the time at which the boundary between the surface of the charged body that has been discharged and the surface of the body that has not been discharged contacts or is closest to the charging area of the charging member is T3, the charged body makes one round from time T3. In the meantime, the current Ir3 flowing through the charging member is measured, and the control means performs calculation based on the currents Ir1 and Ir3 measured by the current measuring means to bring the charged body to a desired potential in the drawing process. For determining the optimum voltage Vin_opt to be applied to the charging member for controlling the power source.
【0068】(6) 公知の駆動手段により速度vpで循環
移動する被帯電体と、前記被帯電体に接触または近接す
る帯電部材と、前記帯電部材に電圧を印加する電源と、
前記被帯電体を除電する除電手段と、前記帯電部材に流
れる電流を測定する電流測定手段と、前記電源および前
記除電手段を制御する制御手段とを備え、前記電流測定
手段は、速度vpで循環移動しかつ前記除電手段により
除電された前記被帯電体の表面に前記帯電部材の帯電領
域が接触している状態で前記帯電部材に前記電源が第1
の電圧Vin1を印加したとき発生する電流Ir1を測定
し、さらに、速度vpで循環移動する前記被帯電体上の
1点が、前記除電手段からの除電作用を受ける領域か
ら、前記帯電部材の帯電領域まで移動するのに要する時
間をTjr、電流Ir1の測定終了時刻をT2としたとき、
前記帯電部材に印加電圧Vin1を印加した状態で、時刻
(T2−Tjr)以降に前記除電手段による除電を停止し、
除電されている被帯電体面と除電されていない被帯電体
面との境界が、前記帯電部材の帯電領域に接触するかま
たは最近接する時刻をT3とすると、時刻T3から前記被
帯電体が1周するまでの間に、前記帯電部材に流れる電
流Ir3、および時刻T3から前記被帯電体が1周以上す
るときに前記帯電部材に流れる電流Ir4を測定し、記制
御手段は、前記電流測定手段が測定した電流Ir1,Ir3
およびIr4に基づいて演算を行い作画工程における前記
被帯電体を所望電位にするための前記帯電部材に印加す
る最適電圧Vin_optを決定し前記電源を制御することを
特徴とするものである。(6) An object to be charged which circulates at a speed vp by a known driving means, a charging member which is in contact with or close to the object to be charged, and a power supply which applies a voltage to the charging member.
The charging means includes a discharging means for discharging the charged body, a current measuring means for measuring a current flowing through the charging member, and a control means for controlling the power supply and the discharging means. The current measuring means circulates at a speed vp. The power source is applied to the charging member while the charging region of the charging member is in contact with the surface of the member to be charged that has moved and has been discharged by the discharging unit.
Current Ir1 generated when the voltage Vin1 is applied, and one point on the body to be charged that circulates at a speed vp is charged from the area subjected to the charge removal from the charge removal means to charge the charging member. When the time required to move to the region is Tjr and the measurement end time of the current Ir1 is T2,
With the applied voltage Vin1 applied to the charging member,
After (T2-Tjr), the static elimination by the static elimination means is stopped,
Assuming that the time at which the boundary between the surface of the charged body that has been discharged and the surface of the body that has not been discharged contacts or is closest to the charging area of the charging member is T3, the charged body makes one round from time T3. In the meantime, the current Ir3 flowing through the charging member and the current Ir4 flowing through the charging member when the charged body makes one revolution or more from time T3 are measured, and the control means measures the current measuring means. Current Ir1, Ir3
And Ir4 to perform an operation to determine the optimum voltage Vin_opt applied to the charging member to bring the charged body to a desired potential in the drawing step, and control the power supply.
【0069】(7) 上記(1)〜(6)の帯電装置において、帯
電部材は、被帯電体からの動力伝達を含む公知の駆動手
段により回転し、前記帯電部材が1回転する時間をTr
としたとき、電流測定手段は、カットオフ周波数が1/
Tr以下のローパスフィルタを備えていることを特徴と
するものである。(7) In the charging device of the above (1) to (6), the charging member is rotated by a known driving means including power transmission from the body to be charged, and the time for the charging member to rotate once is Tr.
Then, the current measuring means has a cutoff frequency of 1 /
It is characterized in that it has a low-pass filter of Tr or less.
【0070】(8) また、上記(1)〜(6)の帯電装置におい
て、電圧Vin_optの決定に用いられる電流は、帯電部材
に電圧が印加されたときから、少なくとも前記被帯電体
が1周した後の電流であることを特徴とするものであ
る。(8) Further, in the charging device of the above (1) to (6), the current used for determining the voltage Vin_opt is at least one revolution of the body to be charged since the voltage was applied to the charging member. It is characterized in that it is the electric current after
【0071】(9) また、上記(1)〜(6)の帯電装置におい
て、電圧Vin_optの決定に用いられる電流は、被帯電体
からの駆動を含む公知の駆動手段により回転する帯電部
材に印加した電圧が変化した時刻から、少なくとも前記
帯電部材が1周以上回転した後の電流であることを特徴
とするものである。(9) Further, in the charging device of the above (1) to (6), the current used for determining the voltage Vin_opt is applied to the rotating charging member by a known driving means including driving from the member to be charged. From the time when the voltage changes, the current is the current after the charging member has rotated at least one revolution.
【0072】(10) 上記(9)の帯電装置において、電圧が
変化した時刻は、帯電部材に電圧印加を開始した時刻を
含むことを特徴とするものである。(10) In the charging device described in (9) above, the time when the voltage changes includes the time when the voltage application to the charging member is started.
【0073】(11) 公知の駆動手段により循環移動する
感光体と、前記感光体に接触または近接する帯電部材
と、前記帯電部材に電圧を印加する電源と、前記帯電部
材に流れる電流を測定する電流測定手段と、前記感光体
を露光によって除電する除電光と、前記感光体上に現像
する現像手段と、前記感光体上の像を像担持体に転写す
る転写手段と、前記転写手段に電圧または電流のうち少
なくとも一つ以上を印加する転写電源とを備え、前記感
光体を移動させ、前記除電光を点灯させた状態で前記帯
電部材に電圧印加したときに発生した電流を用いて、作
画工程において前記帯電部材に印加する電圧を決定する
画像形成装置において、移動する前記感光体上の1点
が、前記転写手段の転写領域から、帯電部材の帯電領域
まで移動するのに要する時間をTtr、また前記帯電部材
に発生した電流の測定開始時刻をT7、また測定終了時
刻をT8とするとき、少なくとも、時刻(T7−Ttr)から
時刻(T8−Ttr)までの間に、前記転写手段へ印加する
電圧は、接地、または前記感光体が光導電性を示す極性
の電圧、または前記帯電部材により帯電された前記感光
体の表面電位と前記転写手段に印加する電圧の差の絶対
値が前記感光体と前記転写手段との間の帯電開始電圧以
下の電圧であるか、ないしは前記転写手段は電気的にフ
ロート状態とすることを特徴とするものである。(11) A photoconductor that circulates by known driving means, a charging member that comes into contact with or close to the photoconductor, a power source that applies a voltage to the charging member, and a current flowing through the charging member are measured. Current measuring means, static elimination light for discharging the photoconductor by exposure, developing means for developing on the photoconductor, transfer means for transferring an image on the photoconductor to an image carrier, and voltage for the transfer means. Or a transfer power source for applying at least one of the currents, the photosensitive member is moved, and the current generated when a voltage is applied to the charging member in a state in which the charge removal light is turned on is used to draw an image. In the image forming apparatus that determines the voltage applied to the charging member in the step, one point on the moving photosensitive member is required to move from the transfer area of the transfer unit to the charging area of the charging member. When the measurement start time of the electric current generated in the charging member is T7 and the measurement end time is T8, at least between the time (T7-Ttr) and the time (T8-Ttr). The voltage applied to the transfer means is ground or a voltage having a polarity in which the photoconductor exhibits photoconductivity, or an absolute difference between the surface potential of the photoconductor charged by the charging member and the voltage applied to the transfer means. The value is a voltage equal to or lower than the charging start voltage between the photoconductor and the transfer unit, or the transfer unit is electrically floated.
【0074】(12) 上記(2),(3),(4),(5)または(6)の
帯電装置において、被帯電体は感光体であり、除電手段
は露光手段であることを特徴とするものである。(12) In the charging device of (2), (3), (4), (5) or (6) above, the member to be charged is a photoconductor and the discharging unit is an exposing unit. It is what
【0075】(13) 上記(1)ないし(10)の帯電装置におい
て、作画工程において帯電部材に印加する電圧の決定に
用いる電流は、被帯電体から接地までの間に流れる電流
であることを特徴とするものである。(13) In the charging device according to any one of (1) to (10), the current used for determining the voltage applied to the charging member in the image forming step is the current flowing from the body to be charged to the ground. It is a feature.
【0076】(14) 上記(11)の帯電装置において、測定
する帯電電流は、感光体から接地までの間に流れる電流
であることを特徴とするものである。(14) In the charging device of (11) above, the charging current to be measured is a current flowing from the photosensitive member to the ground.
【0077】(15) 上記(1)〜(6),(8),(9)または(11)
の帯電装置において、帯電部材は、ローラ形状であるこ
とを特徴とするものである。(15) Above (1) to (6), (8), (9) or (11)
In the above charging device, the charging member has a roller shape.
【0078】(16) 上記(1)〜(6),(8)または(11)の帯電
装置において、帯電部材は、ブレード形状であることを
特徴とするものである。(16) In the charging device of (1) to (6), (8) or (11) above, the charging member has a blade shape.
【0079】(17) 上記(1)〜(11)の帯電装置において、
帯電部材は、ブラシ形状であることを特徴とするもので
ある。(17) In the charging device of (1) to (11) above,
The charging member has a brush shape.
【0080】(18) 上記(2),(3),(4),(5)または(6)の
帯電装置において、電流の測定は、一定時刻ごとに行う
ことを特徴とするものである。(18) In the charging device of the above (2), (3), (4), (5) or (6), the current is measured at a constant time.
【0081】(19) 上記(2),(3),(4),(5)または(6)の
帯電装置において、電流の測定は、電源投入直後から最
初の作画工程開始直前までの間に行うことを特徴とする
ものである。(19) In the charging device of (2), (3), (4), (5) or (6), the current is measured from immediately after the power is turned on to immediately before the start of the first drawing process. It is characterized by performing.
【0082】(20) 上記(2),(3),(4),(5)または(6)の
帯電装置において、電流の測定は、作画工程直前に行う
ことを特徴とするものである。(20) In the charging device of (2), (3), (4), (5) or (6) above, the current is measured immediately before the drawing process.
【0083】(21) 上記(2),(3),(4),(5)または(6)の
帯電装置において、電流の測定は、作画工程直後に行う
ことを特徴とするものである。(21) In the charging device of the above (2), (3), (4), (5) or (6), the current is measured immediately after the drawing process.
【0084】(22) 上記(2),(3),(4),(5)または(6)の
帯電装置において、電流の測定は、電源投入直後から最
初の作画工程開始直前までの間、または一定時刻ごと、
または作画工程直後のうち、2種類以上の組み合わせで
あることを特徴とするものである。(22) In the charging device of (2), (3), (4), (5) or (6), the current is measured from immediately after the power is turned on to immediately before the start of the first drawing process. Or at regular time intervals,
Alternatively, it is characterized in that two or more kinds are combined immediately after the drawing process.
【0085】(23) 上記(1)〜(10)の帯電装置において、
被帯電体はドラム状であることを特徴とするものであ
る。(23) In the charging device of (1) to (10) above,
The member to be charged has a drum shape.
【0086】(24) 上記(1)〜(10)の帯電装置において、
被帯電体はベルト状であることを特徴とするものであ
る。(24) In the charging device of (1) to (10) above,
The member to be charged has a belt shape.
【0087】(25) 上記(11)の帯電装置において、感光
体はドラム状であることを特徴とするものである。(25) In the charging device of (11) above, the photoconductor is drum-shaped.
【0088】(26) 上記(11)の帯電装置において、感光
体はベルト状であることを特徴とするものである。(26) In the charging device described in (11) above, the photoconductor is belt-shaped.
【0089】(27) 上記(3),(4),(5)または(6)の帯電
装置において、被帯電体表面の像を像担持体に転写する
転写手段を備え、除電手段は前記転写手段が兼ねている
ことを特徴とするものである。(27) In the charging device of (3), (4), (5) or (6) above, a transfer means for transferring the image on the surface of the body to be charged to the image carrier is provided, and the charge removing means is the transfer means. It is characterized in that the means also serves.
【0090】[0090]
【作用】本発明は前記した構成により、前記(第1の課
題)から(第9の課題)に対し、以下の作用を有する。The present invention has the following actions with respect to the above (first subject) to (9th subject) due to the above-mentioned configuration.
【0091】(第1の課題)に対しては、前記(3),(4),
(5)および(6)の構成により、帯電抵抗を逐次測定し、補
正を加えながら帯電部材への最適な印加電圧を決定す
る。For (first problem), the above (3), (4),
With the configurations of (5) and (6), the charging resistance is sequentially measured, and the optimum applied voltage to the charging member is determined while making corrections.
【0092】また、(第2の課題)に対しては、前記
(1),(2),(3),(4),(5)および(6)の構成により、帯電
抵抗値を用いて、補正を加えながら帯電部材への最適な
印加電圧を決定する。Regarding (second problem),
With the configurations of (1), (2), (3), (4), (5), and (6), the optimum applied voltage to the charging member is determined while correcting the charging resistance value.
【0093】また、(第3の課題)に対しては、前記
(2),(3)および(4)の構成により、感光体を含む被帯電
体に流れる電流と、感光体電位を含む被帯電体の表面電
位の比例係数kを逐次測定しながら、帯電部材への最適
な印加電圧を決定する。Regarding (third problem),
With the configurations of (2), (3) and (4), the charging member is continuously measured while the proportional coefficient k between the current flowing through the charged body including the photoconductor and the surface potential of the charged body including the photoconductor potential is sequentially measured. Determine the optimum applied voltage to.
【0094】また、(第4の課題)に対しては、前記(4)
および(6)の構成により、リーク電流分を補正しなが
ら、帯電部材への最適な印加電圧を決定する。Regarding (fourth problem), the above (4)
With the configurations of (6) and (6), the optimum applied voltage to the charging member is determined while correcting the leakage current.
【0095】また、(第5の課題)に対しては、前記(8)
の構成により、感光体に起因する過渡電流を、誤って測
定することなく、帯電部材への最適な印加電圧を決定す
る。Regarding (fifth problem), the above (8)
With this configuration, the optimum applied voltage to the charging member is determined without erroneously measuring the transient current caused by the photoconductor.
【0096】また、(第6の課題)に対しては、前記(9)
および(10)の構成により、回転するローラ状の帯電部材
に起因する過渡電流を、誤って測定することなく、帯電
部材への最適な印加電圧を決定する。Regarding (sixth problem), the above (9)
With the configurations of (10) and (10), the optimum applied voltage to the charging member is determined without erroneously measuring the transient current caused by the rotating roller-shaped charging member.
【0097】また、(第7の課題)に対しては、前記(7)
の構成により、回転するローラ状の帯電部材に起因する
ノイズを除去し、帯電部材への最適な印加電圧を決定す
る。Regarding (seventh problem), the above (7)
With this configuration, the noise caused by the rotating roller-shaped charging member is removed, and the optimum applied voltage to the charging member is determined.
【0098】また、(第8の課題)に対しては、前記(21)
および(22)の構成により、少なくとも、作画命令後から
作画工程開始までの間に、本発明の測定工程が実行する
ことはない。Regarding (eighth problem), the above (21)
With the configurations of (22) and (22), the measurement step of the present invention is not executed at least between after the drawing instruction and the start of the drawing step.
【0099】また、(第9の課題)に対しては、前記(11)
の構成により、帯電前の感光体電位を常に0Vとして、
電流測定を行い、帯電部材への最適な印加電圧を決定す
る。Regarding (9th problem), the above (11)
With the above configuration, the photoconductor potential before charging is always 0V,
The current is measured and the optimum applied voltage to the charging member is determined.
【0100】[0100]
【実施例】以下、図面を参照しながら実施例を詳細に説
明する。 (第1の実施例)まず、図2は本発明の実施例に使用され
る帯電部材としての帯電ローラの構成を示したものであ
る。図2において、2は帯電ローラで、長さ29cm、直径
φ6mmの芯金の周囲に導電処理を施した肉厚3mmのウレ
タンをローラ状に形成したものである。芯金のうち両端
8mmずつはウレタンを形成していない。帯電ローラ2
は、ウレタンが形成されていない芯金両端で保持され、
芯金の一端から電圧が印加される。Embodiments will be described in detail below with reference to the drawings. (First Embodiment) First, FIG. 2 shows a structure of a charging roller as a charging member used in an embodiment of the present invention. In FIG. 2, reference numeral 2 is a charging roller, which is a roller-shaped core metal having a length of 29 cm and a diameter of φ6 mm, which is made of conductive material and has a thickness of 3 mm. No urethane is formed on both ends of the core metal 8 mm each. Charging roller 2
Is held at both ends of the core metal with no urethane formed,
A voltage is applied from one end of the cored bar.
【0101】図3は本発明の実施例に使用される被帯電
部材としての感光体1の構成を示したものである。長さ
30cm、ドラム径φ30mm、肉厚1mmのアルミ素管表面に膜
厚26μmの有機感光体を塗布したものである。FIG. 3 shows the structure of the photosensitive member 1 as the member to be charged used in the embodiment of the present invention. length
An organic photoreceptor having a film thickness of 26 μm is applied to the surface of an aluminum tube having a diameter of 30 cm, a drum diameter of 30 mm, and a wall thickness of 1 mm.
【0102】非露光時の感光体は誘電体と見なせるの
で、表面電位0Vの感光体をVoに帯電するとき、帯電
電位Voは帯電部材に流れる電流Irに比例する。以下、
帯電時に帯電部材に流れる電流を帯電電流と呼ぶことも
ある。Since the photoconductor at the time of non-exposure can be regarded as a dielectric, when the photoconductor having a surface potential of 0 V is charged to Vo, the charging potential Vo is proportional to the current Ir flowing through the charging member. Less than,
The current flowing through the charging member during charging may be referred to as a charging current.
【0103】図4は感光体の帯電特性を示す図である。
図4において、横軸は感光体に流れ込む電流Irの絶対
値、縦軸は感光体の帯電電位Voの絶対値である。図4
の傾きは電流Irの絶対値と帯電電位Voの絶対値との比
例係数で、比例係数kを帯電係数と名付ける。初期の表
面電位0Vの感光体を帯電する場合、帯電電流Irの絶
対値をk倍すると、帯電電位Voの絶対値となる。FIG. 4 is a diagram showing the charging characteristics of the photoconductor.
In FIG. 4, the horizontal axis represents the absolute value of the current Ir flowing into the photoconductor, and the vertical axis represents the absolute value of the charging potential Vo of the photoconductor. FIG.
Is the proportional coefficient between the absolute value of the current Ir and the absolute value of the charging potential Vo, and the proportional coefficient k is named the charging coefficient. In the case of charging a photoreceptor having an initial surface potential of 0 V, multiplying the absolute value of the charging current Ir by k gives the absolute value of the charging potential Vo.
【0104】本実施例における帯電部材への印加電圧の
決定に先立ち、電源から、帯電部材が帯電領域に接する
感光体表面までの抵抗値を予め測定する。以下、図5を
参照しながら、帯電抵抗Rrの測定方法を説明する。Prior to the determination of the voltage applied to the charging member in this embodiment, the resistance value from the power source to the surface of the photosensitive member where the charging member contacts the charging area is measured in advance. Hereinafter, a method of measuring the charging resistance Rr will be described with reference to FIG.
【0105】図5は帯電試験機で、本実施例では、帯電
抵抗Rrの測定に使う。1は感光体、2は帯電ローラ、
3は除電光、4は定電圧の電源、11は電流測定手段、41
は表面電位測定プローブ、42は表面電位計である。表面
電位計42は表面電位測定プローブ41が測定した感光体1
の表面の電位を表示する。FIG. 5 shows a charging tester, which is used to measure the charging resistance Rr in this embodiment. 1 is a photoconductor, 2 is a charging roller,
3 is static elimination light, 4 is a constant voltage power source, 11 is current measuring means, 41
Is a surface potential measuring probe, and 42 is a surface potential meter. The surface potential meter 42 is the photoreceptor 1 measured by the surface potential measuring probe 41.
Display the surface potential of the.
【0106】帯電ローラ2と感光体1との間の帯電開始
電圧をVthとすると、絶対値がVth以上で、極性が作画
工程における感光体1の最適表面電位Vo_optと同じ電
圧Vtestを、電源4から帯電ローラ2に印加する。この
とき、帯電ローラ2に流れる電流を電流測定手段11で測
定する。帯電抵抗Rrは次の手順で求められる。Assuming that the charging start voltage between the charging roller 2 and the photoconductor 1 is Vth, a voltage Vtest whose absolute value is Vth or more and whose polarity is the same as the optimum surface potential Vo_opt of the photoconductor 1 in the image forming process is supplied to the power source 4. Is applied to the charging roller 2. At this time, the current flowing through the charging roller 2 is measured by the current measuring means 11. The charging resistance Rr is obtained by the following procedure.
【0107】(ア) 感光体を矢印の方向に周速vpで回転
する。 (イ) 帯電ローラ2へ電圧を印加しない状態で感光体1
を回転し、除電光3を点灯し、感光体の表面電位を0V
にする。 (ウ) 除電光3を点灯した状態で、帯電ローラ2に電圧
Vtestを印加する。少なくとも感光体1を3周以上回転
した後、流れる電流Ir_test、および感光体の表面電位
Vo_t1を測定する。 (エ) 除電光3を消灯した後、少なくとも感光体1が3
周以上回転したときの、感光体1の表面電位Vo_t2を測
定する。 (オ) 帯電電流が流れるとき、帯電抵抗Rrで電圧は低下
する。そのため、除電しながら帯電するとき、感光体1
の表面電位の絶対値Vo_t1は、 Vo_t1=|Vtest|−Vth−(Rr×|Ir_test|) …………… (8) となる。一方、除電せずに帯電する場合の感光体1の表
面電位の絶対値Vo_t2は、 Vo_t2=|Vtest|−Vth ……………………………………… (9) である。したがって、帯電抵抗Rrは(式10) Rr=|Vo_t2−Vo_t1|/|Ir_test| …………………… (10) ただし、| |は絶対値記号 で求められる。(A) The photoconductor is rotated in the direction of the arrow at the peripheral speed vp. (A) Photoreceptor 1 with no voltage applied to charging roller 2
To turn on the neutralization light 3 and set the surface potential of the photoconductor to 0V.
To (C) The voltage Vtest is applied to the charging roller 2 with the neutralization light 3 turned on. After rotating the photoconductor 1 at least three times or more, the flowing current Ir_test and the surface potential Vo_t1 of the photoconductor are measured. (D) After turning off the static elimination light 3, at least the photoconductor 1 is set to 3
The surface potential Vo_t2 of the photoconductor 1 when it is rotated for more than one revolution is measured. (E) When the charging current flows, the voltage decreases due to the charging resistance Rr. Therefore, when charging while removing the charge, the photoconductor 1
The absolute value Vo_t1 of the surface potential of is: Vo_t1 = | Vtest | −Vth− (Rr × | Ir_test |) (8) On the other hand, the absolute value Vo_t2 of the surface potential of the photoconductor 1 when it is charged without being discharged is Vo_t2 = | Vtest | −Vth .................................... (9). Therefore, the charging resistance Rr is (Equation 10) Rr = | Vo_t2-Vo_t1 | / | Ir_test | …………………… (10) However, ||
【0108】実測では、Vtest=−1100Vを帯電ローラ
2に印加した。除電光3を点灯した場合の感光体1の表
面電位Vo_t1は−436V、帯電電流Ir_t1は4.4μAであ
った。また、除電光3を消灯した場合、感光体1の表面
電位Vo_t2は−476Vであった。したがって、(式10)か
ら帯電抵抗Rrは9.1MΩと求められた。本実施例では、
このRrを用いて、次のように帯電部材への印加電圧を
決定する。In the actual measurement, Vtest = −1100V was applied to the charging roller 2. The surface potential Vo_t1 of the photoconductor 1 was −436 V and the charging current Ir_t1 was 4.4 μA when the charge eliminating light 3 was turned on. When the charge eliminating light 3 was turned off, the surface potential Vo_t2 of the photoconductor 1 was -476V. Therefore, the charging resistance Rr was determined to be 9.1 MΩ from (Equation 10). In this embodiment,
This Rr is used to determine the voltage applied to the charging member as follows.
【0109】図1は本発明の第1の実施例の画像形成装
置の概略構成を示したものである。本実施例の画像形成
装置は、感光体上に作像した後、紙に転写する電子写真
方式のものである。図1において、1はドラム状の感光
体で、図3に示した構成である。感光体1は図示されて
いない駆動モータにより矢印方向に周速vp=33mm/sで
回転される。2は感光体に接触させた帯電部材としての
帯電ローラで、感光体1との摩擦力によって回転する。FIG. 1 shows a schematic structure of an image forming apparatus according to the first embodiment of the present invention. The image forming apparatus of this embodiment is of an electrophotographic type in which an image is formed on a photoconductor and then transferred to paper. In FIG. 1, reference numeral 1 denotes a drum-shaped photosensitive member, which has the configuration shown in FIG. The photoconductor 1 is rotated at a peripheral speed vp = 33 mm / s in the arrow direction by a drive motor (not shown). Reference numeral 2 denotes a charging roller as a charging member which is brought into contact with the photoconductor, and is rotated by a frictional force with the photoconductor 1.
【0110】35は像書き込み手段としてのレーザ光源
で、出射されたレーザ光はミラー36で反射されたのち感
光体1の表面に照射され、感光体1上に潜像を作る。31
は現像器で感光体1上の潜像をトナーにより顕像化す
る。32は転写手段としての転写ローラ、37は転写電源
で、転写ローラ32に対して+2μAを印加するか、また
は電気的フロート状態にするかを選択できる機能を備え
ている。転写ローラ32は紙34に感光体1上のトナーを転
写する。転写時には+2μAが転写電源37から転写ロー
ラ32に印加される。33はクリーニング・ブレードで感光
体1上に残留しているトナーを掻き落とす。3は除電手
段としての除電光であり、感光体1を照射して表面電位
を0Vにする。Reference numeral 35 denotes a laser light source as an image writing means. The emitted laser light is reflected by the mirror 36 and then is irradiated on the surface of the photoconductor 1 to form a latent image on the photoconductor 1. 31
Develops the latent image on the photoconductor 1 with toner in a developing device. Reference numeral 32 denotes a transfer roller as a transfer unit, and 37 denotes a transfer power source, which has a function of selecting whether +2 μA is applied to the transfer roller 32 or an electric float state is selected. The transfer roller 32 transfers the toner on the photoconductor 1 onto the paper 34. During transfer, +2 μA is applied from the transfer power supply 37 to the transfer roller 32. A cleaning blade 33 scrapes off the toner remaining on the photoconductor 1. Reference numeral 3 denotes a static elimination light as a static elimination means, which irradiates the photoconductor 1 to set the surface potential to 0V.
【0111】4は電源で、2種類以上の値の異なる直流
電圧を選択的に帯電ローラ2に印加する。本実施例で
は、Vin1=−900VとVin2=−1100Vの2種類の直流
電圧を選択的に帯電ローラ2に印加する。さらに作画時
には−800Vから−1300Vの範囲の電圧を5Vステップ
で選択し、帯電ローラ2に印加する。A power source 4 selectively applies two or more kinds of DC voltages having different values to the charging roller 2. In this embodiment, two kinds of direct current voltages of Vin1 = -900V and Vin2 = -1100V are selectively applied to the charging roller 2. Further, at the time of image formation, a voltage in the range of -800V to -1300V is selected in 5V steps and applied to the charging roller 2.
【0112】11は電流測定手段で、電源4から帯電ロー
ラ2に流れる電流を測定する。10は制御手段であり、電
流測定手段11が測定した電流値を入力する機能と、入力
した値を記憶する機能と、入力および記憶された値に演
算を加える機能と、電源4および転写電源37を制御する
機能を備えている。以下に制御手段10の作用について、
図6を参照しながら説明する。A current measuring means 11 measures the current flowing from the power source 4 to the charging roller 2. Reference numeral 10 denotes a control means, which has a function of inputting a current value measured by the current measuring means 11, a function of storing the input value, a function of performing an arithmetic operation on the input and the stored value, a power source 4 and a transfer power source 37. It has a function to control. The operation of the control means 10 will be described below.
This will be described with reference to FIG.
【0113】図6は制御手段10の動作をタイミングチャ
ートで示したものである。横軸矢印方向に時間が経過す
る。上から感光体の回転、帯電ローラ2への印加電圧V
in、除電光3の点灯(on)または消灯(off)、帯電ローラ
2に流れる帯電電流の絶対値Ir、転写電源37が転写ロ
ーラ32に印加する電流、現像器31による現像位置での感
光体1の表面電位Voをそれぞれ示している。そのまま
表示すると煩雑なので、図6の感光体表面電位Voは、
移動する感光体1上の1点が帯電ローラ2の帯電領域か
ら現像器31の現像領域まで移動するのに要する時間Trd
だけ進めて示した。また、帯電ローラ2が1回転するの
に要する時間をTr、感光体1が1回転するのに要する
時間をTpとする。時間TrおよびTpは、帯電ローラ2
の直径,感光体1の直径,感光体1の周速vpから予め
求められる。FIG. 6 is a timing chart showing the operation of the control means 10. Time elapses in the direction of the horizontal axis arrow. Rotation of photoconductor from above, voltage V applied to charging roller 2
in, lighting (on) or extinguishing (off) of the static elimination light 3, the absolute value Ir of the charging current flowing through the charging roller 2, the current applied to the transfer roller 32 by the transfer power supply 37, and the photoconductor at the developing position by the developing device 31. The surface potential Vo of No. 1 is shown. Since it is complicated to display it as it is, the photoreceptor surface potential Vo in FIG.
Time Trd required for one point on the moving photoreceptor 1 to move from the charging area of the charging roller 2 to the developing area of the developing device 31
Just advanced. Further, the time required for the charging roller 2 to make one rotation is Tr, and the time required for the photosensitive member 1 to make one rotation is Tp. The charging time of the charging roller 2 is Tr and Tp.
, The diameter of the photosensitive member 1, and the peripheral speed vp of the photosensitive member 1.
【0114】図6において、作画工程に先立ち感光体1
が回転を開始する前から、転写電源37をフロート状態と
し、転写ローラ32が感光体1を帯電しない状態にする。
感光体1の回転が十分安定するだけの時間を経過した
後、時刻T1に帯電ローラ2に電圧Vin1を印加する。V
in1が印加された時刻T1から帯電ローラ2が1周するま
での間(時刻T1+Tr)は電流値が不安定なので無視し、
帯電ローラ2が1周以上回転した後の電流値Ir1を測定
する。これが第1の測定である。In FIG. 6, prior to the image forming process, the photoconductor 1
Before the start of rotation, the transfer power supply 37 is set in a floating state, and the transfer roller 32 does not charge the photoconductor 1.
The voltage Vin1 is applied to the charging roller 2 at time T1 after a time sufficient for the rotation of the photoconductor 1 to be sufficiently stabilized. V
Since the current value is unstable from the time T1 when in1 is applied until the charging roller 2 makes one revolution (time T1 + Tr), it is ignored.
The current value Ir1 after the charging roller 2 has rotated one round or more is measured. This is the first measurement.
【0115】第1の測定の後、帯電ローラ2に電圧Vin
2を印加する。このとき流れる電流のうちVin2が印加さ
れた直後から帯電ローラ2が1周するまでの間(時間T
r)に帯電ローラ2に流れる電流は不安定なので無視し、
帯電ローラ2が1周以上回転した後の電流値Ir2を測定
する。これが第2の測定である。After the first measurement, the voltage Vin applied to the charging roller 2
Apply 2. Of the current flowing at this time, from immediately after Vin2 is applied to when the charging roller 2 makes one revolution (time T
Since the current flowing through the charging roller 2 in r) is unstable, ignore it.
The current value Ir2 after the charging roller 2 has rotated one revolution or more is measured. This is the second measurement.
【0116】制御手段10は、測定値Ir1,Ir2および予
め測定された帯電抵抗Rrから、作画時に最適な印加電
圧の絶対値Vin_optを決定する。そして、絶対値がVin
_optに最も近く、極性が作画工程における感光体1の最
適表面電位Vo_optと同じ電圧になるように電源4を制
御する。現像位置での感光体1の表面電位Voが目標電
位になった時刻から現像が可能で、作画工程は開始す
る。作画工程に入り、制御手段10は転写電源37を制御し
て転写電圧を+2μAとし、紙34への転写を行う。The control means 10 determines the optimum absolute value Vin_opt of the applied voltage at the time of image formation from the measured values Ir1 and Ir2 and the previously measured charging resistance Rr. And the absolute value is Vin
The power supply 4 is controlled so that it is closest to _opt and the polarity becomes the same voltage as the optimum surface potential Vo_opt of the photoconductor 1 in the drawing process. Development is possible from the time when the surface potential Vo of the photoconductor 1 at the developing position reaches the target potential, and the image forming process starts. In the image forming process, the control means 10 controls the transfer power supply 37 to set the transfer voltage to +2 μA and transfers the paper 34.
【0117】作画時の印加電圧Vin_optの決定方法を図
7で説明する。図7は制御手段10の動作をフローチャー
トで示したものであり、次の手順で最適印加電圧を決定
する。 (a) 感光体が回転を開始した後、作画工程に先立ち帯電
ローラ2にVin1を印加する。 (b) 印加電圧Vin1に対応し、電源4から帯電ローラ2
に流れる電流Ir1を電流測定手段11が測定し、測定され
た電流値を制御手段10が入力し記憶する。 (c) 電源4を制御し、帯電ローラ2に対する印加電圧を
Vin2にする。 (d) 印加電圧Vin2に対応し、電源4から帯電ローラ2
に流れる電流Ir2を電流測定手段11が測定し、測定され
た電流値を制御手段10が入力し記憶する。A method of determining the applied voltage Vin_opt at the time of drawing will be described with reference to FIG. FIG. 7 is a flow chart showing the operation of the control means 10. The optimum applied voltage is determined by the following procedure. (a) After the photosensitive member starts rotating, Vin1 is applied to the charging roller 2 before the image forming process. (b) Corresponding to the applied voltage Vin1, from the power source 4 to the charging roller 2
The current Ir1 flowing through the device is measured by the current measuring means 11, and the measured current value is inputted and stored in the control means 10. (c) The power supply 4 is controlled to set the voltage applied to the charging roller 2 to Vin2. (d) Corresponding to the applied voltage Vin2, from the power source 4 to the charging roller 2
The current Ir2 flowing in the current is measured by the current measuring means 11, and the measured current value is inputted and stored in the control means 10.
【0118】(e) 入力された測定電流から、感光体1の
帯電係数kと帯電抵抗Rrの和k+Rrを(式11)で推定す
る。 k+Rr=|Vin1−Vin2|/|Ir1−Ir2| ……………… (11) (f) 予め求められた帯電抵抗Rrと感光体1の目標電位
Vo_optから最適な帯電電流の絶対値Ir_optを(式12)で
求める。 Ir_opt=|Vo_opt|/k =|Vo_opt|/{|Vin1−Vin2|/|Ir1−Ir2|−Rr} …… (12) (g) 作画時の最適印加電圧の絶対値Vin_optは、 Vin_opt=(k+Rr)×|Ir_opt−Ir1|+|Vin1| …… (13) または、 Vin_opt=(k+Rr)×|Ir_opt−Ir2|+|Vin2| …… (14) で求める。(E) The sum k + Rr of the charging coefficient k of the photoconductor 1 and the charging resistance Rr is estimated from (Equation 11) from the input measured current. k + Rr = | Vin1−Vin2 | / | Ir1−Ir2 | (11) (f) The optimum absolute value Ir_opt of the charging current is calculated from the previously obtained charging resistance Rr and the target potential Vo_opt of the photoconductor 1. Calculate with (Equation 12). Ir_opt = | Vo_opt | / k = | Vo_opt | / {| Vin1-Vin2 | / | Ir1-Ir2 | -Rr} (12) (g) The absolute value Vin_opt of the optimum applied voltage at the time of printing is Vin_opt = ( k + Rr) × | Ir_opt−Ir1 | + | Vin1 | (13) or Vin_opt = (k + Rr) × | Ir_opt−Ir2 | + | Vin2 | (14).
【0119】以上の手順に基づき、印加電圧Vin1=−9
00V、Vin2=−1100Vにおける実測値を示す。除電光
3を点灯させながら新品の感光体(感光体の膜厚26μm)
を帯電するときに流れる電流値を実測すると、それぞれ
Vin1に対してはIr1=2.6μA、Vin2に対してはIr2=
4.4μAであった。k+Rrは電位の単位をV、電流の単
位をμAとすると、(式11)から、111.1(V/μA)であっ
た。他方、予め測定された帯電抵抗Rrは9.1MΩであ
り、したがって帯電係数kの値はk=102.1(V/μA)で
あった。Based on the above procedure, the applied voltage Vin1 = -9
The measured values at 00V and Vin2 = -1100V are shown. A new photoconductor (photoconductor film thickness 26μm) while turning off the static elimination light 3
When the current value flowing when charging is measured, Ir1 = 2.6 μA for Vin1 and Ir2 = for Vin2, respectively.
It was 4.4 μA. Assuming that the unit of potential is V and the unit of current is μA, k + Rr was 111.1 (V / μA) from (Equation 11). On the other hand, the pre-measured charging resistance Rr was 9.1 MΩ, and therefore the value of the charging coefficient k was k = 102.1 (V / μA).
【0120】感光体1の作画時の目標電位を−450Vと
すると、最適な電流値は(式12)から4.4μA、最適な印加
電圧の絶対値は(式13)から1101Vであった。電源4の出
力電圧は5Vステップなので、絶対値が1101Vに最も近
く、かつ極性が作画工程における感光体1の最適表面電
位Vo_optと同じ電圧−1100Vを実際に帯電ローラ2に
印加して検証を行った。その結果、感光体1の表面電位
は−440Vで、目標値に近い値が得られた。When the target potential at the time of image formation of the photoconductor 1 was -450 V, the optimum current value was 4.4 μA from (Equation 12), and the absolute value of the optimum applied voltage was 1101 V from (Equation 13). Since the output voltage of the power supply 4 is in 5V steps, the absolute value is closest to 1101V and the polarity is the same as the optimum surface potential Vo_opt of the photoconductor 1 in the image forming process, ie, -1100V is actually applied to the charging roller 2 for verification. It was As a result, the surface potential of the photoconductor 1 was -440V, which was close to the target value.
【0121】次に10万枚ランニングした後に膜厚が18μ
mとなった感光体を、同じく印加電圧Vin1=−900Vと
Vin2=−1100Vで帯電したときの実測値を示す。除電
光3を点灯させながら帯電するときに流れる電流値を実
測すると、それぞれIr1=4.4μA、Ir2=6.9μAであっ
た。膜厚18μmのときの帯電係数をk′とすると、k′
+Rrは(式11)から80.0(V/μA)となった。帯電抵抗R
rは9.1MΩなので、帯電係数k′=71.0(V/μA)であ
った。Next, after running 100,000 sheets, the film thickness is 18μ.
The measured values when the photosensitive member having m is charged with the applied voltage Vin1 = -900V and Vin2 = -1100V are shown. When the values of the currents that flow when charging the static elimination light 3 while lighting it are measured, they are Ir1 = 4.4 μA and Ir2 = 6.9 μA, respectively. Assuming that the charging coefficient at a film thickness of 18 μm is k ′, k ′
+ Rr became 80.0 (V / μA) from (Equation 11). Charging resistance R
Since r was 9.1 MΩ, the charging coefficient k ′ was 71.0 (V / μA).
【0122】感光体1の目標電位を−450Vとすると、
帯電ローラ2に対する最適な電流値は(式12)から6.3μ
A、また帯電ローラ2に対する最適な印加電圧の絶対値
は1055Vであった。実際に極性を作画工程における
感光体の最適表面電位と同じ電圧−1055Vを帯電ロ
ーラ2に印加すると感光体の表面電位は−438Vとな
り、目標電位と近い値が得られた。以上のように本実施
例によれば、感光体の膜厚の変化に影響されずに感光体
表面電位を目標値に設定することができた。Assuming that the target potential of the photosensitive member 1 is −450V,
The optimum current value for the charging roller 2 is 6.3μ from (Equation 12).
A, and the optimum absolute value of the applied voltage to the charging roller 2 was 1055V. When a voltage of -1055V, which is the same as the optimum surface potential of the photoconductor in the image forming process, is applied to the charging roller 2, the surface potential of the photoconductor is -438V, which is close to the target potential. As described above, according to this example, the surface potential of the photoconductor could be set to the target value without being affected by the change in the film thickness of the photoconductor.
【0123】(比較例1)比較として、第1の実施例で帯
電抵抗Rrを考慮しない場合を試みた。この場合、Rr=
0とみなし、(式11)のk+Rrのところをkとおく。新
品の感光体(感光体の膜厚26μm)の場合、電位の単位を
V、電流の単位をμAとすると、Rr=0の仮定より、
(k+Rr)=k=111.1(V/μA)であった。印加電圧Vi
n1=−900V、帯電電流Ir1=2.6μAを(式4)に代入す
ると、目標電位−450Vに対する最適な印加電圧の絶対
値は、Vin_opt″=1061Vと算出された。ところが実際
に、−1061Vを帯電ローラ2に印加したときの感光体1
の表面電位は−403Vとなり、目標値−450Vから47Vず
れた。(Comparative Example 1) As a comparison, the case where the charging resistance Rr was not taken into consideration in the first example was tried. In this case, Rr =
It is regarded as 0, and k + Rr in (Equation 11) is set as k. In the case of a new photoconductor (photoconductor film thickness 26 μm), assuming that the unit of potential is V and the unit of current is μA, from the assumption of Rr = 0,
(k + Rr) = k = 111.1 (V / μA). Applied voltage Vi
Substituting n1 = −900V and charging current Ir1 = 2.6 μA into (Equation 4), the absolute value of the optimum applied voltage with respect to the target potential −450V was calculated as Vin_opt ″ = 1061V. Photosensitive member 1 when applied to charging roller 2
Has a surface potential of -403V, which is 47V away from the target value of -450V.
【0124】次に10万枚ランニングした後で感光体の膜
厚が18μmとなった感光体を帯電する場合、k=80.0、
Vin1=−900V、Ir1=4.4μAを(式4)に代入すると、
目標電位−450Vに対する最適な印加電圧の絶対値は、
Vin_opt″=996Vであった。ところが実際に、−996V
を帯電ローラ2に印加したときの感光体1の表面電位は
−387Vとなり、目標値−450Vから63Vずれた。いずれ
の場合も目標電位からのズレ量が大きく、実用化できな
かった。Next, in the case of charging the photoconductor in which the film thickness of the photoconductor became 18 μm after running 100,000 sheets, k = 80.0,
Substituting Vin1 = -900V and Ir1 = 4.4 μA into (Equation 4),
The optimum absolute value of the applied voltage for the target potential of -450V is
Vin_opt "= 996V. However, actually, -996V
Is applied to the charging roller 2, the surface potential of the photoconductor 1 is -387V, which is 63V from the target value of -450V. In any case, the amount of deviation from the target potential was large and it was not possible to put it into practical use.
【0125】(第2の実施例)感光体の膜厚が減少しない
場合は、電流値の測定は1回でよい。ここで、感光体の
膜厚が減少しない場合とは、硬度の高い感光体膜を使う
場合、または感光体の表面に硬度の高いコーティングを
施す場合、または感光体の寿命が短く、膜厚の減少を生
じる前に感光体を交換することが仕様上決定している場
合などである。(Second Embodiment) If the film thickness of the photoconductor does not decrease, the current value may be measured once. Here, the case where the film thickness of the photoconductor does not decrease means that the photoconductor film having high hardness is used, or the surface of the photoconductor is coated with high hardness, or the life of the photoconductor is short and the film thickness of the photoconductor is short. This is the case, for example, when it is determined in the specifications that the photoconductor should be replaced before the reduction occurs.
【0126】非露光時の感光体は誘電体と見なせるの
で、表面電位0Vの感光体をVoに帯電するとき、図4
に示すように感光体に流れる電流Irは帯電電位Voに比
例する。図4は感光体の帯電特性を示す図であり、横軸
は感光体に流れ込む電流の絶対値、縦軸は感光体の帯電
電位である。直線の傾きkは電流Irと帯電電位Voの比
例係数である。以下、比例係数kを帯電係数と呼ぶ。初
期の表面電位0Vの感光体を帯電する場合、帯電電流I
rをk倍すると帯電電位Voとなる。帯電係数kを求める
実験を図5を参照しながら説明する。Since the photosensitive member at the time of non-exposure can be regarded as a dielectric member, when the photosensitive member having a surface potential of 0 V is charged to Vo, as shown in FIG.
As shown in, the current Ir flowing in the photoconductor is proportional to the charging potential Vo. FIG. 4 is a diagram showing the charging characteristics of the photoconductor, where the horizontal axis is the absolute value of the current flowing into the photoconductor and the vertical axis is the charging potential of the photoconductor. The slope k of the straight line is a proportional coefficient between the current Ir and the charging potential Vo. Hereinafter, the proportional coefficient k will be referred to as a charging coefficient. When the photoconductor having an initial surface potential of 0 V is charged, the charging current I
When r is multiplied by k, the electric potential becomes Vo. An experiment for obtaining the charging coefficient k will be described with reference to FIG.
【0127】図5は帯電試験機で、本実施例では感光体
1の帯電係数kの測定に使う。1は感光体、2は帯電ロ
ーラ、3は除電光、4は定電圧電源、11は電流測定手
段、41は表面電位測定プローブ、42は表面電位計であ
る。表面電位計42は表面電位測定プローブ41が測定した
感光体1表面の電位を表示する。FIG. 5 shows a charging tester, which is used to measure the charging coefficient k of the photoconductor 1 in this embodiment. Reference numeral 1 is a photoconductor, 2 is a charging roller, 3 is static elimination light, 4 is a constant voltage power source, 11 is current measuring means, 41 is a surface potential measuring probe, and 42 is a surface electrometer. The surface potential meter 42 displays the potential of the surface of the photoconductor 1 measured by the surface potential measuring probe 41.
【0128】帯電ローラ2と感光体1との間の帯電開始
電圧をVthとすると、電源4が、絶対値がVth以上で極
性が作画工程における感光体1の最適表面電位と同じ電
圧Vt3を帯電ローラ2に印加する。このとき、電源4か
ら帯電ローラ2に流れる電流を電流測定手段11で測定す
る。感光体1の係数kは次の手順で求められる。Assuming that the charging start voltage between the charging roller 2 and the photosensitive member 1 is Vth, the power source 4 charges the same voltage Vt3 as the optimum surface potential of the photosensitive member 1 in absolute value Vth or more and polarity in the image forming process. It is applied to the roller 2. At this time, the current flowing from the power source 4 to the charging roller 2 is measured by the current measuring means 11. The coefficient k of the photoconductor 1 is obtained by the following procedure.
【0129】(A) 感光体1を矢印の方向に周速vpで回
転させながら除電光3を点灯し、帯電前の感光体1の表
面電位を0Vにする。その後、除電光3を点灯した状態
で、帯電ローラ2に帯電開始電圧Vth以上の電圧Vt3を
印加し、少なくとも感光体1が3周以上回転した後に、
帯電ローラ2に流れる電流Ir_t3、および感光体1の表
面電位Vo_t3を測定する。(A) The charge removal light 3 is turned on while rotating the photoconductor 1 at the peripheral speed vp in the direction of the arrow, and the surface potential of the photoconductor 1 before charging is set to 0V. After that, with the neutralization light 3 turned on, a voltage Vt3 that is equal to or higher than the charging start voltage Vth is applied to the charging roller 2, and at least after the photoconductor 1 has rotated three or more times,
The current Ir_t3 flowing through the charging roller 2 and the surface potential Vo_t3 of the photoconductor 1 are measured.
【0130】(B) 感光体1の帯電係数kは、(式15)で求
められる。 k=|Vo_t3/Ir_t3| ……………………………………… (15) ただし、| |は絶対値記号 実測では、帯電ローラ2にVt3=−1100Vを印加したと
きの帯電電流Ir_t1は4.4μA、このときの感光体1の表
面電位Vo_t3は−436Vであったので、感光体1の帯電
係数kは、k=99.1(V/μA)と求められた。(B) The charging coefficient k of the photoconductor 1 is obtained by (Equation 15). k = | Vo_t3 / Ir_t3 | ………………………………………… (15) However, | | is an absolute value symbol. In actual measurement, charging was performed when Vt3 = −1100V was applied to the charging roller 2. The current Ir_t1 was 4.4 μA, and the surface potential Vo_t3 of the photoconductor 1 at this time was −436 V. Therefore, the charging coefficient k of the photoconductor 1 was found to be k = 99.1 (V / μA).
【0131】また第1の実施例と同様に、本実施例にお
いては、作画時の電位制御に先立ち帯電抵抗Rrを予め
測定する。測定の方法は第1の実施例と同じなので、こ
こでは省略する。第1の実施例と同じ帯電ローラを使う
ので、帯電抵抗Rrは第1の実施例と同様に9.1MΩであ
る。Further, as in the first embodiment, in this embodiment, the charging resistance Rr is measured in advance before the potential control during image formation. Since the measuring method is the same as that of the first embodiment, it is omitted here. Since the same charging roller as in the first embodiment is used, the charging resistance Rr is 9.1 MΩ as in the first embodiment.
【0132】本実施例では、上記のようにして求めたk
とRrを用いて、以下の手順で帯電部材への印加電圧を
決定する。本実施例の画像形成装置の構成としては第1
の実施例と同様、図1に示した構成のものが使用でき
る。第1の実施例と異なるのは制御手段10の作用であ
る。In this embodiment, k obtained as described above
And Rr, the applied voltage to the charging member is determined by the following procedure. The configuration of the image forming apparatus of the present embodiment is the first
Similar to the embodiment described in (1), the structure shown in FIG. 1 can be used. The difference from the first embodiment is the operation of the control means 10.
【0133】制御手段10の作用について図8を参照しな
がら説明する。図8は作画工程に先立ち行われる帯電電
流の測定を示したタイミングチャートである。横軸矢印
方向に時間が経過する。また、上から感光体の回転、帯
電ローラ2への印加電圧Vin、除電光3の点灯(on)また
は消灯(off)、帯電ローラ2に流れる帯電電流の絶対値
Ir、転写電源37が転写ローラ32に印加する電流、現像
器31による現像位置での感光体1の表面電位Voをそれ
ぞれ示している。そのまま表示すると煩雑なので、図8
の感光体表面電位Voは、移動する感光体1上の1点が
帯電ローラ2の帯電領域から現像器31の現像領域まで移
動するのに要する時間Trdだけ進めて示した。また、帯
電ローラ2が1回転するのに要する時間をTr、感光体
1が1回転するのに要する時間をTpとする。時間Tr,
Tpは、帯電ローラ2の直径,感光体1の直径および周
速vpから予め求められる。The operation of the control means 10 will be described with reference to FIG. FIG. 8 is a timing chart showing the measurement of the charging current performed prior to the drawing process. Time elapses in the direction of the horizontal axis arrow. Further, rotation of the photoconductor from above, voltage Vin applied to the charging roller 2, turning on or off of the static elimination light 3, absolute value Ir of the charging current flowing through the charging roller 2, transfer power source 37 is the transfer roller. The current applied to 32 and the surface potential Vo of the photoconductor 1 at the developing position by the developing device 31 are shown. Since it is complicated to display it as it is, Fig. 8
The surface potential Vo of the photosensitive member is shown by advancing by the time Trd required for one point on the moving photosensitive member 1 to move from the charging area of the charging roller 2 to the developing area of the developing device 31. Further, the time required for the charging roller 2 to make one rotation is Tr, and the time required for the photosensitive member 1 to make one rotation is Tp. Time Tr,
Tp is obtained in advance from the diameter of the charging roller 2, the diameter of the photoconductor 1 and the peripheral speed vp.
【0134】図8において、作画工程に先立ち感光体1
が回転を開始する前から、転写電源37をフロート状態と
し、転写ローラ32が感光体1を帯電しない状態にする。
感光体1の回転が十分安定するだけの時間を経過した
後、時刻T1に帯電ローラ2へ電圧Vin1を印加する。こ
のとき流れる電流のうち、Vin1が印加された時刻T1
から帯電ローラ2が1周するまでの間(時刻T1+Tr)
は電流値が不安定なので無視し、帯電ローラ2が1周以
上回転した後の電流値Ir1を測定する。In FIG. 8, the photosensitive member 1 is placed prior to the drawing process.
Before the start of rotation, the transfer power supply 37 is set in a floating state, and the transfer roller 32 does not charge the photoconductor 1.
The voltage Vin1 is applied to the charging roller 2 at time T1 after a time sufficient for the rotation of the photosensitive member 1 to sufficiently stabilize. Of the current flowing at this time, time T1 when Vin1 is applied
From the time until the charging roller 2 makes one revolution (time T1 + Tr)
Since the current value is unstable, it is ignored, and the current value Ir1 after the charging roller 2 rotates for one rotation or more is measured.
【0135】制御手段10は、測定値Ir1および予め測定
された帯電抵抗Rrから作画時の最適な印加電圧の絶対
値Vin_optを決定する。次に、絶対値がVin_optに最も
近く、極性が作画工程における感光体1の最適表面電位
と同じ電圧になるように電源4を制御する。現像位置で
の感光体1の表面電位Voが目標電位になった時刻から
作画工程は開始する。作画工程に入り、制御手段10は転
写電源37を制御して転写電圧を+2μAとし、紙34への
転写を行う。The control means 10 determines the optimum absolute value Vin_opt of the applied voltage at the time of image formation from the measured value Ir1 and the previously measured charging resistance Rr. Next, the power supply 4 is controlled so that the absolute value is closest to Vin_opt and the polarity is the same voltage as the optimum surface potential of the photoconductor 1 in the image forming process. The image forming process starts from the time when the surface potential Vo of the photoconductor 1 at the developing position reaches the target potential. In the image forming process, the control means 10 controls the transfer power supply 37 to set the transfer voltage to +2 μA and transfers the paper 34.
【0136】作画時の印加電圧Vin_optの決定方法を図
9で説明する。図9は制御手段10の動作を示したフロー
チャートで、次の手順で作画時の印加電圧を決定する。 (a) 感光体が回転した後、作画工程に先立ち電源4を制
御し、帯電ローラ2にVin1を印加する。 (b) 印加電圧Vin1に対応して電源4から帯電ローラ2
に流れる電流Ir1を電流測定手段11が測定し、測定され
た電流値を制御手段10が入力する。A method of determining the applied voltage Vin_opt at the time of drawing will be described with reference to FIG. FIG. 9 is a flow chart showing the operation of the control means 10. The applied voltage at the time of drawing is determined by the following procedure. (a) After the photoconductor rotates, the power source 4 is controlled and Vin1 is applied to the charging roller 2 before the image forming process. (b) From the power supply 4 to the charging roller 2 corresponding to the applied voltage Vin1
The current Ir1 flowing through the device is measured by the current measuring means 11, and the measured current value is input to the control means 10.
【0137】(c) 印加電圧Vin1と入力された測定電流
Ir1および予め測定された感光体1の帯電係数kから感
光体1を目標電位Vo_optにするための最適電流の絶対
値Ir_optを(式16)で推定する。 Ir_opt=|Vo_opt|/k …………………………………… (16) (d) 予め求められた帯電抵抗Rrから最適な印加電圧の
絶対値Vin_optを、 Vin_opt=(k+Rr)×(Ir_opt−Ir1)+|Vin1| ……… (17) で求める。(C) From the applied voltage Vin1, the input measured current Ir1 and the previously measured charging coefficient k of the photosensitive member 1, the absolute value Ir_opt of the optimum current for setting the photosensitive member 1 at the target potential Vo_opt is calculated by the formula (16). ). Ir_opt = | Vo_opt | / k …………………………………… (16) (d) The optimum absolute value Vin_opt of the applied voltage obtained from the charging resistance Rr is Vin_opt = (k + Rr) X (Ir_opt-Ir1) + | Vin1 | ... (17)
【0138】以上の手順に基づき、除電光3を点灯させ
ながら、印加電圧Vin1=−900Vで新品の感光体(感光
体の膜厚26μm)を帯電するときに流れる電流値を実測す
ると、Ir1=2.6μAであった。一方、予め求めた帯電抵
抗はRr=9.1MΩ、帯電係数はk=99.1(V/μA)であ
った。感光体1の作画時の目標電位を−450Vとする
と、最適な電流値Ir_optを(式16)から4.5μA、最適な
印加電圧の絶対値Vin_optは(式17)から1106Vであっ
た。Based on the above procedure, the current value flowing when charging a new photoconductor (photoconductor film thickness 26 μm) with an applied voltage Vin1 = −900 V while turning on the static elimination light 3 is Ir1 = It was 2.6 μA. On the other hand, the previously obtained charging resistance was Rr = 9.1 MΩ, and the charging coefficient was k = 99.1 (V / μA). When the target potential at the time of image formation of the photoconductor 1 is -450V, the optimum current value Ir_opt is 4.5 μA from (Equation 16), and the absolute value Vin_opt of the optimum applied voltage is 1106V from (Equation 17).
【0139】電源4の出力電圧は5Vステップなので、
絶対値が1106Vに最も近く極性が感光体の光導電性と同
じ電圧−1105Vを実際に帯電ローラ2に印加すると、感
光体1の表面電位は−445Vとなり目標値に近い値が得
られた。以上のように本実施例によれば、感光体の表面
電位を目標値に設定できた。Since the output voltage of the power supply 4 is in 5V steps,
When a voltage of −1105 V, whose absolute value is closest to 1106 V and whose polarity is the same as the photoconductivity of the photoconductor, is actually applied to the charging roller 2, the surface potential of the photoconductor 1 becomes −445 V, which is close to the target value. As described above, according to this embodiment, the surface potential of the photoconductor can be set to the target value.
【0140】(比較例2)比較として、第2の実施例で帯
電抵抗Rrを考慮しない場合を試みる。新品の感光体(感
光体の膜厚26μm)を帯電するとき、(式4)から印加電圧
Vin1=−900V、帯電電流Ir1=2.6μA、感光体目標電
位−450Vに対する最適な印加電圧の絶対値Vin_opt″
=1092Vとなった。ところが実際にVin=−1092Vを帯
電ローラ2に印加すると、光体1の表面電位は−430V
となった。目標値から20Vズレた値で、制御後の精度は
本発明より劣った。(Comparative Example 2) As a comparison, a case where the charging resistance Rr is not taken into consideration in the second embodiment will be tried. When charging a new photoconductor (film thickness of the photoconductor 26 μm), the applied voltage Vin1 = −900 V, the charging current Ir1 = 2.6 μA, and the optimum absolute value of the applied voltage with respect to the photoconductor target potential −450 V are calculated from (Equation 4). Vin_opt ″
= 1092V. However, when Vin = −1092V is actually applied to the charging roller 2, the surface potential of the optical body 1 is −430V.
Became. The value after being shifted by 20 V from the target value was inferior to the present invention in accuracy after control.
【0141】(第3の実施例)帯電部材の抵抗値が雰囲気
環境や経時変化によって変わる場合は、帯電抵抗Rrを
一定と仮定できない。したがって、作画時の帯電抵抗R
rを逐次求める必要がある。実際に吸湿性の高いウレタ
ンの帯電ローラの場合、高湿度環境下では抵抗値が著し
く低下する傾向が見られる。(Third Embodiment) If the resistance value of the charging member changes due to the atmospheric environment or changes with time, it cannot be assumed that the charging resistance Rr is constant. Therefore, the charging resistance R during drawing
It is necessary to find r sequentially. In fact, in the case of a urethane charging roller having a high hygroscopic property, the resistance value tends to remarkably decrease in a high humidity environment.
【0142】以下、本発明の第3の実施例の帯電装置に
ついて、図面を参照しながら説明する。帯電部材として
図2の帯電ローラを、また感光体は図3に示す構成のも
のをそれぞれ用いる。図10は本発明の第3の実施例の画
像形成装置の概略構成を示したものである。なお、図1
と同一名称のものには同一符号を付してある。本実施例
の画像形成装置も、感光体上に作像した後、紙に転写す
る電子写真方式である。Hereinafter, a charging device according to a third embodiment of the present invention will be described with reference to the drawings. The charging roller shown in FIG. 2 is used as the charging member, and the photosensitive member having the structure shown in FIG. 3 is used. FIG. 10 shows a schematic configuration of an image forming apparatus according to the third embodiment of the present invention. FIG.
Those having the same name as are given the same reference numerals. The image forming apparatus of this embodiment is also an electrophotographic type in which an image is formed on a photoconductor and then transferred to paper.
【0143】図10において、1は感光体で、図示しない
駆動モータにより矢印方向に周速vp=33mm/秒で回転
される。2は感光体に接触させた帯電部材としての帯電
ローラで、感光体1との摩擦力によって回転する。35は
像書き込み手段としてのレーザ光源で、出射されたレー
ザ光はミラー36で反射されたのち感光体1表面に照射さ
れ、感光体1上に潜像を作る。31は現像器で、感光体1
上の潜像をトナーにより顕像化する。32は転写手段とし
ての転写ローラ、37は転写電源で、転写ローラ32に対し
て+2μAを印加するか、または電気的フロート状態に
するかを選択できる機能を備えている。転写ローラ32は
紙34に感光体1上のトナーを転写するが、転写時には+
2μAが転写電源37から転写ローラ32に印加される。33
はクリーニング・ブレードで感光体1上に残留している
トナーを掻き落とす。3は除電手段としての除電光、5
は除電光3の除電電源で制御手段10からの指令により除
電光3の点灯と消灯を制御する機能を備えている。除電
光3は点灯時に感光体1を照射し、表面電位を0Vにす
る。In FIG. 10, reference numeral 1 denotes a photoconductor, which is rotated at a peripheral speed vp = 33 mm / sec in the arrow direction by a drive motor (not shown). Reference numeral 2 denotes a charging roller as a charging member which is brought into contact with the photoconductor, and is rotated by a frictional force with the photoconductor 1. Reference numeral 35 denotes a laser light source as an image writing means. The emitted laser light is reflected by the mirror 36 and then is irradiated on the surface of the photoconductor 1 to form a latent image on the photoconductor 1. 31 is a developing device, which is a photoconductor 1.
The upper latent image is visualized with toner. Reference numeral 32 denotes a transfer roller as a transfer unit, and 37 denotes a transfer power source, which has a function of selecting whether +2 μA is applied to the transfer roller 32 or an electric float state is selected. The transfer roller 32 transfers the toner on the photoconductor 1 onto the paper 34, but at the time of transfer +
2 μA is applied from the transfer power source 37 to the transfer roller 32. 33
Is a scraping blade that scrapes off the toner remaining on the photoconductor 1. 3 is static elimination light as static elimination means, 5
Has a function of controlling the turning on and off of the static elimination light 3 in response to a command from the control means 10 by the static elimination power source of the static elimination light 3. The static elimination light 3 irradiates the photoconductor 1 at the time of lighting, and sets the surface potential to 0V.
【0144】4は電源で、2種類以上の値の異なる直流
電圧を選択的に帯電ローラ2に印加する。本実施例では
Vin1=−900VとVin2=−1100Vの2種類の直流電圧
を制御手段10からの指令により選択的に帯電ローラ2に
印加する機能を有し、さらに作画時には−800Vから−1
300Vの範囲の電圧を5Vステップで選択し、帯電ロー
ラ2に印加する。A power source 4 selectively applies two or more kinds of DC voltages having different values to the charging roller 2. In this embodiment, there is a function of selectively applying two kinds of direct current voltage of Vin1 = -900V and Vin2 = -1100V to the charging roller 2 in accordance with a command from the control means 10, and further from -800V to -1 at the time of image formation.
A voltage in the range of 300 V is selected in 5 V steps and applied to the charging roller 2.
【0145】11は電流測定手段で、電源4から帯電ロー
ラ2に流れる電流を測定する。制御手段10は、電流測定
手段11が測定した電流値を入力する機能と、入力した値
を記憶する機能と、入力および記憶された値に演算を加
える機能と、電源4および除電電源5および転写電源37
を制御する機能を備えている。A current measuring means 11 measures the current flowing from the power source 4 to the charging roller 2. The control means 10 has a function of inputting the current value measured by the current measuring means 11, a function of storing the input value, a function of performing an arithmetic operation on the input and the stored value, a power source 4, a static elimination power source 5, and a transfer. Power 37
It has a function to control.
【0146】制御手段10の動作について、図11を参照し
ながら説明する。図11は制御手段の動作をタイミングチ
ャートで示したものであり、横軸矢印方向に時間が経過
する。また、上から感光体の回転、帯電ローラ2への印
加電圧Vin、除電光3の点灯(on)または消灯(off)、帯
電ローラ2に流れる帯電電流の絶対値Ir、転写電源37
が転写ローラ32に印加する電流、現像器31による現像位
置での感光体1の表面電位Voをそれぞれ示している。
そのまま表示すると煩雑なので、図11の感光体表面電位
Voは、移動する感光体1上の1点が帯電ローラ2の帯
電領域から現像機31の現像領域まで移動するのに要する
時間Trdだけ進めて示した。また、帯電ローラ2が1回
転するのに要する時間をTr、感光体1が1回転するの
に要する時間をTpとする。時間Tr,Tpは、帯電ロー
ラ2の直径,感光体1の直径および周速vpから予め求
められる。The operation of the control means 10 will be described with reference to FIG. FIG. 11 is a timing chart showing the operation of the control means, and time elapses in the direction of the arrow on the horizontal axis. Further, rotation of the photoconductor from above, voltage Vin applied to the charging roller 2, turning on or off the static elimination light 3, absolute value Ir of charging current flowing through the charging roller 2, transfer power source 37.
Indicates the electric current applied to the transfer roller 32 and the surface potential Vo of the photoconductor 1 at the developing position by the developing device 31, respectively.
Since it is complicated to display it as it is, the photosensitive member surface potential Vo in FIG. 11 is advanced by the time Trd required for one point on the moving photosensitive member 1 to move from the charging area of the charging roller 2 to the developing area of the developing device 31. Indicated. Further, the time required for the charging roller 2 to make one rotation is Tr, and the time required for the photosensitive member 1 to make one rotation is Tp. The times Tr and Tp are obtained in advance from the diameter of the charging roller 2, the diameter of the photoconductor 1 and the peripheral speed vp.
【0147】図11において、作画工程に先立ち感光体1
が回転を開始する前から、転写電源37をフロート状態と
し、転写ローラ32が感光体1を帯電しない状態にする。
感光体1の回転が十分安定するだけの時間を経過した
後、時刻T1に帯電ローラ2へ電圧Vin1を印加する。V
in1が印加された時刻T1から帯電ローラ2が1周するま
での間(時刻T1+Tr)は電流値が不安定なので無視し、
帯電ローラ2が1周以上した後の電流値Ir1を測定す
る。これが第1の測定である。In FIG. 11, the photoconductor 1 is placed prior to the drawing process.
Before the start of rotation, the transfer power supply 37 is set in a floating state, and the transfer roller 32 does not charge the photoconductor 1.
The voltage Vin1 is applied to the charging roller 2 at time T1 after a time sufficient for the rotation of the photosensitive member 1 to sufficiently stabilize. V
Since the current value is unstable from the time T1 when in1 is applied until the charging roller 2 makes one revolution (time T1 + Tr), it is ignored.
The current value Ir1 after the charging roller 2 makes one revolution or more is measured. This is the first measurement.
【0148】Ir1の測定の後、電源4の印加電圧をVin
2に変える。Vin2が印加された直後から帯電ローラ2が
1周するまでの間(時間Tr)に帯電ローラ2に流れる電
流は不安定なので無視し、帯電ローラ2が1周以上した
後の電流値Ir2を測定する。これが第2の測定である。After measuring Ir1, the applied voltage of the power source 4 is set to Vin.
Change to 2. Immediately after Vin2 is applied and until the charging roller 2 completes one revolution (time Tr), the current flowing through the charging roller 2 is unstable and is ignored, and the current value Ir2 after the charging roller 2 has completed one revolution is measured. To do. This is the second measurement.
【0149】次に、Ir2の測定終了時刻をT2とし、ま
た、移動する感光体1上の1点が除電光3の作用領域か
ら帯電ローラ2の帯電領域まで移動するのに要する時間
をTjrとすると、時刻(T2−Tjr)以降に除電光3を消
灯する。Next, the measurement end time of Ir2 is set to T2, and the time required for one point on the moving photosensitive member 1 to move from the area where the static elimination light 3 acts to the charging area of the charging roller 2 is set to Tjr. Then, the static elimination light 3 is turned off after the time (T2-Tjr).
【0150】本実施例では、Ir2の測定の後、電源4の
印加電圧はVin2のまま、除電光3を消灯する。除電光
3の消灯後、除電されていた感光体面と除電されていな
い感光体面との境界が前記帯電部材に接触した時刻をT
3とする。時刻T3は感光体1の周速vpと除電光3と帯
電ローラ2の位置関係から予め求められる。時刻T3か
ら(T3+Tp)までの間に前記帯電部材に流れる電流Ir3
を測定する。In this embodiment, after the Ir2 measurement, the voltage applied to the power source 4 remains Vin2, and the static elimination light 3 is turned off. After the static elimination light 3 is turned off, the time at which the boundary between the surface of the photoconductor on which the charge is removed and the surface of the photoconductor on which the static electricity has not been discharged contacts the charging member
Set to 3. The time T3 is obtained in advance from the positional relationship between the peripheral speed vp of the photoconductor 1, the static elimination light 3 and the charging roller 2. Current Ir3 flowing through the charging member from time T3 to (T3 + Tp)
To measure.
【0151】制御手段10は、測定値Ir1、Ir2およびI
r3から帯電抵抗Rrを求め、作画時の最適な印加電圧の
絶対値Vin_optを決定する。次に、絶対値がVin_optに
最も近く、極性が作画工程における感光体1の最適表面
電位と同じ電圧になるように電源4を制御する。現像位
置での感光体1の表面電位Voが目標電位になった時刻
から作画工程は開始する。作画工程に入り、制御手段10
は転写電源37を制御して転写電圧を+2μAとし、紙34
への転写を行う。The control means 10 controls the measured values Ir1, Ir2 and I
The charging resistance Rr is obtained from r3, and the optimum absolute value Vin_opt of the applied voltage at the time of drawing is determined. Next, the power supply 4 is controlled so that the absolute value is closest to Vin_opt and the polarity is the same voltage as the optimum surface potential of the photoconductor 1 in the image forming process. The image forming process starts from the time when the surface potential Vo of the photoconductor 1 at the developing position reaches the target potential. Entering the drawing process, control means 10
Controls the transfer power supply 37 to set the transfer voltage to +2 μA, and the paper 34
Transfer to.
【0152】作画時の印加電圧Vin_optの決定方法を図
12で説明する。図12は制御手段10の動作手順を示したフ
ローチャートで、次の動作を行う。 (a) 感光体1が回転を開始した後、作画工程に先立ち電
源4を制御し帯電ローラ2にVin1を印加する。また除
電光3を点灯する。 (b) 印加電圧Vin1に対応して電源4から帯電ローラ2
に流れる電流Ir1を電流測定手段11が測定し、測定され
た電流値を制御手段10が入力し記憶する。 (c) 電源4を制御し帯電ローラ2に対する印加電圧をV
in2にする。A method of determining the applied voltage Vin_opt at the time of drawing is shown.
Explain in 12. FIG. 12 is a flowchart showing the operation procedure of the control means 10, and the following operation is performed. (a) After the photoconductor 1 starts rotating, the power source 4 is controlled and Vin1 is applied to the charging roller 2 before the image forming process. Further, the static elimination light 3 is turned on. (b) From the power supply 4 to the charging roller 2 corresponding to the applied voltage Vin1
The current Ir1 flowing through the device is measured by the current measuring means 11, and the measured current value is inputted and stored in the control means 10. (c) The voltage applied to the charging roller 2 is controlled to V by controlling the power supply 4.
set to in2.
【0153】(d) 印加電圧Vin2に対応して電源4から
帯電ローラ2に流れる電流Ir2を電流測定手段11が測定
し、測定された電流値を制御手段10が入力し記憶する。 (e) 印加電圧はVin2のままで除電光3を消灯する。 (f) 時刻T3から時刻T3+Tpまでの間に前記帯電部材
に流れる電流Ir3を電流測定手段11が測定し、制御手段
10が入力し記憶する。 (g) 帯電抵抗Rrは次の手順で求められる。(D) The current measuring means 11 measures the current Ir2 flowing from the power source 4 to the charging roller 2 in response to the applied voltage Vin2, and the measured current value is inputted and stored in the control means 10. (e) The charge removal light 3 is turned off while the applied voltage is Vin2. (f) The current measuring means 11 measures the current Ir3 flowing through the charging member from the time T3 to the time T3 + Tp, and the control means
10 enter and remember. (g) The charging resistance Rr is obtained by the following procedure.
【0154】まず、帯電抵抗Rrの導出方法を図5を参
照しながら説明する。図5は帯電試験機で、本実施例で
は、帯電抵抗Rrの導出方法を導くために用いた。ま
ず、感光体1を周速vpで回転する。帯電ローラ2に電
圧を印加しない状態のまま除電光3を点灯し、感光体1
の1周すべての表面電位を0Vにする。次に、除電光3
を消灯する。帯電ローラ2に絶対値が帯電ローラ2と感
光体1の帯電開始電圧Vth以上で、極性が作画工程にお
ける感光体1の最適表面電位の極性と同じ電圧Vinを印
加する。感光体1の表面電位の絶対値は、帯電開始から
感光体1の回転1周ごとにステップ状に上昇し、漸近的
に飽和電位|Vin|−Vth値に近づく。感光体1の表面
電位を表面電位測定プローブ41で測定する。First, a method of deriving the charging resistance Rr will be described with reference to FIG. FIG. 5 shows a charging tester, which was used in this embodiment to guide the method of deriving the charging resistance Rr. First, the photoconductor 1 is rotated at the peripheral speed vp. The static elimination light 3 is lit while the voltage is not applied to the charging roller 2,
The surface potential of all one round is set to 0V. Next, neutralization light 3
Turn off. A voltage Vin whose absolute value is equal to or higher than the charging start voltage Vth of the charging roller 2 and the photosensitive member 1 and whose polarity is the same as the polarity of the optimum surface potential of the photosensitive member 1 in the image forming process is applied to the charging roller 2. The absolute value of the surface potential of the photoconductor 1 increases stepwise for each rotation of the photoconductor 1 from the start of charging, and asymptotically approaches the saturation potential | Vin | -Vth value. The surface potential of the photoconductor 1 is measured by the surface potential measuring probe 41.
【0155】帯電ローラ2と表面電位測定プローブ41ま
での感光体上の距離を感光体1の周速vpで割った時間
をTrp、また感光体1が1回転するのに要する時間をT
pとする。帯電開始時刻Tstから時間Trp経過した時刻
(Tst+Trp)に表面電位測定プローブ41は、感光体1の
帯電後の表面電位の測定を開始する。The time on the photosensitive member between the charging roller 2 and the surface potential measuring probe 41 divided by the peripheral speed vp of the photosensitive member 1 is Trp, and the time required for the photosensitive member 1 to make one rotation is Trp.
Let p. Time when the time Trp has elapsed from the charging start time Tst
At (Tst + Trp), the surface potential measuring probe 41 starts measuring the surface potential of the photoconductor 1 after charging.
【0156】表面電位プローブ41の測定電圧Vo(1),V
o(2)およびVo(3)を以下のように定義する。時刻(Tst
+Trp)から時刻(Tst+Trp+Tp)の間、すなわち帯電
開始から感光体1が1周するまでの間の感光体1の表面
電位の絶対値をVo(1)、時刻(Tst+Trp+Tp)から時
刻(Tst+Trp+2・Tp)の間、すなわち帯電開始から
感光体1の回転が1周以上2周未満までの間の感光体1
の表面電位の絶対値をVo(2)、一般的に時刻(Tst+Tr
p+n・Tp)から時刻(Tst+Trp+(n+1)・Tp)の
間、すなわち帯電開始から感光体1がn周以上(n+1)
周未満回転するまでの間の感光体1の表面電位の絶対値
をVo(n)とする。Measurement voltage Vo (1), V of the surface potential probe 41
o (2) and Vo (3) are defined as follows. Time (Tst
+ Trp) to time (Tst + Trp + Tp), that is, the absolute value of the surface potential of the photoconductor 1 from the start of charging until the photoconductor 1 completes one turn is Vo (1), and from time (Tst + Trp + Tp) to time (Tst + Trp + 2.Tp). ), That is, between the start of charging and the rotation of the photosensitive member 1 for one rotation or more and less than two rotations.
The absolute value of the surface potential of is Vo (2), which is generally the time (Tst + Tr
From (p + n · Tp) to time (Tst + Trp + (n + 1) · Tp), that is, the photoconductor 1 is n or more turns (n + 1) from the start of charging.
Let Vo (n) be the absolute value of the surface potential of the photosensitive member 1 until it rotates less than one turn.
【0157】また、電流測定手段11が測定する電流Ir
(1),Ir(2)およびIr(n)を以下のようにに定義する。
時刻Tstから時刻(Tst+Tp)の間、すなわち帯電開始
から感光体1が1周するまでの間に帯電ローラ2に流れ
る電流の絶対値をIr(1)、時刻(Tst+Tp)から時刻(T
st+2・Tp)の間、すなわち帯電開始から感光体1の回
転が1周以上2周未満までの間に帯電ローラ2に流れる
電流の絶対値をIr(2)、一般的に時刻(Tst+n・Tp)
から時刻(Tst+(n+1)・Tp)の間、すなわち帯電開
始から感光体1がn周以上(n+1)周未満回転するまで
の間に帯電ローラ2に流れる電流の絶対値をIr(n)とす
る。また、感光体1の帯電係数をk、帯電ローラ2と感
光体1との間の帯電開始電圧をVth、||を絶対値記号
とすると、次の3つの方程式が成り立つ。The current Ir measured by the current measuring means 11 is
(1), Ir (2) and Ir (n) are defined as follows.
From the time Tst to the time (Tst + Tp), that is, from the start of charging until the photoconductor 1 makes one revolution, the absolute value of the current flowing through the charging roller 2 is Ir (1), and from the time (Tst + Tp) to the time (T
st + 2 · Tp), that is, the absolute value of the current flowing through the charging roller 2 during the rotation of the photosensitive member 1 from one rotation to less than two rotations is Ir (2), which is generally the time (Tst + n · Tp). )
From time (Tst + (n + 1) · Tp) to the time when the photoconductor 1 rotates more than n rotations and less than (n + 1) rotations from the start of charging, the absolute value of the current flowing through the charging roller 2 is Ir (n). To do. Further, when the charging coefficient of the photoconductor 1 is k, the charging start voltage between the charging roller 2 and the photoconductor 1 is Vth, and || is an absolute value symbol, the following three equations hold.
【0158】 Vo(n)=|Vin|−Vth−Rr×Ir(n) ……………………… (18) Vo(n)−Vo(n-1)=k×Ir(n) ……………………………… (19) Vo(0)=0 …………………………………………………… (20) これらをIr(n)について解くと、Vo (n) = | Vin | −Vth−Rr × Ir (n) (18) Vo (n) -Vo (n-1) = k × Ir (n) …………………………………… (19) Vo (0) = 0 ……………………………………………… (20) These are Ir (n) Solving for
【0159】[0159]
【外1】 [Outside 1]
【0160】また、Rrについて解くと、 Rr=(|Vin|−Vth)×Ir(2)/(Ir(1))2 ……………… (22) (式22)は図5の帯電試験機において求められる帯電抵抗
Rrである。Solving for Rr, Rr = (│Vin│-Vth) × Ir (2) / (Ir (1)) 2 ............ (22) (Equation 22) It is the charging resistance Rr required by the tester.
【0161】これを、本実施例の画像形成装置に当ては
める。電流Ir(1)は、帯電電流Ir2に一致し、電流Ir
(2)は、帯電電流Ir3と一致する。また、印加電圧Vin
は、Vin2であった。したがって、画像形成装置におけ
る帯電抵抗Rrは(式23)で求められる。 Rr=(|Vin2|−Vth)×Ir3/(Ir2)2 …………………… (23) ここに帯電開始電圧Vthは(式24) Vth=|Ir1×Vin2−Ir2×Vin1|/|Ir1−Ir2| … (24) で求められる値を使う。This is applied to the image forming apparatus of this embodiment. The current Ir (1) matches the charging current Ir2, and the current Ir (1)
(2) matches the charging current Ir3. Also, the applied voltage Vin
Was Vin2. Therefore, the charging resistance Rr in the image forming apparatus is obtained by (Equation 23). Rr = (| Vin2 | −Vth) × Ir3 / (Ir2) 2 (23) where the charging start voltage Vth is (Equation 24) Vth = | Ir1 × Vin2-Ir2 × Vin1 | / | Ir1-Ir2 | ... Use the value obtained by (24).
【0162】(h) 入力された測定電流Ir1,Ir2から、
感光体1の帯電係数kと帯電抵抗Rrの和を(式25)で推
定する。 k+Rr=|Vin1−Vin2|/|Ir1−Ir2| ……………… (25) 上記(g)で求められた帯電抵抗Rrと感光体1の目標電位
Vo_optから最適な帯電電流Ir_optを(式26)で求める。 Ir_opt=Vo_opt/k =Vo_opt/{|Vin1−Vin2|/|Ir1−Ir2|−Rr} …… (26) (i) 帯電ローラ2に対する、作画時の最適な印加電圧の
絶対値Vin_optは、 Vin_opt=(k+Rr)×(Ir_opt−Ir1)+|Vin1| ……… (27) または、 Vin_opt=(k+Rr)×(Ir_opt−Ir2)+|Vin2| ……… (28) で求める。(H) From the input measured currents Ir1 and Ir2,
The sum of the charging coefficient k of the photoconductor 1 and the charging resistance Rr is estimated by (Equation 25). k + Rr = | Vin1−Vin2 | / | Ir1−Ir2 | (25) The optimum charging current Ir_opt is calculated from the charging resistance Rr obtained in (g) above and the target potential Vo_opt of the photoconductor 1 (equation See step 26). Ir_opt = Vo_opt / k = Vo_opt / {| Vin1-Vin2 | / | Ir1-Ir2 | -Rr} (26) (i) The absolute value Vin_opt of the optimum applied voltage to the charging roller 2 at the time of image formation is Vin_opt = (K + Rr) * (Ir_opt-Ir1) + | Vin1 | ... (27) or Vin_opt = (k + Rr) * (Ir_opt-Ir2) + | Vin2 | ... (28)
【0163】以上の手順に基づき、新品の感光体(表面
の膜厚26μm)を図5に示した帯電試験機に組み込み、室
温20℃湿度50%の環境下に3日間放置した後、印加電圧
Vin1=−900V、Vin2=−1100Vで除電光3を点灯さ
せながら帯電するとき、流れる電流値は、それぞれIr1
=2.6μA、Ir2=4.4μAであった。(式25)から電位の単
位をV、電流の単位をμAとすると、k+Rrの値は111.
1(V/μA)、(式24)からVth=611Vと求められた。Based on the above procedure, a new photoconductor (thickness 26 μm on the surface) was installed in the charging tester shown in FIG. 5, left at room temperature of 20 ° C. and humidity of 50% for 3 days, and then the applied voltage was changed. When charging with the static elimination light 3 turned on at Vin1 = -900V and Vin2 = -1100V, the flowing current value is Ir1.
= 2.6 μA and Ir2 = 4.4 μA. If the potential unit is V and the current unit is μA from (Equation 25), the value of k + Rr is 111.
Vth = 611V was obtained from 1 (V / μA) and (Equation 24).
【0164】次に印加電圧Vin2=−1100Vにしたま
ま、除電光3を消灯し、上記(f)の手順で求められるIr
3の値は、0.4μAであった。(式23)から帯電抵抗Rrは、
Rr=10.1MΩと求められた。故に感光体1の帯電係数
kは101.0(V/μA)であった。感光体の目標電位を−45
0Vとすると、(式26)から最適帯電電流Ir_optは4.5μA
であった。(式27)から、感光体の電位を−450Vとする
ための最適印加電圧の絶対値Vin_optは1111Vと求めら
れた。Next, with the applied voltage Vin2 = -1100V, the static elimination light 3 is turned off, and Ir calculated by the procedure (f) above is obtained.
The value of 3 was 0.4 μA. From (Equation 23), the charging resistance Rr is
It was determined that Rr = 10.1 MΩ. Therefore, the charging coefficient k of the photoconductor 1 was 101.0 (V / μA). Set the target potential of the photoconductor to -45.
Assuming 0 V, the optimum charging current Ir_opt is 4.5 μA from (Equation 26).
Met. From (Equation 27), the absolute value Vin_opt of the optimum applied voltage for setting the potential of the photoconductor to −450V was calculated to be 1111V.
【0165】検証のため、5Vステップの電源4で絶対
値が最も1111Vに近く、かつ感光体1が光導電性を示す
極性と同じ極性の電圧−1110Vを帯電ローラ2に印加す
ると、感光体1の表面電位は−447Vと目標電位に近い
値となった。For verification, when a voltage of -1110V having the same polarity as that of the photoconductor 1 exhibiting photoconductivity is applied to the charging roller 2 by the 5V step power source 4, the photoconductor 1 has the same absolute value. Has a surface potential of -447V, which is close to the target potential.
【0166】次に10万枚ランニングした後で感光体の膜
厚が18μmとなった感光体を図5に示した帯電試験機に
組み込み、室温20℃湿度50%の環境下に3日間放置した
後、印加電圧Vin1=−900V、Vin2=−1100Vで除電
光3を点灯させながら帯電するときに流れる電流値を実
測すると、それぞれIr1=4.4μA、Ir2=6.9μAであっ
た。(式25)から電位の単位をV、電流の単位をμAとす
ると、k+Rrの値は80.0(V/μA)、(式24)からVth=
548Vと求められた。Next, after running 100,000 sheets, the photoconductor in which the thickness of the photoconductor became 18 μm was incorporated into the charging tester shown in FIG. 5, and left for 3 days in an environment of room temperature of 20 ° C. and humidity of 50%. After that, when the values of the currents flowing when the charge removal light 3 was charged with the applied voltage Vin1 = -900V and Vin2 = -1100V were actually measured, they were Ir1 = 4.4 μA and Ir2 = 6.9 μA, respectively. If the potential unit is V and the current unit is μA from (Equation 25), the value of k + Rr is 80.0 (V / μA), and from (Equation 24), Vth =
It was requested to be 548V.
【0167】次に印加電圧Vin2=−1100Vにしたま
ま、除電光3を消灯し、上記(f)の手順で求められるIr
3の値は0.8μAであった。(式23)から帯電抵抗Rrは、R
r=9.3MΩと求められた。故に感光体1の帯電係数kは
70.7(V/μA)であった。感光体の目標電位を−450Vと
すると、(式26)から最適帯電電流Ir_optは6.4μAであ
った。(式27)から、感光体の電位を−450Vとするため
の最適印加電圧の絶対値Vin_optは1058Vと求められ
た。Next, with the applied voltage Vin2 = -1100V, the static elimination light 3 is turned off, and Ir obtained by the procedure of the above (f) is determined.
The value of 3 was 0.8 μA. From (Equation 23), the charging resistance Rr is R
It was determined that r = 9.3 MΩ. Therefore, the charging coefficient k of the photoconductor 1 is
It was 70.7 (V / μA). When the target potential of the photoconductor is -450 V, the optimum charging current Ir_opt was 6.4 μA from (Equation 26). From (Equation 27), the absolute value Vin_opt of the optimum applied voltage for setting the potential of the photoconductor to −450V was calculated to be 1058V.
【0168】検証のため、5Vステップの電源4でVin
_optに最も絶対値の近く、かつ感光体が光導電性を示す
極性と同じ極性の電圧−1060Vを帯電ローラ2に印加す
ると感光体1の表面電位は−442Vと目標電位に近い値
となった。For verification, the power supply 4 with 5V step
When a voltage of -1060V, which is the closest in absolute value to _opt and has the same polarity as the photoconductor exhibits photoconductivity, is applied to the charging roller 2, the surface potential of the photoconductor 1 becomes -442V, which is a value close to the target potential. .
【0169】さらに、新品の感光体(表面の膜厚26μm)
を図5に示した帯電試験機に組み込み、室温33℃湿度80
%の環境下に3日間放置した後、印加電圧Vin1=−900
V、Vin2=−1100Vで除電光3を点灯させながら帯電
するときに流れる電流値を実測すると、それぞれIr1=
2.8μA、Ir2=4.8μAであった。(式25)から電位の単位
をV、電流の単位をμAとすると、k+Rrの値は100.0
(V/μA)、(式24)からVth=620Vと求められた。Further, a new photoconductor (surface film thickness: 26 μm)
Built in the electrification tester shown in Fig. 5, room temperature 33 ℃, humidity 80
Applied voltage Vin1 = -900 after left for 3 days in the environment of
When the current values that flow when charging is performed while the static elimination light 3 is turned on at V and Vin2 = −1100 V, the respective values are Ir1 =
It was 2.8 μA and Ir2 = 4.8 μA. From (Equation 25), if the unit of potential is V and the unit of current is μA, the value of k + Rr is 100.0.
(V / μA), Vth = 620V was obtained from (Equation 24).
【0170】次に印加電圧Vin2=−1100Vにしたま
ま、除電光3を消灯し、上記(f)の手順で求められるIr
3の値は、0.1μAであった。(式23)から帯電抵抗Rrは、
Rr=2.1MΩと求められる。ゆえに感光体1の帯電係数
kは97.9(V/μA)であった。感光体の目標電位を−450
Vとすると、(式26)から最適帯電電流Ir_optは4.6μA
であった。(式27)から、感光体の電位を−450Vとする
ための最適印加電圧の絶対値Vin_optは1080Vと求めら
れた。Next, with the applied voltage Vin2 = -1100V, the static elimination light 3 is turned off, and Ir calculated by the procedure of (f) above is obtained.
The value of 3 was 0.1 μA. From (Equation 23), the charging resistance Rr is
Rr = 2.1 MΩ is required. Therefore, the charging coefficient k of the photoconductor 1 was 97.9 (V / μA). The target potential of the photoconductor is -450
Assuming V, the optimum charging current Ir_opt is 4.6 μA from (Equation 26).
Met. From (Equation 27), the absolute value Vin_opt of the optimum applied voltage for setting the potential of the photoconductor to −450V was obtained as 1080V.
【0171】検証のため、5Vステップの電源4で最も
絶対値がVin_optに近い−1080Vを帯電ローラ2に印加
すると、感光体1の表面電位は−451Vと目標電位に近
い値となった。以上のように本実施例によれば、感光体
の表面膜厚の変化および帯電部材の抵抗値の変化に影響
されずに感光体表面電位を目標値にすることができる。For verification, when −1080V whose absolute value is closest to Vin_opt is applied to the charging roller 2 by the 5V step power source 4, the surface potential of the photosensitive member 1 becomes −451V, which is a value close to the target potential. As described above, according to this embodiment, the surface potential of the photoconductor can be set to the target value without being affected by the change in the surface film thickness of the photoconductor and the change in the resistance value of the charging member.
【0172】(比較例3)第3の実施例で、帯電抵抗Rr
を考慮しない場合を試みた。この場合、Rr=0と仮定
するので、(式4)のkの代わりに、(k+Rr)を誤って
採用した。ここで、k″=(k+Rr)とおく。Comparative Example 3 In the third example, the charging resistance Rr
I tried not to consider. In this case, since it is assumed that Rr = 0, (k + Rr) is erroneously adopted instead of k in (Equation 4). Here, k ″ = (k + Rr) is set.
【0173】新品の感光体(表面の膜厚26μm)を室温20
℃湿度50%の環境下に3日間放置した場合、k″=111.
1、印加電圧Vin1=−900V、帯電電流Ir1=2.6μAを
(式4)に代入すると、最適印加電圧の絶対値Vin_opt″
=1061Vであった。ところが実際に−1061Vを帯電ロー
ラ2に印加すると、感光体1の表面電位は−404Vとな
った。目標値と46Vのずれがあるので実用化できなかっ
た。A new photoconductor (film thickness of 26 μm on the surface) is kept at room temperature for 20 minutes.
When left in an environment of 50 ° C and 50% humidity for 3 days, k ″ = 111.
1, applied voltage Vin1 = -900V, charging current Ir1 = 2.6μA
Substituting into (Equation 4), the absolute value of the optimum applied voltage Vin_opt ″
= 1061V. However, when −1061V was actually applied to the charging roller 2, the surface potential of the photoconductor 1 became −404V. It could not be put to practical use because there was a deviation of 46V from the target value.
【0174】次に10万枚ランニングした後で感光体の膜
厚が18μmとなった感光体を室温20℃湿度50%の環境下
に3日間放置した場合、k″=90.0,印加電圧Vin1=
−900V、帯電電流Ir1=4.4μAを(式4)に代入する
と、最適印加電圧の絶対値Vin_opt″=998Vであっ
た。ところが実際に−998Vを帯電ローラ2に印加する
と、感光体1の表面電位は−387Vとなった。目標値と6
3Vのずれがあるので実用化できなかった。Next, when the photoreceptor having a thickness of 18 μm after running 100,000 sheets was left for 3 days in an environment of room temperature of 20 ° C. and humidity of 50%, k ″ = 90.0, applied voltage Vin1 =
Substituting −900 V and charging current Ir1 = 4.4 μA into (Equation 4), the absolute value of the optimum applied voltage was Vin_opt ″ = 998 V. However, when −998 V was actually applied to the charging roller 2, the surface of the photoconductor 1 was changed. The potential was -387 V. Target value and 6
It could not be put to practical use because there was a deviation of 3V.
【0175】さらに、新品の感光体(表面の膜厚26μm)
を室温33℃湿度80%の環境下に3日間放置した場合、
k″=100.0,印加電圧Vin1=−900V、帯電電流Ir1
=2.8μAを(式4)に代入すると、最適印加電圧の絶対値
Vin_opt″=1070Vであった。ところが実際に−1070V
を帯電ローラ2に印加すると、感光体1の表面電位は−
440Vとなった。目標値からの誤差は第3の実施例より
大きかった。Furthermore, a new photoconductor (surface film thickness: 26 μm)
When left in an environment of room temperature 33 ° C and humidity 80% for 3 days,
k ″ = 100.0, applied voltage Vin1 = −900V, charging current Ir1
When substituting 2.8 μA into (Equation 4), the absolute value of the optimum applied voltage was Vin_opt ″ = 1070 V. However, actually −1070 V
Is applied to the charging roller 2, the surface potential of the photoconductor 1 becomes −
It became 440V. The error from the target value was larger than that in the third example.
【0176】(第4の実施例)感光体の膜厚が減少しない
場合、電流値の測定は2回である。感光体の膜厚が減少
しない場合とは、硬度の高い感光体膜を使う場合、また
は感光体の表面に硬度の高いコーティングを施す場合、
または感光体の寿命が短く、膜厚の減少を生じる前に感
光体を交換することが仕様上決められている場合などで
ある。(Fourth Embodiment) When the film thickness of the photoconductor does not decrease, the current value is measured twice. When the film thickness of the photoconductor does not decrease, when using a photoconductor film with high hardness, or when applying a coating with high hardness to the surface of the photoconductor,
Alternatively, there is a case where the photoreceptor has a short life and it is specified in the specifications that the photoreceptor should be replaced before the film thickness is reduced.
【0177】本実施例では、感光体1の帯電係数kを予
め求める。帯電係数kを求める方法は第2の実施例と同
じであるので省略する。実測では、第2の実施例と同じ
く、感光体1の帯電係数kは、k=99.1(V/μA)であ
った。In this embodiment, the charge coefficient k of the photoconductor 1 is obtained in advance. Since the method of obtaining the charging coefficient k is the same as that of the second embodiment, it will be omitted. In the actual measurement, the charge coefficient k of the photoconductor 1 was k = 99.1 (V / μA), as in the second embodiment.
【0178】第4の実施例の画像形成装置の構成として
は第3の実施例と同様に図10の構成である。第3の実施
例と異なるのは制御手段10の作用である。制御手段10の
作用を図13を参照しながら説明する。図13は作画工程に
先立ち行われる電流値の測定を示したタイミングチャー
トである。横軸矢印方向に時間が経過する。The structure of the image forming apparatus of the fourth embodiment is the same as that of the third embodiment as shown in FIG. The difference from the third embodiment is the operation of the control means 10. The operation of the control means 10 will be described with reference to FIG. FIG. 13 is a timing chart showing the measurement of the current value performed prior to the drawing process. Time elapses in the direction of the horizontal axis arrow.
【0179】図13において、上から感光体1の回転、帯
電ローラ2への印加電圧Vin、除電光3の点灯(on)また
は消灯(off)、帯電ローラ2に流れる帯電電流の絶対値
Ir、転写電源37が転写ローラ32に印加する電流、現像
器31による現像位置での感光体1の表面電位Voをそれ
ぞれ示している。そのまま表示すると煩雑なので、図13
の感光体表面電位Voは、移動する感光体1上の1点が
帯電ローラ2の帯電領域から現像器31の現像領域まで移
動するのに要する時間Trdだけ進めて示した。また帯電
ローラ2が1回転するのに要する時間をTr、感光体1
が1回転するのに要する時間をTpとする。時間Tr,T
pは、帯電ローラ2の直径,感光体1の直径および周速
vpから予め求められる。In FIG. 13, the rotation of the photosensitive member 1, the applied voltage Vin to the charging roller 2, the static elimination light 3 turned on (on) or off (off), the absolute value Ir of the charging current flowing through the charging roller 2, The current applied to the transfer roller 32 by the transfer power source 37 and the surface potential Vo of the photoconductor 1 at the developing position by the developing device 31 are shown. Since it is complicated to display it as it is, Fig. 13
The surface potential Vo of the photosensitive member is shown by advancing by the time Trd required for one point on the moving photosensitive member 1 to move from the charging area of the charging roller 2 to the developing area of the developing device 31. Also, the time required for the charging roller 2 to make one rotation is Tr,
Let Tp be the time required for one revolution of the. Time Tr, T
p is obtained in advance from the diameter of the charging roller 2, the diameter of the photoconductor 1 and the peripheral speed vp.
【0180】図13において、作画工程に先立ち感光体1
が回転を開始する前から転写電源37をフロート状態と
し、転写ローラ32が感光体1を帯電しない状態にする。
感光体1の回転が十分安定する時間を経過した後、時刻
T2に帯電ローラ2へ電圧Vin1を印加する。Vin
1が印加された時刻T1から帯電ローラ2が1周するま
での間(時刻T1+Tr)は電流値が不安定なので無視す
る。Vin1印加後、帯電ローラ2が1周以上した後の電
流Ir1を測定する。これが第1の測定である。In FIG. 13, prior to the image forming process, the photoconductor 1
The transfer power source 37 is set in a floating state before the rotation starts, and the transfer roller 32 does not charge the photoconductor 1.
The voltage Vin1 is applied to the charging roller 2 at time T2 after a lapse of a time period in which the rotation of the photoconductor 1 is sufficiently stabilized. Vin
From the time T1 when 1 is applied until the charging roller 2 makes one revolution (time T1 + Tr), the current value is unstable and is ignored. After applying Vin1, the current Ir1 is measured after the charging roller 2 makes one revolution or more. This is the first measurement.
【0181】次に、Ir2の測定終了時刻をT2とし、ま
た、移動する感光体1上の1点が除電光3の作用領域か
ら帯電ローラ2の帯電領域まで移動するのに要する時間
をTjrとすると、時刻(T2−Tjr)以降に除電光3を消
灯する。Next, the measurement end time of Ir2 is set to T2, and the time required for one point on the moving photosensitive member 1 to move from the action area of the static elimination light 3 to the charging area of the charging roller 2 is set to Tjr. Then, the static elimination light 3 is turned off after the time (T2-Tjr).
【0182】本実施例では、Ir1の測定終了前かつ時刻
(T2−Tjr)以降に、電源4の印加電圧はVin1のまま
で、除電光3を消灯する。除電光3の消灯後、除電され
ていた感光体面と除電されていない感光体面との境界が
前記帯電部材に接触した時刻をT3とする。時間T3は、
感光体1の周速vp、および除電光3と帯電ローラ2の
位置関係から予め求められる。In the present embodiment, before the end of Ir1 measurement and at the time
After (T2-Tjr), the applied voltage of the power source 4 remains Vin1 and the static elimination light 3 is turned off. It is assumed that the time when the boundary between the surface of the photoconductor on which the charge has been removed and the surface of the photoconductor on which the charge has not been removed contacts the charging member after the charge-eliminating light 3 is turned off is T3. Time T3 is
It is obtained in advance from the peripheral speed vp of the photoconductor 1 and the positional relationship between the charge eliminating light 3 and the charging roller 2.
【0183】時刻T3から(T3+Tp)までの間に前記帯
電部材に流れる電流Ir3を測定する。これが第2の測定
である。A current Ir3 flowing through the charging member is measured from time T3 to (T3 + Tp). This is the second measurement.
【0184】制御手段10は、これらの測定値Ir1および
Ir3から帯電抵抗Rrを求め、作画時の最適な印加電圧
の絶対値Vin_optを決定する。次に、絶対値がVin_opt
に最も近く、極性が作画工程における感光体1の最適表
面電位と同じ電圧になるように電源4を制御する。現像
位置での感光体1の表面電位Voが目標電位になった時
刻から作画工程は開始する。作画工程に入り、制御手段
10は転写電源37を制御して転写電圧を+2μAとし、紙3
4への転写を行う。The control means 10 obtains the charging resistance Rr from these measured values Ir1 and Ir3 and determines the optimum absolute value Vin_opt of the applied voltage at the time of image formation. Next, the absolute value is Vin_opt
The power source 4 is controlled so that the polarity is the closest to the above, and the polarity becomes the same voltage as the optimum surface potential of the photoconductor 1 in the drawing process. The image forming process starts from the time when the surface potential Vo of the photoconductor 1 at the developing position reaches the target potential. Enter the drawing process, control means
10 controls the transfer power supply 37 to set the transfer voltage to +2 μA, and the paper 3
Transfer to 4.
【0185】作画時の印加電圧Vin_optの決定方法を図
14で説明する。図14は制御手段10の動作手順を示したフ
ローチャートで、次の動作を行う。 (a) 感光体が回転を開始した後、作画工程に先立ち電源
4を制御し、帯電ローラ2にVin1を印加する。 (b) 印加電圧Vin1に対して電源4から帯電ローラ2に
流れる電流Ir1を電流測定手段11が測定し、測定された
電流値を制御手段10が入力し記憶する。A method of determining the applied voltage Vin_opt at the time of drawing is shown.
Explain in 14. FIG. 14 is a flowchart showing the operation procedure of the control means 10, and the following operation is performed. (a) After the photoconductor starts rotating, the power source 4 is controlled and Vin1 is applied to the charging roller 2 before the image forming process. (b) The current Ir1 flowing from the power supply 4 to the charging roller 2 with respect to the applied voltage Vin1 is measured by the current measuring means 11, and the measured current value is input and stored by the control means 10.
【0186】(c) 印加電圧はVin1のままで除電光3を
消灯する。 (d) 時刻T3から(T3+Tp)までの間に前記帯電部材に
流れる電流Ir3を電流測定手段11が測定し、制御手段10
が入力し記憶する。(C) The static elimination light 3 is turned off while the applied voltage is Vin1. (d) From time T3 to (T3 + Tp), the current measuring means 11 measures the current Ir3 flowing through the charging member, and the control means 10
Is input and memorized.
【0187】(e) 帯電抵抗Rrは第3の実施例と同様に
次の手順で求められる。RrとVthについて次の2つの
関係が成り立つ。 Rr=(|Vin1|−Vth)×Ir3/(Ir1)2 …………………… (29) ここに帯電開始電圧Vthは(式30)で求められる値を使
う。 Vth=|Vin1|−(k+Rr)×Ir1 ………………………… (30) これら2つの連立方程式をRrとVthについて解いて、
帯電抵抗Rrを求める。(E) The charging resistance Rr is obtained by the following procedure as in the third embodiment. The following two relationships hold for Rr and Vth. Rr = (| Vin1 | −Vth) × Ir3 / (Ir1) 2 (29) Here, the charging start voltage Vth is the value obtained by (Equation 30). Vth = | Vin1 | − (k + Rr) × Ir1 (30) Solving these two simultaneous equations for Rr and Vth,
The charging resistance Rr is calculated.
【0188】(f) 予め与えられた感光体1の帯電係数k
と感光体1の作画時の目標電位Vo_optから最適な帯電
電流Ir_optを(式31)で求める。 Ir_opt=Vo_opt/k ………………………………………… (31) (g) 絶対値が(式32)のVin_optに最も近く、電圧極性が
作画工程における感光体1の最適表面電位の極性と同じ
印加電圧になるよう、 Vin_opt=(k+Rr)×(Ir_opt−Ir1)+|Vin1| ……… (32) 電源4を制御する。(F) Charge coefficient k of the photoconductor 1 given in advance
Then, the optimum charging current Ir_opt is obtained from (Equation 31) from the target potential Vo_opt at the time of drawing the image of the photoconductor 1. Ir_opt = Vo_opt / k ………………………………………… (31) (g) Absolute value is closest to Vin_opt in (Equation 32) and voltage polarity of the photoconductor 1 in the drawing process. Vin_opt = (k + Rr) × (Ir_opt−Ir1) + | Vin1 | ... (32) The power supply 4 is controlled so that the applied voltage has the same polarity as the polarity of the optimum surface potential.
【0189】以上の手順に基づき、新品の感光体(表面
の膜厚26μm)を図5に示した帯電試験機に組み込み、室
温20℃湿度50%の環境下に3日間放置した。印加電圧V
in1=−1100Vで除電光3を点灯させながら帯電すると
きに流れる電流値は、Ir1=4.4μAであった。次に印加
電圧は−1100Vのままで除電光3を消灯し、上記の手順
(d)で求められるIr3の値は0.4μAであった。Based on the above procedure, a new photoconductor (surface film thickness: 26 μm) was installed in the charging tester shown in FIG. 5 and left for 3 days at room temperature of 20 ° C. and humidity of 50%. Applied voltage V
The current value flowing when charging was performed while turning on the static elimination light 3 at in1 = −1100 V was Ir1 = 4.4 μA. Next, turn off the static eliminator 3 while the applied voltage remains -1100V, and follow the procedure above.
The value of Ir3 obtained in (d) was 0.4 μA.
【0190】(式29)および(式30)の連立方程式、および
予め求められた感光体1の帯電係数k=99.1(V/μA)
から帯電抵抗Rrと帯電開始電圧Vthを求めると、Rr=
10.1MΩ、Vth=630Vであった。感光体の目標
電位を−450Vとすると、(式31)から最適な帯電電流の
絶対値Ir_optは4.5μAであった。(式32)から、感光体
の電位を−450Vとするための最適印加電圧の絶対値Vi
n_optは1111Vと求められた。Simultaneous equations of (Equation 29) and (Equation 30) and the previously determined charge coefficient k of the photosensitive member 1 = 99.1 (V / μA)
When the charging resistance Rr and the charging start voltage Vth are obtained from Rr =
It was 10.1 MΩ and Vth = 630V. Assuming that the target potential of the photoconductor is −450 V, the optimum absolute value Ir_opt of the charging current was 4.5 μA from (Equation 31). From (Equation 32), the absolute value Vi of the optimum applied voltage for setting the potential of the photoconductor to −450 V
n_opt was determined to be 1111V.
【0191】検証のため、5Vステップの電源4で最も
絶対値がVin_optに近く、感光体の光導電性と同じ極性
の電圧−1110Vを帯電ローラ2に印加すると、感光体1
の表面電位は−447Vと目標電位に近い値となった。For verification, when a voltage of -1110V having the same polarity as the photoconductivity of the photoconductor is applied to the charging roller 2 with the 5V step power source 4 having the closest absolute value to Vin_opt, the photoconductor 1
Has a surface potential of -447V, which is close to the target potential.
【0192】更に、新品の感光体(表面の膜厚26μm)を
図5に示した帯電試験機に組み込み、室温33℃湿度80%
の環境下に3日間放置した。印加電圧Vin1=−1100V
で除電光3を点灯させながら帯電するときに流れる電流
値は、Ir1=4.4μAであった。次に印加電圧は−1100V
のままで除電光3を消灯し、上記の手順(d)で求められ
るIr3の値は0.1μAであった。Further, a new photoconductor (film thickness of 26 μm on the surface) was installed in the charging tester shown in FIG. 5, and the room temperature was 33 ° C. and the humidity was 80%.
It was left for 3 days in the environment. Applied voltage Vin1 = -1100V
The value of the current that flows when the charging light 3 is charged while being turned on was Ir1 = 4.4 μA. Next, the applied voltage is -1100V
Then, the static elimination light 3 was turned off, and the value of Ir3 obtained in the above step (d) was 0.1 μA.
【0193】(式29)および(式30)の連立方程式、および
予め求められた感光体1の帯電係数k=99.1(V/μA)
から帯電抵抗Rrと帯電開始電圧Vthを求めると、Rr=
2.3MΩ、Vth=654Vであった。感光体の目標電位を−
450Vとすると、(式31)から最適な帯電電流の絶対値Ir
_optは4.5μAであった。(式32)から、感光体の電位を−
450Vとするための最適印加電圧の絶対値Vin_optは111
0Vと求められた。Simultaneous equations of (Equation 29) and (Equation 30) and the previously determined charge coefficient k of the photosensitive member 1 = 99.1 (V / μA)
When the charging resistance Rr and the charging start voltage Vth are obtained from Rr =
It was 2.3 MΩ and Vth = 654V. Set the target potential of the photoreceptor to −
If it is 450 V, the optimum absolute value Ir of the charging current is calculated from (Equation 31)
_opt was 4.5 μA. From (Equation 32), the potential of the photoconductor is
The absolute value Vin_opt of the optimum applied voltage for setting to 450V is 111
It was determined to be 0V.
【0194】検証のため、5Vステップの電源4で最も
絶対値がVin_optに近い−1110Vを帯電ローラ2に印加
すると、感光体1の表面電位は−447Vと目標電位に近
い値となった。以上のように本実施例によれば、帯電部
材の抵抗値の変化に影響されずに感光体表面電位を目標
値に設定することができる。For verification, when -1110V whose absolute value is closest to Vin_opt is applied to the charging roller 2 by the 5V step power source 4, the surface potential of the photoconductor 1 becomes -447V, which is a value close to the target potential. As described above, according to this embodiment, the surface potential of the photoconductor can be set to the target value without being affected by the change in the resistance value of the charging member.
【0195】(比較例4)第4の実施例で、帯電部材であ
る帯電ローラの抵抗値の変化を考慮しなければ、制御後
の感光体の表面電位は、雰囲気環境の温度と湿度の違い
により、最大(9.1MΩ−2.3MΩ)×4.5μA=30Vの誤差
を生じた。(Comparative Example 4) In the fourth example, the surface potential of the photosensitive member after the control is different between the temperature and the humidity of the atmospheric environment unless the change in the resistance value of the charging roller as the charging member is taken into consideration. Caused an error of maximum (9.1 MΩ-2.3 MΩ) × 4.5 μA = 30V.
【0196】(第5の実施例)第1から第4までの実施例
は電流のリークがない場合に有効であるが、帯電部材を
保持する部材やコーティングの材料、または高湿度雰囲
気環境における結露などにより帯電部材に流れる電流に
リークが発生する場合がある。この場合、リーク分を考
慮して印加電圧を決定する。(Fifth Embodiment) The first to fourth embodiments are effective when there is no current leakage, but the material for holding the charging member or the coating material, or dew condensation in a high humidity atmosphere environment In some cases, the current flowing through the charging member may be leaked. In this case, the applied voltage is determined in consideration of the leak amount.
【0197】以下、本発明の第5の実施例の帯電装置に
ついて、図面を参照しながら説明する。なお、帯電部材
としては図2の帯電ローラ、感光体としては図3の感光
体をそれぞれ用いた。本実施例の画像形成装置は図10の
構成と略同じであり、制御手段10の作用が異なる。A charging device according to the fifth embodiment of the present invention will be described below with reference to the drawings. 2 was used as the charging member, and the photoconductor of FIG. 3 was used as the photoconductor. The image forming apparatus of this embodiment has substantially the same configuration as that of FIG. 10, but the operation of the control unit 10 is different.
【0198】図15は作画工程に先立ち行われる電流値の
測定をタイミングチャートで示したものである。横軸矢
印方向に時間が経過する。また、上から感光体1の回
転、帯電ローラ2への印加電圧Vin、除電光3の点灯(o
n)または消灯(off)、帯電ローラ2に流れる帯電電流の
絶対値Ir、転写電源37が転写ローラ32に印加する電
流、現像器31による現像位置での感光体1の表面電位V
oをそれぞれ示している。そのまま表示すると煩雑なの
で、図15の感光体表面電位Voは、移動する感光体1上
の1点が帯電ローラ2の帯電領域から現像器31の現像領
域まで移動するのに要する時間Trdだけ進めて示した。
また、帯電ローラ2が1回転するのに要する時間をT
r、感光体1が1回転するのに要する時間をTpとする。
時間Tr、Tpは帯電ローラ2の直径、感光体1の直径お
よび周速vpから予め求められる。FIG. 15 is a timing chart showing the measurement of the current value performed prior to the drawing process. Time elapses in the direction of the horizontal axis arrow. Further, from above, the rotation of the photosensitive member 1, the voltage Vin applied to the charging roller 2 and the lighting of the neutralization light 3 (o
n) or off, the absolute value Ir of the charging current flowing through the charging roller 2, the current applied by the transfer power source 37 to the transfer roller 32, the surface potential V of the photoconductor 1 at the developing position by the developing device 31.
o are shown respectively. Since it is complicated to display as it is, the photosensitive member surface potential Vo in FIG. 15 is advanced by the time Trd required for one point on the moving photosensitive member 1 to move from the charging area of the charging roller 2 to the developing area of the developing device 31. Indicated.
In addition, the time required for the charging roller 2 to rotate once is T
Let r be the time required for the photoreceptor 1 to make one revolution.
The times Tr and Tp are obtained in advance from the diameter of the charging roller 2, the diameter of the photoconductor 1 and the peripheral speed vp.
【0199】図15において、作画工程に先立ち感光体1
が回転を開始する前から、転写電源37をフロート状態と
し、転写ローラ32が感光体1を帯電しない状態にする。
感光体1の回転が十分安定する時間をあけた後、時刻T
1に帯電ローラ2へ電圧Vin1を印加する。Vin1が印加
された時刻T1から帯電ローラ2が1周するまでの間(時
刻T1+Tr)は電流値が不安定なので無視する。Vin1印
加後、帯電ローラ2が1周以上した後の電流値Ir1を測
定する。これが第1の測定である。In FIG. 15, the photoconductor 1 is placed prior to the drawing process.
Before the start of rotation, the transfer power supply 37 is set in a floating state, and the transfer roller 32 does not charge the photoconductor 1.
After allowing a sufficient time for the rotation of the photoconductor 1 to stabilize, time T
The voltage Vin1 is applied to the charging roller 2 at 1. From time T1 when Vin1 is applied to when the charging roller 2 makes one revolution (time T1 + Tr), the current value is unstable and is ignored. After applying Vin1, the current value Ir1 after the charging roller 2 makes one revolution or more is measured. This is the first measurement.
【0200】Ir1の測定の後、帯電ローラ2への印加電
圧をVin2に変える。Vin2が印加された直後から帯電ロ
ーラ2が1周するまでの間(時間Tr)に帯電ローラ2に
流れる電流は不安定なので無視する。Vin2印加後、帯
電ローラ2が1周以上回転した後の電流値Ir2を測定す
る。これが第2の測定である。After measuring Ir1, the voltage applied to the charging roller 2 is changed to Vin2. The current flowing through the charging roller 2 from immediately after the application of Vin2 until the charging roller 2 completes one revolution (time Tr) is unstable and is ignored. After applying Vin2, the current value Ir2 after the charging roller 2 has rotated one round or more is measured. This is the second measurement.
【0201】次に、Ir2の測定終了時刻をT2とし、ま
た、移動する感光体1上の1点が除電光3の作用領域か
ら帯電ローラ2の帯電領域まで移動するのに要する時間
をTjrとすると、時刻(T2−Tjr)以降に除電光3を消
灯する。本実施例では、Ir2の測定の後、電源4の印加
電圧はVin2のまま、除電光3を消灯する。除電光3の
消灯後、除電されていた感光体面と除電されていない感
光体面との境界が前記帯電部材に接触した時刻をT3と
する。時間T3は、感光体1の周速vp、および除電光3
と帯電ローラ2の位置関係から予め求められる。時刻T
3から(T3+Tp)までの間に帯電ローラ2に流れる電流
Ir3を測定する。さらに時刻(T3+Tp)から(T3+2・
Tp)までの間に帯電ローラ2に流れる電流Ir4を測定す
る。Next, the measurement end time of Ir2 is set to T2, and the time required for one point on the moving photosensitive member 1 to move from the action area of the static elimination light 3 to the charging area of the charging roller 2 is Tjr. Then, the static elimination light 3 is turned off after the time (T2-Tjr). In the present embodiment, after the measurement of Ir2, the charge removal light 3 is turned off while the applied voltage of the power supply 4 remains at Vin2. It is assumed that the time when the boundary between the surface of the photoconductor on which the charge has been removed and the surface of the photoconductor on which the charge has not been removed contacts the charging member after the charge-eliminating light 3 is turned off is T3. At time T3, the peripheral speed vp of the photoconductor 1 and the static elimination light 3
And the positional relationship between the charging roller 2 and the charging roller 2. Time T
The current Ir3 flowing through the charging roller 2 is measured from 3 to (T3 + Tp). From time (T3 + Tp) to (T3 + 2 ・
The current Ir4 flowing through the charging roller 2 is measured up to Tp).
【0202】測定値Ir1、Ir2、Ir3およびIr4から帯
電抵抗Rrを求め、作画時の最適な印加電圧の絶対値Vi
n_optを決定する。次に、絶対値がVin_optに最も近
く、極性が作画工程における感光体1の最適表面電位と
同じ電圧になるように電源4を制御する。現像位置での
感光体1の表面電位Voが目標電位になった時刻から作
画工程は開始する。作画工程に入り、制御手段10は転写
電源37を制御して転写電圧を+2μAとし、紙34への転
写を行う。The charging resistance Rr is obtained from the measured values Ir1, Ir2, Ir3 and Ir4, and the optimum absolute value Vi of the applied voltage at the time of printing is Vi.
Determine n_opt. Next, the power supply 4 is controlled so that the absolute value is closest to Vin_opt and the polarity is the same voltage as the optimum surface potential of the photoconductor 1 in the image forming process. The image forming process starts from the time when the surface potential Vo of the photoconductor 1 at the developing position reaches the target potential. In the image forming process, the control means 10 controls the transfer power supply 37 to set the transfer voltage to +2 μA and transfers the paper 34.
【0203】作画時の印加電圧Vin_optの決定方法を図
16で説明する。図16は制御手段10の動作手順を示したフ
ローチャートで、次の順番で動作を行う。 (a) 感光体1が回転を開始した後、作画工程に先立ち電
源4を制御し帯電ローラ2にVin1を印加する。 (b) 印加電圧Vin1に対して電源4から帯電ローラ2に
流れる電流Ir1を電流測定手段11が測定し、測定された
電流値を制御手段10が入力し記憶する。 (c) 電源4を制御し帯電ローラ2に対する印加電圧をV
in2にする。 (d) 印加電圧Vin2に対応して電源4から帯電ローラ2
に流れる電流Ir2を電流測定手段11が測定し、測定され
た電流値を制御手段10が入力し記憶する。A method of determining the applied voltage Vin_opt at the time of drawing is illustrated.
Explain in 16. FIG. 16 is a flowchart showing the operation procedure of the control means 10, and the operation is performed in the following order. (a) After the photoconductor 1 starts rotating, the power source 4 is controlled and Vin1 is applied to the charging roller 2 before the image forming process. (b) The current Ir1 flowing from the power supply 4 to the charging roller 2 with respect to the applied voltage Vin1 is measured by the current measuring means 11, and the measured current value is input and stored by the control means 10. (c) The voltage applied to the charging roller 2 is controlled to V by controlling the power supply 4.
set to in2. (d) From the power supply 4 to the charging roller 2 corresponding to the applied voltage Vin2
The current Ir2 flowing in the current is measured by the current measuring means 11, and the measured current value is inputted and stored in the control means 10.
【0204】(e) 印加電圧はVin2のままで除電光3を
消灯する。 (f) 時刻T3から(T3+Tp)までの間に前記帯電部材に
流れる電流Ir3を電流測定手段11が測定し、制御手段10
が入力し記憶する。 (g) 時刻(T3+Tp)から(T3+2・Tp)までの間に前記
帯電部材に流れる電流Ir4を電流測定手段11が測定し、
制御手段10が入力し記憶する。(E) The static elimination light 3 is turned off while the applied voltage is Vin2. (f) The current measuring means 11 measures the current Ir3 flowing through the charging member from the time T3 to (T3 + Tp), and the control means 10
Is input and memorized. (g) The current measuring means 11 measures the current Ir4 flowing through the charging member from the time (T3 + Tp) to (T3 + 2.Tp).
The control means 10 inputs and stores it.
【0205】(h) 帯電抵抗Rrは次の手順で求められ
る。まず、帯電抵抗Rrの導出方法を図5の帯電試験機
を用いて説明する。感光体1を周速vpで回転させる。
帯電部材に電圧を印加しない状態のまま除電光3で感光
体1の1周すべての表面電位を0Vにする。次に除電光
3を消灯する。帯電ローラ2に絶対値が帯電ローラ2と
感光体1の帯電開始電圧Vth以上で、極性が作画工程に
おける感光体1の最適表面電位の極性と同じ電圧Vinを
印加する。感光体1の表面電位の絶対値は、帯電開始か
ら感光体1の回転1周ごとにステップ状に上昇し、漸近
的に飽和電位|Vin|−Vthに近づく。感光体1の表面
電位を表面電位測定プローブ41で測定する。(H) The charging resistance Rr is obtained by the following procedure. First, a method of deriving the charging resistance Rr will be described using the charging tester of FIG. The photoconductor 1 is rotated at the peripheral speed vp.
With the voltage applied to the charging member, the surface potential of the entire circumference of the photoconductor 1 is set to 0 V by the static elimination light 3. Next, the static elimination light 3 is turned off. A voltage Vin whose absolute value is equal to or higher than the charging start voltage Vth of the charging roller 2 and the photosensitive member 1 and whose polarity is the same as the polarity of the optimum surface potential of the photosensitive member 1 in the image forming process is applied to the charging roller 2. The absolute value of the surface potential of the photoconductor 1 increases stepwise for each rotation of the photoconductor 1 from the start of charging, and asymptotically approaches the saturation potential | Vin | -Vth. The surface potential of the photoconductor 1 is measured by the surface potential measuring probe 41.
【0206】帯電ローラ2と表面電位測定プローブ41ま
での感光体上の距離を感光体1の周速vpで割った時間
をTrp、また感光体1が1回転するのに要する時間をT
pとする。帯電開始時刻Tstから時間Trp経過した時刻
(Tst+Trp)に表面電位測定プローブ41は、感光体1の
帯電後の表面電位の測定を開始する。Trp is the time obtained by dividing the distance between the charging roller 2 and the surface potential measuring probe 41 on the photoconductor by the peripheral speed vp of the photoconductor 1, and T is the time required for the photoconductor 1 to make one rotation.
Let p. Time when the time Trp has elapsed from the charging start time Tst
At (Tst + Trp), the surface potential measuring probe 41 starts measuring the surface potential of the photoconductor 1 after charging.
【0207】表面電位プローブ41の測定電圧Vo(1),V
o(2)およびVo(3)を以下のように定義する。時刻(Tst
+Trp)から時刻(Tst+Trp+Tp)の間、すなわち帯電
開始から感光体1が1周するまでの間の感光体1の表面
電位の絶対値をVo(1)、時刻(Tst+Trp+Tp)から時
刻(Tst+Trp+2・Tp)の間、すなわち帯電開始から
感光体1の回転が1周以上2周未満までの間の感光体1
の表面電位の絶対値をVo(2)、一般的に時刻(Tst+Tr
p+n・Tp)から時刻(Tst+Trp+(n+1)・Tp)の
間、すなわち感光体1が帯電開始からn周以上(n+1)
周未満回転するまでの間の感光体1の表面電位の絶対値
をVo(n)とする。Measurement voltage Vo (1), V of the surface potential probe 41
o (2) and Vo (3) are defined as follows. Time (Tst
+ Trp) to time (Tst + Trp + Tp), that is, the absolute value of the surface potential of the photoconductor 1 from the start of charging until the photoconductor 1 completes one turn is Vo (1), and from time (Tst + Trp + Tp) to time (Tst + Trp + 2.Tp). ), That is, between the start of charging and the rotation of the photosensitive member 1 for one rotation or more and less than two rotations.
The absolute value of the surface potential of is Vo (2), which is generally the time (Tst + Tr
From (p + n · Tp) to time (Tst + Trp + (n + 1) · Tp), that is, the photoconductor 1 has been rotated for more than n rounds (n + 1).
Let Vo (n) be the absolute value of the surface potential of the photosensitive member 1 until it rotates less than one turn.
【0208】また、電流測定手段11が測定する電流Ir
(1),Ir(2)およびIr(n)を以下のように定義する。時
刻Tstから時刻(Tst+Tp)の間、すなわち帯電開始か
ら感光体1が1周するまでの間に帯電ローラ2に流れる
電流の絶対値をIr(1)、時刻(Tst+Tp)から時刻(Tst
+2・Tp)の間、すなわち帯電開始から感光体1の回転
が1周以上2周未満までの間に帯電ローラ2に流れる電
流の絶対値をIr(2)、一般的に時刻(Tst+n・Tp)か
ら時刻(Tst+(n+1)・Tp)の間、すなわち感光体1
が帯電開始からn周以上(n+1)周未満回転するまでの
間に帯電ローラ2に流れる電流の絶対値をIr(n)とす
る。また、感光体1の帯電係数をk、帯電ローラ2と感
光体1との間の帯電開始電圧をVth、||を絶対値記号
とすると、次の3つの方程式が成り立つ。Further, the current Ir measured by the current measuring means 11
(1), Ir (2) and Ir (n) are defined as follows. From time Tst to time (Tst + Tp), that is, from the start of charging until the photoconductor 1 completes one revolution, the absolute value of the current flowing through the charging roller 2 is Ir (1), and from time (Tst + Tp) to time (Tst
+ 2 · Tp), that is, the absolute value of the current flowing through the charging roller 2 during the period from the start of charging until the rotation of the photosensitive member 1 is more than one revolution and less than two revolutions, Ir (2) is generally the time (Tst + n · Tp). ) To time (Tst + (n + 1) · Tp), that is, photoconductor 1
Let Ir (n) be the absolute value of the current flowing through the charging roller 2 from the start of charging to the rotation of n cycles or more and less than (n + 1) cycles. Further, when the charging coefficient of the photoconductor 1 is k, the charging start voltage between the charging roller 2 and the photoconductor 1 is Vth, and || is an absolute value symbol, the following three equations hold.
【0209】 Vo(n)=|Vin|−Vth−Rr×Ir(n) ……………………… (33) Vo(n)−Vo(n-1)=k×Ir(n) ……………………………… (34) Vo(0)=0 ……………………………………………………… (35) これらをIr(n)について解くと、Vo (n) = | Vin | −Vth−Rr × Ir (n) ………………………… (33) Vo (n) −Vo (n-1) = k × Ir (n) ……………………………… (34) Vo (0) = 0 ………………………………………………… (35) These are Ir (n ),
【0210】[0210]
【外2】 [Outside 2]
【0211】また、Rrについて解くと、 Rr=(|Vin|−Vth)×Ir(2)/(Ir(1))2 ……………… (37) (式37)は図5の帯電試験機において求められる帯電抵抗
Rrである。Solving for Rr, Rr = (| Vin | −Vth) × Ir (2) / (Ir (1)) 2 ………… (37) (Equation 37) is the charging of FIG. It is the charging resistance Rr required by the tester.
【0212】ここにリーク電流Ir4を考慮して、本実施
例との対応をとると、電流Ir(1)は、(Ir2−Ir4)に一
致し、電流Ir(2)は、(Ir3−Ir4)と一致する。また、
印加電圧VinはVin2であった。したがって帯電抵抗Rr
は(式38)で求められる。 Rr=(|Vin2|−Vth)×(Ir3−Ir4)/(Ir2−Ir4)2 ……… (38) ここに帯電開始電圧Vthはリーク電流Ir4を考慮し、 Vth=|(Ir1−Ir4)×Vin2−(Ir2−Ir4)×Vin1|/|Ir1−Ir2| ……… (39) (式39)で求められる値を使う。Taking the leak current Ir4 into consideration, the current Ir (1) is equal to (Ir2-Ir4) and the current Ir (2) is (Ir3-Ir4). ) Matches. Also,
The applied voltage Vin was Vin2. Therefore, the charging resistance Rr
Is calculated by (Equation 38). Rr = (| Vin2 | -Vth) * (Ir3-Ir4) / (Ir2-Ir4) 2 (38) Here, the charging start voltage Vth is Vth = | (Ir1-Ir4) in consideration of the leak current Ir4. × Vin2− (Ir2−Ir4) × Vin1 | / | Ir1−Ir2 | ... (39) The value calculated by (Equation 39) is used.
【0213】(i) 入力された測定電流Ir1,Ir2から感
光体1の帯電係数kと帯電抵抗Rrの和を(式40)で推定
する。 k+Rr=|Vin1−Vin2|/|Ir1−Ir2| ……………… (40) 上記(h)で求められた帯電抵抗Rrと感光体1の目標電位
Vo_optから最適な帯電電流Ir_optを(式41)で求める。 Ir_opt=Vo_opt/k+Ir4 =Vo_opt/{|Vin1−Vin2|/|Ir1−Ir2|−Rr}+Ir4 ……… (41) (j) 帯電ローラ2に対する作画時の最適な印加電圧の絶
対値Vin_optは、 Vin_opt=(k+Rr)×(Ir_opt−Ir1)+|Vin1| ……… (42) または、 Vin_opt=(k+Rr)×(Ir_opt−Ir2)+|Vin2| ……… (43) で求める。(I) The sum of the charging coefficient k of the photoconductor 1 and the charging resistance Rr is estimated from the input measured currents Ir1 and Ir2 by (Equation 40). k + Rr = | Vin1−Vin2 | / | Ir1−Ir2 | (40) The optimum charging current Ir_opt is calculated from the charging resistance Rr obtained in (h) above and the target potential Vo_opt of the photoconductor 1 (equation See 41). Ir_opt = Vo_opt / k + Ir4 = Vo_opt / {| Vin1-Vin2 | / | Ir1-Ir2 | -Rr} + Ir4 (41) (j) The absolute value Vin_opt of the optimum applied voltage to the charging roller 2 at the time of image formation is Vin_opt = (k + Rr) * (Ir_opt-Ir1) + | Vin1 | ... (42) Alternatively, Vin_opt = (k + Rr) * (Ir_opt-Ir2) + | Vin2 | ... (43)
【0214】以上の手順に基づき、新品の感光体(表面
の膜厚26μm)を図5に示した帯電試験機に組み込み、室
温20℃湿度50%の環境下に3日間放置した後、印加電圧
Vin1=−900V、Vin2=−1100Vで、除電光3を点灯
させながら帯電するときに流れる電流値を実測すると、
それぞれIr1=3.0μA、Ir2=4.8μAであった。Based on the above procedure, a new photoconductor (film thickness of 26 μm on the surface) was installed in the charging tester shown in FIG. 5, left for 3 days in an environment of room temperature of 20 ° C. and humidity of 50%, and then applied voltage. When Vin1 = −900V and Vin2 = −1100V, the current value flowing when charging the static elimination light 3 while charging is measured,
Ir1 = 3.0 μA and Ir2 = 4.8 μA, respectively.
【0215】次に印加電圧Vin2=−1100Vにしたま
ま、除電光3を消灯し、上記(f)および(g)の手順で求め
られるIr3およびIr4の値は、Ir3=0.8μA、Ir4=0.
4μAであった。すなわち、本測定ではリーク電流が0.4
μA存在していた。Next, with the applied voltage Vin2 = -1100V, the static elimination light 3 is turned off, and the values of Ir3 and Ir4 obtained by the steps (f) and (g) are Ir3 = 0.8 μA and Ir4 = 0. .
It was 4 μA. That is, the leak current is 0.4 in this measurement.
μA was present.
【0216】以上の測定データを用い、(式40)から電位
の単位をV、電流の単位をμAとすると、k+Rrの値は
111.1(V/μA)、(式39)からVth=611Vと求められ
た。さらに(式38)から帯電抵抗Rrは、Rr=10.1MΩと
求められ、感光体1の帯電係数kは102.0(V/μA)とな
った。Using the above measurement data, if the unit of potential is V and the unit of current is μA from (Equation 40), the value of k + Rr is
111.1 (V / μA), Vth = 611V was calculated from (Equation 39). Further, the charging resistance Rr was calculated as Rr = 10.1 MΩ from (Equation 38), and the charging coefficient k of the photoconductor 1 was 102.0 (V / μA).
【0217】感光体の目標電位を−450Vとすると、(式
41)から最適帯電電流Ir_optは4.9μAであった。(式42)
から、感光体の電位を−450Vとするための最適印加電
圧の絶対値Vin_optは1110Vと求められた。Assuming that the target potential of the photoconductor is −450 V,
From 41), the optimum charging current Ir_opt was 4.9 μA. (Equation 42)
From this, the absolute value Vin_opt of the optimum applied voltage for setting the potential of the photoconductor to −450V was calculated to be 1110V.
【0218】検証のため、5Vステップの電源4で最も
絶対値がVin_optに近い−1110Vを帯電ローラ2に印加
すると、感光体1の表面電位は−447Vと目標電位に近
い値となった。For verification, when -1110V whose absolute value is closest to Vin_opt is applied to the charging roller 2 by the 5V step power supply 4, the surface potential of the photosensitive member 1 becomes -447V, which is a value close to the target potential.
【0219】次に10万枚ランニングした後で感光体の膜
厚が18μmとなった感光体を図5に示した帯電試験機に
組み込み、室温20℃湿度50%の環境下に3日間放置した
後、印加電圧Vin1=−900V、Vin2=−1100Vで、除
電光3を点灯させながら帯電するときに流れる電流値を
実測すると、それぞれIr1=4.8μA、Ir2=7.3μAであ
った。Next, after running 100,000 sheets, the photoconductor in which the film thickness of the photoconductor became 18 μm was incorporated into the charging tester shown in FIG. 5 and left for 3 days in an environment of room temperature of 20 ° C. and humidity of 50%. After that, when the applied voltage Vin1 = −900V and Vin2 = −1100V, the current values flowing when charging the static-eliminating light 3 while lighting it were measured, and they were Ir1 = 4.8 μA and Ir2 = 7.3 μA, respectively.
【0220】次に印加電圧Vin2=−1100Vにしたま
ま、除電光3を消灯し、上記(f)および(g)の手順で求め
られるIr3およびIr4の値は、Ir3=1.2μA、Ir4=0.
4μAであった。Next, with the applied voltage Vin2 = -1100V, the static elimination light 3 is turned off, and the values of Ir3 and Ir4 obtained by the steps (f) and (g) are Ir3 = 1.2 μA and Ir4 = 0. .
It was 4 μA.
【0221】以上の測定データを用い、(式40)から電位
の単位をV、電流の単位をμAとすると、k+Rrの値は
80.0(V/μA)、(式39)からVth=548Vと求められた。
さらに(式38)から帯電抵抗Rrは、Rr=9.3MΩと求め
られ、感光体1の帯電係数kは70.7(V/μA)となっ
た。Using the above measurement data, if the unit of potential is V and the unit of current is μA from (Equation 40), the value of k + Rr is
80.0 (V / μA), Vth = 548V was calculated from (Equation 39).
Furthermore, the charging resistance Rr was calculated as Rr = 9.3 MΩ from (Equation 38), and the charging coefficient k of the photoconductor 1 was 70.7 (V / μA).
【0222】感光体の目標電位を−450Vとすると、(式
41)から最適帯電電流Ir_optは6.8μAである。(式42)か
ら、感光体の電位を−450Vとするための最適印加電圧
の絶対値Vin_optは1058Vと求められた。Assuming that the target potential of the photosensitive member is −450V, (Equation
From 41), the optimum charging current Ir_opt is 6.8 μA. From (Equation 42), the absolute value Vin_opt of the optimum applied voltage for setting the potential of the photoconductor to −450V was calculated to be 1058V.
【0223】検証のため、5Vステップの電源4で最も
絶対値がVin_optに近い−1060Vを帯電ローラ2に印加
すると、感光体1の表面電位は−442Vと目標電位に近
い値となった。For verification, when -1060 V, whose absolute value is closest to Vin_opt, was applied to the charging roller 2 by the 5 V step power supply 4, the surface potential of the photoconductor 1 was -442 V, which was a value close to the target potential.
【0224】さらに、新品の感光体(表面の膜厚26μm)
を図5に示した帯電試験機に組み込み、室温33℃湿度80
%の環境下に3日間放置した後、印加電圧Vin1=−900
V、Vin2=−1100Vで、除電光3を点灯させながら帯
電するときに流れる電流値を実測すると、それぞれIr1
=3.4μA、Ir2=5.4μAであった。Further, a new photoconductor (surface film thickness: 26 μm)
Built in the electrification tester shown in Fig. 5, room temperature 33 ℃, humidity 80
Applied voltage Vin1 = -900 after left for 3 days in the environment of
When V and Vin2 = -1100V, the current values flowing when charging the static-eliminating light 3 while lighting it are actually measured.
= 3.4 μA and Ir2 = 5.4 μA.
【0225】次に印加電圧Vin2=−1100Vにしたま
ま、除電光3を消灯し、上記(f)および(g)の手順で求め
られるIr3およびIr4の値は、Ir3=0.7μA、Ir4=0.
6μAであった。Next, with the applied voltage Vin2 = -1100V, the static elimination light 3 is turned off, and the values of Ir3 and Ir4 obtained by the steps (f) and (g) are Ir3 = 0.7 μA and Ir4 = 0. .
It was 6 μA.
【0226】以上の測定データを用い、(式40)から電位
の単位をV、電流の単位をμAとすると、k+Rrの値は
100.0(V/μA)、(式39)からVth=620Vと求められ
た。さらに(式38)から帯電抵抗Rrは、Rr=2.1MΩと
求められ、感光体1の帯電係数kは97.9(V/μA)とな
った。Using the above measurement data, if the unit of potential is V and the unit of current is μA from (Equation 40), the value of k + Rr is
Vth = 620V was calculated from 100.0 (V / μA) and (Equation 39). Furthermore, the charging resistance Rr was determined from (Equation 38) to be Rr = 2.1 MΩ, and the charging coefficient k of the photoconductor 1 was 97.9 (V / μA).
【0227】感光体の目標電位を−450Vとすると、(式
41)から最適帯電電流Ir_optは5.2μAであった。(式42)
から、感光体の電位を−450Vとするための最適印加電
圧の絶対値Vin_optは1080Vと求められた。Assuming that the target potential of the photosensitive member is −450V,
From 41), the optimum charging current Ir_opt was 5.2 μA. (Equation 42)
From this, the absolute value Vin_opt of the optimum applied voltage for setting the potential of the photoconductor to −450V was obtained as 1080V.
【0228】検証のため、5Vステップの電源4で最も
絶対値がVin_optに近い−1080Vを帯電ローラ2に印加
すると、感光体1の表面電位は−451Vと目標電位に近
い値となった。以上のように本実施例によれば、感光体
の表面膜厚の変化および帯電部材の抵抗値の変化および
リーク電流に影響されずに感光体表面電位を目標値にで
きた。For verification, when −1080V whose absolute value is closest to Vin_opt is applied to the charging roller 2 by the 5V step power source 4, the surface potential of the photoconductor 1 becomes −451V, which is a value close to the target potential. As described above, according to this embodiment, the surface potential of the photoconductor can be set to the target value without being affected by the change in the surface film thickness of the photoconductor, the change in the resistance value of the charging member, and the leak current.
【0229】(比較例5)第5の実施例で、リーク電流を
考慮しない場合を試みた。新品の感光体(表面の膜厚26
μm)を室温20℃湿度50%の環境下に3日間放置した場
合、Ir1,Ir2,Ir3を第3の実施例の(式23)と(式24)
に代入してVthおよびRrを求めた。値はそれぞれVt
h″=611V、Rr″=17.0MΩであった。(式41)および
(式42)から感光体1の目標電位−450Vに対する最適印
加電圧Vin_opt=1142Vとなった。ところが実際に−11
42Vを帯電ローラ2に印加すると、感光体1の表面電位
は−477Vで、目標電位から27Vずれた値となった。(Comparative Example 5) In the fifth example, a case was examined in which the leak current was not taken into consideration. New photoconductor (surface film thickness 26
(μm) is left in an environment of room temperature of 20 ° C. and humidity of 50% for 3 days, Ir1, Ir2 and Ir3 are set to (Formula 23) and (Formula 24) of the third embodiment.
To obtain Vth and Rr. Value is Vt
h ″ = 611 V and Rr ″ = 17.0 MΩ. (Equation 41) and
From (Equation 42), the optimum applied voltage Vin_opt = 1142V with respect to the target potential −450V of the photoconductor 1 is obtained. But actually -11
When 42V was applied to the charging roller 2, the surface potential of the photoconductor 1 was -477V, which was a value shifted from the target potential by 27V.
【0230】次に10万枚ランニングした後で感光体の膜
厚が18μmとなった感光体を、室温20℃湿度50%の環境
下に3日間放置した場合、Ir1,Ir2,Ir3を第3の実
施例の(式23)と(式24)に代入してVthおよびRrを求め
た。値はそれぞれVth″=548V、Rr″=13.4MΩであ
った。(式41)および(式42)から感光体1の目標電位−45
0Vに対する最適印加電圧Vin_opt=1089Vとなった。
ところが実際に−1089Vを帯電ローラに印加すると、感
光体1の表面電位は−469Vで、目標電位から19Vずれ
た値となった。Next, when a photoreceptor having a thickness of 18 μm after running 100,000 sheets was left for 3 days in an environment of room temperature of 20 ° C. and humidity of 50%, Ir1, Ir2 and Ir3 were changed to a third value. Vth and Rr were determined by substituting them into (Equation 23) and (Equation 24) of the example. The values were Vth ″ = 548 V and Rr ″ = 13.4 MΩ, respectively. From (Expression 41) and (Expression 42), the target potential of the photoconductor 1 is −45.
The optimum applied voltage Vin_opt = 1089V with respect to 0V.
However, when -1089V was actually applied to the charging roller, the surface potential of the photoconductor 1 was -469V, which was a value deviated from the target potential by 19V.
【0231】さらに、新品の感光体(表面の膜厚26μm)
を室温33℃湿度80%の環境下に3日間放置した場合、I
r1,Ir2,Ir3を第3の実施例の(式23)と(式24)に代入
してVthおよびRrを求めた。値はそれぞれVth″=620
V、Rr″=11.5MΩであった。(式41)および(式42)か
ら感光体1の目標電位−450Vに対する最適印加電圧Vi
n_opt=1146Vとなった。ところが実際に−1146Vを帯
電ローラ2に印加すると、感光体1の表面電位は−515
Vとなった。目標電位から65Vずれた値となり、実用化
できなかった。Furthermore, a new photoconductor (surface film thickness: 26 μm)
When left at room temperature 33 ° C and humidity 80% for 3 days,
Vth and Rr were calculated by substituting r1, Ir2 and Ir3 into (Equation 23) and (Equation 24) of the third embodiment. The value is Vth ″ = 620
V, Rr ″ = 11.5 MΩ. From (Equation 41) and (Equation 42), the optimum applied voltage Vi for the target potential −450 V of the photoconductor 1
It became n_opt = 1146V. However, when -1146 V is actually applied to the charging roller 2, the surface potential of the photoconductor 1 is -515.
It became V. The value was deviated from the target potential by 65 V, which was not practical.
【0232】(第6の実施例)結露などにより帯電部材に
流れる電流にリークが有る場合で、かつ感光体の膜厚の
減少がない場合は、電流値の測定は3回に簡素化でき
る。感光体膜厚の減少のない場合とは、硬度の高い感光
体膜を使う場合、または感光体の表面に硬度の高いコー
ティングを施す場合、または感光体の寿命が短く、膜厚
の減少を生じる前に感光体を交換することが仕様上決定
している場合などである。(Sixth Embodiment) When the current flowing through the charging member has a leak due to dew condensation or the like and the film thickness of the photosensitive member is not reduced, the measurement of the current value can be simplified to three times. When there is no decrease in the film thickness of the photoconductor, when the photoconductor film with high hardness is used, or when the surface of the photoconductor is coated with high hardness, or the life of the photoconductor is short, the film thickness decreases. This is the case when it is decided in advance that the photoconductor should be replaced.
【0233】表面電位0Vの感光体をVoに帯電すると
き、Voは電流Irに比例する。この関係を図4に示す。
図4において横軸は帯電電流Ir、縦軸は感光体表面電
位Voである。比例係数をkとおき、kを帯電係数と名
付ける。初期の表面電位0Vの感光体を帯電する場合、
帯電電流Irをk倍すると、帯電電位Voとなる。When a photoreceptor having a surface potential of 0 V is charged to Vo, Vo is proportional to the current Ir. This relationship is shown in FIG.
In FIG. 4, the horizontal axis represents the charging current Ir and the vertical axis represents the photoreceptor surface potential Vo. The proportionality coefficient is set to k, and k is named a charging coefficient. When charging the photoreceptor with the initial surface potential of 0 V,
Multiplying the charging current Ir by k gives the charging potential Vo.
【0234】本実施例では、感光体1の帯電係数kを予
め求める。帯電係数kを求める方法は第2の実施例と同
じであるので省略する。第2の実施例と同じ感光体なの
で、感光体1の帯電係数kは、k=99.1であった。In this embodiment, the charge coefficient k of the photoconductor 1 is obtained in advance. Since the method of obtaining the charging coefficient k is the same as that of the second embodiment, it will be omitted. Since the photosensitive member is the same as that of the second embodiment, the charging coefficient k of the photosensitive member 1 was k = 99.1.
【0235】本実施例の画像形成装置の構成は、基本的
に第3の実施例と同様に図10で示される。第3の実施例
と異なるのは制御手段10の作用である。制御手段10の動
作について図17を参照しながら説明する。The structure of the image forming apparatus of this embodiment is basically shown in FIG. 10 as in the third embodiment. The difference from the third embodiment is the operation of the control means 10. The operation of the control means 10 will be described with reference to FIG.
【0236】図17は制御手段10の動作をタイミングチャ
ートで示したもので、横軸矢印方向に時間が経過する。
また、上から感光体1の回転、帯電ローラ2への印加電
圧Vin、除電光3の点灯(on)または消灯(off)、帯電ロ
ーラ2に流れる帯電電流の絶対値Ir、転写電源37が転
写ローラ32に印加する電流、現像器31による現像位置で
の感光体1の表面電位Voをそれぞれ示している。その
まま表示すると煩雑なので、図17の感光体表面電位Vo
は、移動する感光体1上の1点が帯電ローラ2の帯電領
域から現像器31の現像領域まで移動するのに要する時間
Trdだけ進めて示した。また、帯電ローラ2が1回転す
るのに要する時間をTr、感光体1が1回転するのに要
する時間をTpとする。時間TrおよびTpは、帯電ロー
ラ2の直径,感光体1の直径,感光体1の周速vpから
予め求められる。FIG. 17 is a timing chart showing the operation of the control means 10. Time elapses in the direction of the horizontal axis arrow.
Further, the rotation of the photoconductor 1, the voltage Vin applied to the charging roller 2, the turning on or off of the static elimination light 3, the absolute value Ir of the charging current flowing through the charging roller 2, and the transfer power source 37 are transferred from above. The current applied to the roller 32 and the surface potential Vo of the photoconductor 1 at the developing position by the developing device 31 are shown. Since it is complicated to display it as it is, the photoconductor surface potential Vo in FIG.
Is shown by advancing by the time Trd required for one point on the moving photoconductor 1 to move from the charging area of the charging roller 2 to the developing area of the developing device 31. Further, the time required for the charging roller 2 to make one rotation is Tr, and the time required for the photosensitive member 1 to make one rotation is Tp. The times Tr and Tp are obtained in advance from the diameter of the charging roller 2, the diameter of the photoconductor 1, and the peripheral speed vp of the photoconductor 1.
【0237】図17において、作画工程に先立ち感光体1
が回転した後の転写電源37はフロート状態とし、転写ロ
ーラ32が感光体1を帯電しない状態にする。感光体1の
回転が十分安定するだけの時間を経過した後、帯電ロー
ラ2に電圧Vin1を印加する。このとき流れる電流のう
ち、Vin1を印加した直後から帯電ローラ2が1周する
までの時間Trは電流値が不安定なので無視し、帯電ロ
ーラ2が1周以上した後の電流値Ir1を測定する。In FIG. 17, the photoconductor 1 is placed prior to the drawing process.
After the rotation, the transfer power source 37 is floated, and the transfer roller 32 does not charge the photoconductor 1. The voltage Vin1 is applied to the charging roller 2 after a lapse of a time sufficient for the rotation of the photoconductor 1 to be sufficiently stabilized. Of the current flowing at this time, the time Tr from immediately after the application of Vin1 to the full rotation of the charging roller 2 is unstable, so the current value is ignored, and the current value Ir1 after the charging roller 2 makes one round or more is measured. .
【0238】次に、Ir1の測定終了時刻をT2とし、ま
た、移動する感光体1上の1点が除電光3の作用領域か
ら帯電ローラ2の帯電領域まで移動するのに要する時間
をTjrとすると、時刻(T2−Tjr)以降に除電光3を消
灯する。Next, the measurement end time of Ir1 is set to T2, and the time required for one point on the moving photosensitive member 1 to move from the working area of the static elimination light 3 to the charging area of the charging roller 2 is set to Tjr. Then, the static elimination light 3 is turned off after the time (T2-Tjr).
【0239】本実施例では、Ir1の測定終了前かつ時刻
(T2−Tjr)以降に、電源4の印加電圧はVin1のまま、
除電光3を消灯する。除電光3の消灯後、除電されてい
た感光体面と除電されていない感光体面との境界が前記
帯電部材に接触した時刻をT3とする。時間T3は、感光
体1の周速vp、および除電光3と帯電ローラ2の位置
関係から予め求められる。In this example, before the end of Ir1 measurement and at the time
After (T2-Tjr), the applied voltage of the power source 4 remains Vin1 and
The static elimination light 3 is turned off. It is assumed that the time when the boundary between the surface of the photoconductor on which the charge has been removed and the surface of the photoconductor on which the charge has not been removed contacts the charging member after the charge-eliminating light 3 is turned off is T3. The time T3 is obtained in advance from the peripheral speed vp of the photoconductor 1 and the positional relationship between the charge eliminating light 3 and the charging roller 2.
【0240】時刻T3から(T3+Tp)までの間に前記帯
電部材に流れる電流Ir3を測定する。更に時刻(T3+T
p)から(T3+2Tp)までの間に前記帯電部材に流れる電
流Ir4を測定する。A current Ir3 flowing through the charging member is measured from time T3 to (T3 + Tp). Further time (T3 + T
The current Ir4 flowing through the charging member is measured from p) to (T3 + 2Tp).
【0241】制御手段10は、これらの測定値Ir1,Ir3
およびIr4から作画時の帯電抵抗Rrを求め、印加電圧
の絶対値Vin_optを決定する。次に、絶対値がVin_opt
に最も近く、極性が作画工程における感光体1の最適表
面電位と同じ電圧を帯電ローラ2に印加するよう電源4
を制御する。現像位置での感光体1の表面電位Voが目
標電位になった時刻から作画工程は開始する。作画工程
に入り、制御手段10は転写電源を+2μAとして転写工
程を作動させる。The control means 10 controls the measured values Ir1 and Ir3.
Then, the charging resistance Rr at the time of image formation is obtained from Ir4 and Ir4, and the absolute value Vin_opt of the applied voltage is determined. Next, the absolute value is Vin_opt
Power supply 4 that is closest to the charging roller 2 and has the same polarity as the optimum surface potential of the photoconductor 1 in the drawing process.
Control. The image forming process starts from the time when the surface potential Vo of the photoconductor 1 at the developing position reaches the target potential. In the drawing process, the control means 10 operates the transfer process by setting the transfer power source to +2 μA.
【0242】測定値Ir1,Ir3およびIr4から帯電抵抗
Rrを求め、作画時の印加電圧Vin_optを決定する方法
を図18で説明する。図18は制御手段10の動作手順を示し
たフローチャートで、次の順番で動作を行う。A method of obtaining the charging resistance Rr from the measured values Ir1, Ir3 and Ir4 and determining the applied voltage Vin_opt at the time of image formation will be described with reference to FIG. FIG. 18 is a flowchart showing the operation procedure of the control means 10, and the operation is performed in the following order.
【0243】(a) 感光体1が回転を開始した後、作画工
程に先立ち電源4を制御し帯電ローラ2にVin1を印加
する。 (b) 印加電圧Vin1に対して電源4から帯電ローラ2に
流れる電流Ir1を電流測定手段11が測定し、測定された
電流値を制御手段10が入力し記憶する。 (c) 印加電圧はVin1のままで除電光3を消灯するよう
に、制御手段10から除電電源5に指令する。 (d) 時刻T3から(T3+Tp)までの間に前記帯電部材に
流れる電流Ir3を電流測定手段11が測定し、制御手段10
が入力し記憶する。 (e) 時刻(T3+Tp)から(T3+2Tp)までの間に前記帯
電部材に流れる電流Ir4を電流測定手段11が測定し、制
御手段10が入力し記憶する。(A) After the photoconductor 1 starts to rotate, the power source 4 is controlled and Vin1 is applied to the charging roller 2 before the image forming process. (b) The current Ir1 flowing from the power supply 4 to the charging roller 2 with respect to the applied voltage Vin1 is measured by the current measuring means 11, and the measured current value is input and stored by the control means 10. (c) The control means 10 instructs the static elimination power source 5 to turn off the static elimination light 3 with the applied voltage being Vin1. (d) From time T3 to (T3 + Tp), the current measuring means 11 measures the current Ir3 flowing through the charging member, and the control means 10
Is input and memorized. (e) The current Ir4 flowing through the charging member is measured by the current measuring means 11 from time (T3 + Tp) to (T3 + 2Tp), and the control means 10 inputs and stores it.
【0244】(f) 帯電抵抗Rrは、第5の実施例と同様
の手順で求められる。すなわち、RrとVthについて次
の2つの関係が成り立つ。 Rr=(|Vin1|−Vth)×(Ir3−Ir4)/(Ir1−Ir4)2 ……… (44) ここに帯電開始電圧Vthは(式45)で求められる値を使
う。 Vth=|Vin1|−(k+Rr)×(Ir1−Ir4) ……………… (45) これら2つの連立方程式をRrとVthについて解いて、
帯電抵抗Rrを求める。(F) The charging resistance Rr is obtained by the same procedure as in the fifth embodiment. That is, the following two relationships are established for Rr and Vth. Rr = (| Vin1 | −Vth) × (Ir3−Ir4) / (Ir1−Ir4) 2 (44) Here, the charging start voltage Vth used is the value calculated by (Equation 45). Vth = | Vin1 | − (k + Rr) × (Ir1−Ir4) ……………… (45) Solving these two simultaneous equations for Rr and Vth,
The charging resistance Rr is calculated.
【0245】(g) 予め与えられた感光体1の帯電係数k
と感光体1の作画時の目標電位の絶対値Vo_optから最
適な帯電電流の絶対値Ir_optを(式46)で求める。 Ir_opt=Vo_opt/k+Ir4 ………………………………… (46) (h) 帯電ローラ2に対する、作画時の最適な印加電圧の
絶対値Vin_optは、 Vin_opt=(k+Rr)×(Ir_opt−Ir1)+|Vin1| ……… (47) で求める。(G) Charge coefficient k of the photoconductor 1 given in advance
Then, the optimum absolute value Ir_opt of the charging current is obtained from (Equation 46) from the absolute value Vo_opt of the target potential at the time of image formation of the photoconductor 1. Ir_opt = Vo_opt / k + Ir4 (46) (h) The optimum absolute value Vin_opt of the applied voltage to the charging roller 2 at the time of image formation is Vin_opt = (k + Rr) × (Ir_opt −Ir1) + | Vin1 | ……… Calculate by (47).
【0246】以上の手順に基づき、新品の感光体(表面
の膜厚26μm)を図5に示した帯電試験機に組み込み、室
温20℃湿度50%の環境下に3日間放置し、装置を十分環
境に馴染ませた後、下記の実験を開始した。印加電圧V
in1=−1100Vで除電光3を点灯させながら帯電すると
きに流れる電流値Ir1は、Ir1=4.8μAであった。次に
印加電圧は−1100Vのままで除電光3を消灯し上記の手
順(d)および(e)で求められる電流Ir3,Ir4の値は、
それぞれIr3=0.8μA、Ir4=0.4μAであった。Based on the above procedure, a new photoconductor (film thickness of 26 μm on the surface) was installed in the charging tester shown in FIG. 5 and left for 3 days in an environment of room temperature of 20 ° C. and humidity of 50%, and the device was fully charged. After adjusting to the environment, the following experiment was started. Applied voltage V
The current value Ir1 flowing when charging was performed while lighting the neutralization light 3 at in1 = −1100 V was Ir1 = 4.8 μA. Next, the applied voltage remains −1100 V, the static elimination light 3 is turned off, and the values of the currents Ir3 and Ir4 obtained in the above steps (d) and (e) are as follows.
Ir3 = 0.8 μA and Ir4 = 0.4 μA, respectively.
【0247】(式44)および(式45)の連立方程式、および
予め求められた感光体1の帯電係数k=99.1(V/μA)
から帯電抵抗Rrと帯電開始電圧Vthを求めると、Rr=
10.1MΩ、Vth=620Vであった。感光体1の目標電位
を−450Vとすると、(式46)から最適な帯電電流の絶対
値Ir_optは4.9μAである。(式47)から、感光体1の電
位を−450Vとするための最適印加電圧の絶対値Vin_op
tは1110Vと求められる。Simultaneous equations of (Equation 44) and (Equation 45) and the previously determined charge coefficient k of the photosensitive member 1 = 99.1 (V / μA)
When the charging resistance Rr and the charging start voltage Vth are obtained from Rr =
It was 10.1 MΩ and Vth = 620V. When the target potential of the photoconductor 1 is -450 V, the optimum absolute value Ir_opt of the charging current is 4.9 μA from (Equation 46). From (Equation 47), the absolute value Vin_op of the optimum applied voltage for setting the potential of the photoconductor 1 to −450V
t is required to be 1110V.
【0248】検証のため、5Vステップの電源4で最も
絶対値がVin_optに近い−1110Vを帯電ローラ2に印加
すると、感光体1の表面電位は−447Vと目標電位に近
い値となった。For verification, when -1110V whose absolute value is closest to Vin_opt is applied to the charging roller 2 by the 5V step power source 4, the surface potential of the photoconductor 1 becomes -447V, which is a value close to the target potential.
【0249】更に、新品の感光体(表面の膜厚26μm)を
図5に示した帯電試験機に組み込み、室温33℃湿度80%
の環境下に3日間放置し装置を十分環境に馴染ませた
後、下記の実験を行った。印加電圧Vin1=−1100Vで
除電光3を点灯させながら帯電するときに流れる電流値
Ir1は、Ir1=5.4μAであった。次に印加電圧は−1100
Vのままで除電光3を消灯し、上記の手順(d)および(e)
で求められる電流Ir3,Ir4の値はそれぞれ、Ir3=0.
7μA、Ir4=0.6μAであった。Further, a new photoconductor (surface film thickness: 26 μm) was installed in the charging tester shown in FIG. 5, and the room temperature was 33 ° C. and the humidity was 80%.
After allowing the apparatus to stand in the environment for 3 days to allow the apparatus to fully adapt to the environment, the following experiment was performed. The current value Ir1 that flows when charging is performed while turning on the static elimination light 3 with the applied voltage Vin1 = −1100 V was Ir1 = 5.4 μA. Next, the applied voltage is −1100
Turn off the static eliminator 3 with V as it is, and follow steps (d) and (e) above.
The values of the currents Ir3 and Ir4 obtained by the above are respectively Ir3 = 0.
It was 7 μA and Ir4 = 0.6 μA.
【0250】(式44)および(式45)の連立方程式および予
め求められた感光体1の帯電係数k=99.1(V/μA)か
ら帯電抵抗Rrと帯電開始電圧Vthを求めると、Rr=2.
3MΩ、Vth=654Vであった。感光体1の目標電位を−
450Vとすると、(式46)から最適な帯電電流の絶対値Ir
_optは5.1μAであった。(式47)から、感光体1の電位を
−450Vとするための最適印加電圧の絶対値Vin_optは1
070Vと求められた。When the charging resistance Rr and the charging start voltage Vth are calculated from the simultaneous equations of (Expression 44) and (Expression 45) and the previously determined charging coefficient k = 99.1 (V / μA) of the photoconductor 1, Rr = 2 .
It was 3 MΩ and Vth = 654V. The target potential of the photoconductor 1
If it is 450V, the optimum absolute value Ir of the charging current is calculated from (Equation 46).
_opt was 5.1 μA. From (Equation 47), the absolute value Vin_opt of the optimum applied voltage for setting the potential of the photoconductor 1 to −450 V is 1
It was asked to be 070V.
【0251】検証のため、5Vステップの電源4で最も
絶対値がVin_optに近い−1070Vを帯電ローラ2に印加
すると感光体1の表面電位は−441Vと目標電位に近い
値となった。以上のように本実施例によれば、帯電部材
の抵抗値の変化およびリーク電流に影響されずに感光体
表面電位を目標値にできた。For verification, when −1070 V whose absolute value is closest to Vin_opt is applied to the charging roller 2 by the 5 V step power supply 4, the surface potential of the photoconductor 1 becomes −441 V, which is a value close to the target potential. As described above, according to this embodiment, the surface potential of the photoconductor can be set to the target value without being affected by the change in the resistance value of the charging member and the leak current.
【0252】(比較例6)第6の実施例で、リーク電流を
考慮しない場合を試みた。新品の感光体(表面の膜厚26
μm)を室温20℃湿度50%の環境下に3日間放置したとき
の帯電電流Ir1,Ir3,Ir4を、第4の実施例の(式29)
と(式30)に代入してVthおよびRrを求めた。実測値か
ら求めた値はそれぞれVth″=450V、Rr″=22.6MΩ
であった。(Comparative Example 6) In the sixth example, a case was examined in which the leak current was not taken into consideration. New photoconductor (surface film thickness 26
(μm) is left for 3 days in an environment of room temperature of 20 ° C. and humidity of 50%, and the charging currents Ir1, Ir3, Ir4 are calculated by the equation (29) of the fourth embodiment.
And (Equation 30) to obtain Vth and Rr. The values obtained from the measured values are Vth ″ = 450V and Rr ″ = 22.6MΩ, respectively.
Met.
【0253】(式46)および(式47)から感光体1の目標電
位−450Vに対する最適印加電圧Vin_opt=1064Vとな
った。ところが実際に−1064Vを帯電ローラに印加する
と、感光体1の表面電位は−407Vとなり目標電位から4
3Vずれた値となった。目標値との差が大きく、実用化
できなかった。From (Equation 46) and (Equation 47), the optimum applied voltage Vin_opt = 1064V with respect to the target potential -450V of the photoconductor 1 is obtained. However, when -1064V is actually applied to the charging roller, the surface potential of the photoconductor 1 becomes -407V, which is 4V below the target potential.
The value was deviated by 3V. The difference from the target value was so large that it could not be put to practical use.
【0254】更に、新品の感光体(表面の膜厚26μm)を
室温33℃湿度80%の環境下に3日間放置したときの帯電
電流Ir1,Ir3,Ir4を第4の実施例の(式29)と(式30)
に代入してVthおよびRrを求めた。実測値から求めた
値はそれぞれVth″=428V、Rr″=16MΩであった。Further, the charging currents Ir1, Ir3 and Ir4 when a new photoconductor (surface film thickness 26 μm) was left for 3 days in an environment of room temperature 33 ° C. and humidity 80% were calculated from the equation (29) of the fourth embodiment. ) And (equation 30)
To obtain Vth and Rr. The values obtained from the measured values were Vth ″ = 428 V and Rr ″ = 16 MΩ, respectively.
【0255】(式46)および(式47)から感光体1の目標電
位−450Vに対する最適印加電圧Vin_opt=997Vとなっ
た。ところが実際に−997Vを帯電ローラに印加する
と、感光体1の表面電位は−370Vとなり、目標電位か
ら80Vずれた値となった。目標値との差が大きく、実用
化できなかった。From (Equation 46) and (Equation 47), the optimum applied voltage Vin_opt = 997V with respect to the target potential -450V of the photoconductor 1 was obtained. However, when −997 V was actually applied to the charging roller, the surface potential of the photoconductor 1 became −370 V, which was a value deviated from the target potential by 80 V. The difference from the target value was so large that it could not be put to practical use.
【0256】(第7の実施例)発明者らの鋭意研究の結
果、第1の測定に関して下記の現象が認められ、電流測
定に誤差を与えることが見いだされた。(Seventh Example) As a result of intensive studies by the inventors, the following phenomenon was observed in the first measurement, and it was found that the current measurement had an error.
【0257】図3の感光体(表面の膜厚26μm)と図2の
帯電ローラを図5に示した帯電試験機に組み込み、室温
20℃湿度50%の環境下に3日間放置し、装置全体を十分
環境に馴染ませた後、実験を行った。印加電圧Vin=−
1100Vで除電光3を点灯させながら帯電するときに流れ
る電流値を実測した。得られたデータを、図19(a)およ
び(b)に示す。The photosensitive member of FIG. 3 (surface film thickness: 26 μm) and the charging roller of FIG. 2 were incorporated into the charging tester shown in FIG.
An experiment was conducted after leaving the apparatus as a whole in an environment of 20 ° C. and a humidity of 50% for 3 days to fully adapt it to the environment. Applied voltage Vin =-
The current value flowing when charging was performed while turning on the static elimination light 3 at 1100V. The data obtained are shown in Figures 19 (a) and (b).
【0258】図19(a)および(b)は横軸が時間、縦方向上
から帯電ローラ2への印加電圧Vin、帯電ローラ2に流
れる帯電電流の絶対値Ir、現像器31による現像位置で
の感光体1の表面電位Voをそれぞれ示している。その
まま表示すると煩雑なので、図19(a)および(b)の表面電
位Voは、移動する感光体1上の1点が帯電ローラ2の
帯電領域から現像器31の現像領域まで移動するのに要す
る時間Trdだけ進めて示した。帯電ローラ2と現像器と
の感光体1の表面上距離を感光体1の周速vpで割った
時間Trdだけ進めて示した。また、帯電ローラ2が1回
転するのに要する時間をTr、感光体1が1回転するの
に要する時間をTpとする。時間TrおよびTpは、帯電
ローラ2の直径,感光体1の直径,感光体1の周速vp
から予め求められる。19A and 19B, the horizontal axis represents time, the voltage Vin applied to the charging roller 2 from above in the vertical direction, the absolute value Ir of the charging current flowing in the charging roller 2, and the developing position by the developing device 31. The surface potential Vo of the photoconductor 1 is shown. Since it is complicated to display it as it is, the surface potential Vo in FIGS. 19A and 19B is required for one point on the moving photoconductor 1 to move from the charging area of the charging roller 2 to the developing area of the developing device 31. It is shown by advancing only time Trd. The distance on the surface of the photoconductor 1 between the charging roller 2 and the developing device is divided by the peripheral speed vp of the photoconductor 1 and advanced by the time Trd. Further, the time required for the charging roller 2 to make one rotation is Tr, and the time required for the photosensitive member 1 to make one rotation is Tp. The times Tr and Tp are the diameter of the charging roller 2, the diameter of the photoconductor 1, and the peripheral speed vp of the photoconductor 1.
Is obtained in advance from.
【0259】説明のため、帯電部材に電圧Vin1の印加
開時刻をTs1、時刻Ts1以前で前記帯電部材に対する電
圧印加が終了した時刻のうち最もTs1に近い時刻をTs2
とする。また、時刻Ts1で開始される帯電工程を今回の
帯電、時刻Ts2で終了する帯電工程を前回の帯電と呼
ぶ。時刻Ts1と時刻Ts2の間は、帯電ローラ2から感光
体1への帯電はない。以下、説明のため、帯電部材への
電圧印加がなく、かつ感光体が停止し、かつ除電手段が
作用していない状態を無帯電状態と呼ぶ。このとき、時
間差△Ts、△Ts=Ts1−Ts2は、無帯電状態の続いた
時間である。もし帯電ローラ2および感光体1が全く新
品ならば、△Ts=無限大とおく。For the sake of explanation, the time when the voltage Vin1 is applied to the charging member is Ts1 and the time when the voltage application to the charging member is finished before the time Ts1 is closest to Ts1.
And The charging process started at time Ts1 is called the current charging, and the charging process completed at time Ts2 is called the previous charging. Between time Ts1 and time Ts2, the charging roller 2 does not charge the photoconductor 1. Hereinafter, for the sake of explanation, a state in which no voltage is applied to the charging member, the photosensitive member is stopped, and the charge eliminating unit is not operating is called an uncharged state. At this time, the time differences ΔTs and ΔTs = Ts1−Ts2 are the times when the uncharged state continues. If the charging roller 2 and the photoconductor 1 are completely new, ΔTs = infinity.
【0260】実験の結果、無帯電状態の続いた時間△T
sによって、測定電流が変化した。図19(a)において、△
Ts=30秒以下のとき、時刻Ts1から感光体が1周する
までの間(Ts1以上、Ts1+Tp未満)に帯電部材に流れ
る電流Ir11と、時刻Ts1から感光体1周以上2周未満
の間(Ts1+Tp以上、Ts1+2・Tp未満)に流れる電流
Ir22とは同じ値であった。しかし、図19(b)において△
Ts=3分以上にすると、時刻Ts1から感光体が1周す
るまでの間に帯電部材に流れる電流Ir11′の絶対値は
帯電開始から感光体が1周以上2周未満の間に流れる電
流Ir22′の絶対値より大きかった。また、帯電開始か
ら感光体が2周以上回転した後に流れる電流は、Ir2
2′と同じであった。更に、Ir22とIr22′は同じ値で
あった。As a result of the experiment, the time ΔT that the non-charged state lasted
The measured current changed depending on s. In Fig. 19 (a), △
When Ts = 30 seconds or less, the current Ir11 flowing through the charging member from the time Ts1 until the photoconductor makes one revolution (Ts1 or more and less than Ts1 + Tp) and the period from the time Ts1 to one photoperiod or more and less than two revolutions ( The current Ir22 flowing through Ts1 + Tp or more and less than Ts1 + 2 · Tp) has the same value. However, in Figure 19 (b)
When Ts = 3 minutes or more, the absolute value of the current Ir11 'flowing through the charging member from the time Ts1 to one rotation of the photosensitive member is the current Ir22 flowing from the start of charging to one rotation or more and less than two rotations of the photosensitive member. Was greater than the absolute value of ′. In addition, the current that flows after the photosensitive member has rotated more than two turns since the start of charging is Ir2.
It was the same as 2 '. Further, Ir22 and Ir22 'have the same value.
【0261】実測値を示すと、△Ts=30秒のときIr11
=Ir22=4.4μAで、同じ値であった。ところが、△Ts
=3分のときIr11′=4.9μA、Ir22′=4.4μAで、絶
対値で0.5μAだけIr11′の方が大きかった。また、△
Ts=3分のときのIr22″は、△Ts=30秒以下のとき
のIr11およびIr22と一致し、Ir22″=4.4μAであっ
た。The measured value shows that when ΔTs = 30 seconds, Ir11
= Ir22 = 4.4 μA, which was the same value. However, △ Ts
= 3 minutes, Ir11 '= 4.9 µA, Ir22' = 4.4 µA, and the absolute value of Ir11 'was larger by 0.5 µA. Also △
Ir22 ″ when Ts = 3 minutes coincided with Ir11 and Ir22 when ΔTs = 30 seconds or less, and Ir22 ″ = 4.4 μA.
【0262】また、感光体の表面電位Voは、図19(a)に
おいて△Ts=30秒のとき、時刻Ts1から感光体が1周
するまでの間の感光体1の帯電電位Vo11、および時刻
Ts1から感光体が1周以上するときの感光体の表面電位
Vo12は同じ値で、Vo11=Vo12=−436Vであった。Further, when the surface potential Vo of the photosensitive member is ΔTs = 30 seconds in FIG. 19 (a), the charging potential Vo11 of the photosensitive member 1 from time Ts1 to one rotation of the photosensitive member and the time The surface potential Vo12 of the photoconductor when the photoconductor makes one turn or more from Ts1 has the same value, and Vo11 = Vo12 = -436V.
【0263】一方、図19(b)において△Ts=3分のと
き、時刻Ts1から感光体が1周するまでの間の感光体1
の帯電電位Vo11′=−406V、時刻Ts1から感光体が1
周以上するときの感光体の表面電位Vo12′=−436V
で、絶対値で30VだけVo11′の方が小さかった。また
△Ts=3分のときの表面電位Vo12′は、△Ts=30秒
のときの感光体表面電位Vo11と一致した。On the other hand, in the case of ΔTs = 3 minutes in FIG. 19B, the photoconductor 1 from the time Ts1 to one revolution of the photoconductor 1
Charging potential Vo11 ′ = − 406V, and the photosensitive member is set to 1 from time Ts1.
Surface potential Vo12 '=-436V of the photoconductor when rotating more than one turn
The absolute value of Vo11 'was smaller by 30V. The surface potential Vo12 'when ΔTs = 3 minutes coincided with the photoreceptor surface potential Vo11 when ΔTs = 30 seconds.
【0264】以上の実験結果から、無帯電状態が3分以
上続いた場合、帯電開始から感光体1周までの間は、過
渡的な状態が発生することが見いだされた。すなわち、
この期間において、帯電電流の絶対値Irは大きいにも
拘らず感光体電位の絶対値は小さく、帯電電流と感光体
電位の比例関係が成立しない。From the above experimental results, it was found that when the uncharged state continues for 3 minutes or more, a transient state occurs from the start of charging to one round of the photosensitive member. That is,
In this period, although the absolute value Ir of the charging current is large, the absolute value of the photoconductor potential is small, and the proportional relationship between the charging current and the photoconductor potential is not established.
【0265】そこで本発明では、帯電開始から感光体が
1周以上回転した後の帯電電流を測定する。以下、本発
明の第7の実施例の帯電装置について図面を参照しなが
ら説明する。第1の実施例と同様に、本実施例において
は、作画時の電位制御に先立ち、帯電抵抗Rrを予め測
定した。測定の方法は第1の実施例と同じなのでここで
は省略する。図2の帯電ローラを使うので、帯電抵抗R
rの実測値は第1の実施例と同様、9.1MΩであった。本
実施例では、このRrを用いて、次のように帯電部材へ
の印加電圧を決定した。Therefore, in the present invention, the charging current is measured after the photosensitive member has rotated one or more turns since the start of charging. Hereinafter, a charging device according to a seventh exemplary embodiment of the present invention will be described with reference to the drawings. Similar to the first embodiment, in this embodiment, the charging resistance Rr was measured in advance before the potential control during image formation. The method of measurement is the same as that of the first embodiment, and is omitted here. Since the charging roller of FIG. 2 is used, the charging resistance R
The measured value of r was 9.1 MΩ as in the first embodiment. In this example, the voltage applied to the charging member was determined as follows using this Rr.
【0266】本実施例の画像形成装置は、制御手段10の
作用を除いて第1の実施例と同様の構成となっている。
制御手段10が入力する電流値の取り方について図20を参
照しながら説明する。図20は制御手段10の動作をタイミ
ングチャートで示したもので、横軸矢印方向に時間が経
過する。また、上から感光体1の回転、帯電ローラ2へ
の印加電圧Vin、除電光3の点灯(on)または消灯(of
f)、帯電ローラ2に流れる帯電電流の絶対値Ir、転写
電源37が転写ローラ32に印加する電流、現像器31による
現像位置での感光体1の表面電位Voをそれぞれ示して
いる。そのまま表示すると煩雑なので、図20の感光体表
面電位Voは、移動する感光体1上の1点が帯電ローラ
2の帯電領域から現像器31の現像領域まで移動するのに
要する時間Trdだけ進めて示した。また、帯電ローラ2
が1回転するのに要する時間をTr、感光体1が1回転
するのに要する時間をTpとする。The image forming apparatus of this embodiment has the same structure as that of the first embodiment except for the operation of the control means 10.
How to obtain the current value input by the control means 10 will be described with reference to FIG. FIG. 20 is a timing chart showing the operation of the control means 10. Time elapses in the direction of the horizontal axis arrow. In addition, the rotation of the photosensitive member 1, the voltage Vin applied to the charging roller 2, and the static elimination light 3 are turned on or off (from the top).
f) shows the absolute value Ir of the charging current flowing through the charging roller 2, the current applied by the transfer power source 37 to the transfer roller 32, and the surface potential Vo of the photoconductor 1 at the developing position by the developing device 31. Since it is complicated to display it as it is, the photosensitive member surface potential Vo in FIG. 20 is advanced by the time Trd required for one point on the moving photosensitive member 1 to move from the charging area of the charging roller 2 to the developing area of the developing device 31. Indicated. In addition, the charging roller 2
Let Tr be the time required to make one revolution of the photosensitive drum, and Tp be the time required to make one revolution of the photosensitive member 1.
【0267】図20において、作画工程に先立ち感光体1
が回転を開始する前から転写電源37をフロート状態と
し、転写ローラ32が感光体1を帯電しない状態にする。
感光体1の回転が十分安定するだけの時間をあけた後、
時刻T1に帯電ローラ2へ電圧Vin1を印加する。このと
き流れる電流のうち、Vin1を印加した時刻T1から帯電
ローラ2か1周するまでの時間Tr、および感光体1が
1周するまでの時間Tpは電流値が不安定なので無視
し、TrまたはTpの時間のうち、どちらか長い時間以上
経過した後の電流値を測定する。本実施例では帯電ロー
ラ2の直径よりも感光体1の直径の方が大きくTr<Tp
となる。したがって、Vin1が帯電ローラ2に印加され
た時間T1から感光体1が1周するまでの時間Tp以上経
過した後(すなわち時刻T1+Tp以降)の帯電電流Ir1を
測定する。これが第1の測定である。In FIG. 20, the photoconductor 1 is placed prior to the drawing process.
The transfer power source 37 is set in a floating state before the rotation starts, and the transfer roller 32 does not charge the photoconductor 1.
After allowing sufficient time for the rotation of the photoconductor 1 to stabilize,
At time T1, the voltage Vin1 is applied to the charging roller 2. Of the current flowing at this time, the time Tr from the time T1 when Vin1 is applied to the charging roller 2 to make one revolution and the time Tp to make one revolution of the photosensitive member 1 are ignored because the current value is unstable. The current value is measured after a longer time of Tp, whichever is longer. In this embodiment, the diameter of the photoconductor 1 is larger than the diameter of the charging roller 2 and Tr <Tp.
Becomes Therefore, the charging current Ir1 is measured after the time Tp from the time T1 when Vin1 is applied to the charging roller 2 to the photoconductor 1 completes one cycle (that is, after the time T1 + Tp). This is the first measurement.
【0268】Ir1の測定の後、電源4の印加電圧をVin
2に変える。このとき流れる電流のうち、Vin2を印加し
た直後から帯電ローラ2が1周するまでの時間Trに帯
電ローラ2に流れる電流は不安定なので無視し、帯電ロ
ーラ2が1周以上回転した後の電流値Ir2を測定する。
これが第2の測定である。After measuring Ir1, the applied voltage of the power source 4 is set to Vin.
Change to 2. Of the current that flows at this time, the current that flows through the charging roller 2 during the time Tr from immediately after applying Vin2 to when the charging roller 2 makes one revolution is unstable and is ignored, and the current after the charging roller 2 has rotated one revolution or more is ignored. Measure the value Ir2.
This is the second measurement.
【0269】制御手段10は、これらの測定値Ir1および
Ir2と予め測定された帯電抵抗Rrから、作画時の印加
電圧の絶対値Vin_optを決定する。次に、絶対値がVin
_optに最も近く、極性が作画工程における感光体1の最
適表面電位と同じ電圧になるように電源4を制御する。
現像位置での感光体1の表面電位Voが目標電位になっ
た時刻から作画工程は開始する。作画工程に入り、制御
手段10は転写電源を+2μAとして転写工程を作動させ
る。The control means 10 determines the absolute value Vin_opt of the applied voltage at the time of image formation from these measured values Ir1 and Ir2 and the previously measured charging resistance Rr. Next, the absolute value is Vin
The power source 4 is controlled so that it is closest to _opt and the polarity is the same as the optimum surface potential of the photoconductor 1 in the image forming process.
The image forming process starts from the time when the surface potential Vo of the photoconductor 1 at the developing position reaches the target potential. In the drawing process, the control means 10 operates the transfer process by setting the transfer power source to +2 μA.
【0270】最適印加電圧Vin_optの決定の方法を第1
の実施例と同様に図7で説明する。図7は制御手段10の
動作手順を示したフローチャートで、次の順番で動作を
行う。 (a) 感光体1が回転を開始した後、作画工程に先立ち電
源4を制御し帯電ローラ2にVin1を印加する。 (b) 印加電圧Vin1に対応して、時刻T1+Tp以降に電
源4から帯電ローラ2に流れる電流Ir1を電流測定手段
11が測定し、測定された電流値を制御手段10が入力し記
憶する。 (c) 電源4を制御し帯電ローラ2に対する印加電圧をV
in2にする。 (d) 印加電圧Vin2に対応して電源4から帯電ローラ2
に流れる電流Ir2を電流測定手段11が測定し、測定され
た電流値を制御手段10が入力し記憶する。The first method of determining the optimum applied voltage Vin_opt
Similar to the embodiment of FIG. FIG. 7 is a flowchart showing the operation procedure of the control means 10, and the operation is performed in the following order. (a) After the photoconductor 1 starts rotating, the power source 4 is controlled and Vin1 is applied to the charging roller 2 before the image forming process. (b) The current Ir1 flowing from the power source 4 to the charging roller 2 after time T1 + Tp corresponding to the applied voltage Vin1 is measured by current measuring means.
The control unit 10 inputs and stores the measured current value by the control unit 11. (c) The voltage applied to the charging roller 2 is controlled to V by controlling the power supply 4.
set to in2. (d) From the power supply 4 to the charging roller 2 corresponding to the applied voltage Vin2
The current Ir2 flowing in the current is measured by the current measuring means 11, and the measured current value is inputted and stored in the control means 10.
【0271】(e) 入力された測定電流から感光体1の帯
電係数kと帯電抵抗Rrの和を(式48)で推定する。 k+Rr=|Vin1−Vin2|/|Ir1−Ir2| ……………… (48) (f) 予め求められた帯電抵抗Rrと感光体1の目標電位
Vo_optから最適な帯電電流の絶対値Ir_optを(式49)で
求める。 Ir_opt=|Vo_opt|/k =|Vo_opt|/{|Vin1−Vin2|/|Ir1−Ir2|−Rr} ……… (49) ただし、電流の極性は感光体が光導電性を有する極性で
ある。(E) The sum of the charging coefficient k of the photoconductor 1 and the charging resistance Rr is estimated from (Equation 48) from the input measured current. k + Rr = | Vin1-Vin2 | / | Ir1-Ir2 | (48) (f) The optimum absolute value Ir_opt of the charging current is calculated from the charging resistance Rr obtained in advance and the target potential Vo_opt of the photoconductor 1. Calculate with (Equation 49). Ir_opt = | Vo_opt | / k = | Vo_opt | / {| Vin1-Vin2 | / | Ir1-Ir2 | -Rr} (49) However, the polarity of the electric current is such that the photoconductor has photoconductivity. .
【0272】(g) 作画時の最適印加電圧の絶対値Vin_o
ptを(式50)で求め、 Vin_opt=(k+Rr)×|Ir_opt−Ir1|+|Vin1| …… (50) または、 Vin_opt=(k+Rr)×|Ir_opt−Ir2|+|Vin2| …… (51) 絶対値がVin_optに最も近く、かつ極性が作画工程にお
ける感光体1の最適表面電位と同じ電圧になるよう電源
4を制御する。(G) Absolute value Vin_o of the optimum applied voltage at the time of printing
pt is calculated by (Equation 50), and Vin_opt = (k + Rr) × | Ir_opt-Ir1 | + | Vin1 | (50) or Vin_opt = (k + Rr) × | Ir_opt-Ir2 | + | Vin2 | ) The power supply 4 is controlled so that the absolute value is closest to Vin_opt and the polarity is the same voltage as the optimum surface potential of the photoconductor 1 in the image forming process.
【0273】以上の手順に基づき、除電光3を点灯させ
ながら印加電圧Vin1=−900V、Vin2=−1100Vで新
品の感光体(感光体の膜厚26μm)を帯電するときに流れ
る電流値を実測すると、それぞれIr1=2.6μA、Ir2=
4.4μAであった。したがって、k+Rrは電位の単位を
V、電流の単位をμAとすると、(式48)から111.1(V/
μA)であった。他方、予め測定された帯電抵抗Rrは9.1
MΩであった。したがって、kの値は102.0(V/μA)で
あった。感光体1の作画時の目標電位を−450Vとする
と、最適な電流値を(式49)から求めると4.4μA、最適な
印加電圧の絶対値は(式50)から1101Vであった。Based on the above procedure, the current value flowing when charging a new photoconductor (photoconductor film thickness 26 μm) with applied voltages Vin1 = −900V and Vin2 = −1100V while turning on the static elimination light 3 is measured. Then, Ir1 = 2.6 μA and Ir2 =
It was 4.4 μA. Therefore, assuming that the unit of potential is V and the unit of current is μA, k + Rr is calculated from (Equation 48) to 111.1 (V /
μA). On the other hand, the charging resistance Rr measured in advance is 9.1.
It was MΩ. Therefore, the value of k was 102.0 (V / μA). When the target potential at the time of image formation of the photoconductor 1 is -450 V, the optimum current value was calculated from (Equation 49) to be 4.4 μA, and the optimum absolute value of the applied voltage was 1101 V from (Equation 50).
【0274】検証のため、電源4の出力電圧は5Vステ
ップなので、絶対値が1101Vに最も近い電圧−1100Vを
実際に帯電ローラ2に印加すると、感光体1の表面電位
は−440Vとなり目標値に近い値が得られた。For verification, the output voltage of the power supply 4 is in 5V steps. Therefore, when the voltage −1100V whose absolute value is the closest to 1101V is actually applied to the charging roller 2, the surface potential of the photoconductor 1 becomes −440V, which is the target value. A close value was obtained.
【0275】次に、10万枚ランニングした後で膜厚が18
μmとなった感光体を、除電光3を点灯させながら印加
電圧Vin1=−900VとVin2=−1100Vで帯電した。帯
電電流を実測すると、それぞれIr1=4.4μA、Ir2=6.
9μAであった。膜厚18μmの感光体1の帯電係数をk′
とすると、k′+Rrは(式48)から80.0(V/μA)となっ
た。予め測定された帯電抵抗Rrは9.1MΩなので、k′
=70.9(V/μA)であった。感光体1の目標電位を−450
Vとすると、帯電ローラ2に対する最適な電流値は(式4
9)から求めると6.3μA。また帯電ローラ2に対する最適
な印加電圧の絶対値は(式50)から1055Vである。検証の
ため、実際に−1055Vを帯電ローラ2に印加すると感光
体の表面電位は−440Vとなり、目標電位と近い値が得
られた。[0275] Next, after running 100,000 sheets, the film thickness is 18
The photoconductor having a size of μm was charged with the applied voltage Vin1 = -900V and Vin2 = -1100V while turning on the static elimination light 3. When the charging current is measured, Ir1 = 4.4 μA and Ir2 = 6.
It was 9 μA. The charge coefficient of the photoconductor 1 having a film thickness of 18 μm is k ′
Then, k '+ Rr is 80.0 (V / μA) from (Equation 48). Since the charging resistance Rr measured in advance is 9.1 MΩ, k '
= 70.9 (V / μA). Set the target potential of photoreceptor 1 to -450
Assuming V, the optimum current value for the charging roller 2 is (Equation 4
6.3 μA when calculated from 9). Further, the optimum absolute value of the applied voltage to the charging roller 2 is 1055V from (Equation 50). For verification, when −1055 V was actually applied to the charging roller 2, the surface potential of the photoconductor became −440 V, which was close to the target potential.
【0276】以上のように本実施例によれば、最適印加
電圧を決定するのに用いる帯電電流のうち、帯電開始か
ら感光体1周以上回転した後の帯電電流を測定すること
で、正しい帯電電流を測定でき、感光体表面電位を目標
値にできた。As described above, according to the present embodiment, of the charging currents used for determining the optimum applied voltage, the charging current after the photosensitive member has been rotated by one or more turns from the start of charging is measured to obtain correct charging. The current could be measured and the surface potential of the photoconductor could be set to the target value.
【0277】(比較例7)比較のため、帯電開始から感光
体が1周回転するまでの間に発生する帯電電流を測定し
た場合を試みた。感光体1を1時間以上、無帯電状態の
まま放置した後、第1の実施例を試みた。ただし第1の
測定は、感光体1の帯電開始から感光体1が1周回転す
るまでの間に測定した。第2の測定は第1の実施例と同
様である。(Comparative Example 7) For comparison, an attempt was made to measure the charging current generated from the start of charging until the photosensitive member made one revolution. After leaving the photoconductor 1 in the non-charged state for 1 hour or more, the first example was tried. However, the first measurement was carried out from the start of charging of the photoconductor 1 to the one revolution of the photoconductor 1. The second measurement is the same as in the first embodiment.
【0278】実測値を示す。第1の実施例において、図
5に示した帯電試験機に図2の帯電ローラ2および図3
の感光体1を組み込む。帯電試験機を室温20℃湿度50%
の恒温恒湿の環境下に3日間放置し、十分環境に馴染ま
せた。帯電ローラ2への印加電圧Vin1=−900V、Vin
2=−1100Vのとき、第1の測定における帯電電流Ir11
=4.9μA、第2の測定における帯電電流Ir2=6.9μAで
あった。また、帯電抵抗Rrは既知で、Rr=9.1MΩで
あった。The measured value is shown. In the first embodiment, the charging roller 2 shown in FIG. 2 and the charging roller 2 shown in FIG.
Incorporate the photoconductor 1 of. Charge tester at room temperature 20 ℃ and humidity 50%
The sample was allowed to stand for 3 days in a constant temperature and constant humidity environment to fully adapt to the environment. Voltage applied to charging roller 2 Vin1 = -900V, Vin
When 2 = -1100V, the charging current Ir11 in the first measurement
= 4.9 μA, and the charging current Ir2 in the second measurement was 6.9 μA. The charging resistance Rr is known and Rr = 9.1 MΩ.
【0279】(式11)から、k+Rr=100.0(V/μA)で
ある。したがって、感光体1の帯電係数k=90.1(V/
μA)と推定される。(式12)から、感光体1を目標電位に
するための帯電電流の絶対値Ir_opt=5.0μAとなっ
た。更に(式13)から、作画時の最適印加電圧Vin_opt=
910Vとなった。From (Equation 11), k + Rr = 100.0 (V / μA). Therefore, the charging coefficient k of the photoconductor 1 is 90.1 (V /
μA) is estimated. From (Equation 12), the absolute value Ir_opt of the charging current for setting the photoconductor 1 at the target potential is 5.0 μA. Furthermore, from (Equation 13), the optimum applied voltage Vin_opt =
It became 910V.
【0280】ところが、実際に、Vin=−910Vを帯電
ローラ2に印加すると、感光体1の表面電位は−270V
であった。目標電位との差が180Vあり、実用化できな
かった。However, when Vin = −910V is actually applied to the charging roller 2, the surface potential of the photoconductor 1 is −270V.
Met. There was a difference of 180 V from the target potential, which was not practical.
【0281】(第8の実施例)測定する帯電電流として、
第1から第7の実施例では電源4から帯電ローラ2に流
れる電流としたが、測定する帯電電流は感光体から接地
に流れる電流でもよい。帯電時に電源4から帯電ローラ
2に流れる電流と同じタイミングで、感光体1から接地
まで電流が流れる。このとき、電源4から帯電ローラ2
に流れる電流値と、感光体1から接地まで流れる電流値
の値も等しい。これは接地から電源4、帯電ローラ2、
感光体1から接地に至るまでの電流の流れる経路が閉回
路であることによる。(Eighth Example) As a charging current to be measured,
In the first to seventh embodiments, the current flowing from the power source 4 to the charging roller 2 is used, but the charging current to be measured may be the current flowing from the photoconductor to the ground. At the same timing as the current flowing from the power source 4 to the charging roller 2 during charging, the current flows from the photoconductor 1 to the ground. At this time, from the power source 4 to the charging roller 2
And the value of the current flowing from the photoconductor 1 to the ground are also equal. This is from ground to power supply 4, charging roller 2,
This is because the path through which the current flows from the photoconductor 1 to the ground is a closed circuit.
【0282】測定および制御の手順は、転写電源の制御
も含めて第1から第7の実施例が適用できるので説明を
省略し、帯電電流の箇所だけを図21(a)および図21(b)を
用いて説明する。Since the first to seventh embodiments including the control of the transfer power source can be applied to the procedure of measurement and control, description thereof will be omitted, and only the charging current portion will be described with reference to FIGS. 21 (a) and 21 (b). ).
【0283】図21(a)は帯電装置のうち、帯電電流測定
箇所の構成を示したものである。感光体1,帯電ローラ
2,除電光3,電源4および制御手段10は第1の実施例
と同じで、12は電流測定手段である。電流測定手段12は
感光体から接地までの間に流れる電流を測定し、制御手
段10に入力する。測定電流の入力のタイミングや周辺部
材の動作および制御手段10の処理手順は、第1から第7
までの実施例と同じである。FIG. 21 (a) shows the structure of the charging current measurement location in the charging device. The photoconductor 1, the charging roller 2, the discharging light 3, the power source 4 and the control means 10 are the same as those in the first embodiment, and 12 is a current measuring means. The current measuring means 12 measures the current flowing from the photoconductor to the ground and inputs it to the control means 10. The timing of inputting the measurement current, the operation of the peripheral members, and the processing procedure of the control means 10 are from the first to the seventh.
This is the same as the above embodiments.
【0284】電流測定手段12の具体的な例を図21(b)に
示す。図21(b)において、13はローパスフィルタ、14は
アンプである。感光体1と接地の間に帯電電流測定用の
抵抗10kΩを挿入し、両端に発生する電圧から帯電電流
を求める。帯電電流は10kΩ抵抗両端の電圧を抵抗値10
kΩで割った値である。A concrete example of the current measuring means 12 is shown in FIG. In FIG. 21 (b), 13 is a low-pass filter and 14 is an amplifier. A charging current measuring resistor of 10 kΩ is inserted between the photoconductor 1 and the ground, and the charging current is obtained from the voltage generated at both ends. The charging current is 10 kΩ and the voltage across the resistor is 10
The value is divided by kΩ.
【0285】第1の実施例では感光体1を目標の電位に
帯電するのに流れる帯電電流は約4から10μAの範囲で
あった。したがって、感光体1から接地までの間に挿入
した10kΩの抵抗の両端には、0.04から0.1Vの電圧が
発生した。すなわち、帯電時の印加電圧のうち、0.05か
ら0.1Vがこの10kΩ抵抗で損失された。しかし、−800
Vから−1200V範囲の印加電圧に対しては、この損失分
の影響はなかった。10kΩの抵抗両端の電圧はローパス
フィルタ13を通って高周波ノイズ成分を除去し、さらに
アンプ14で増幅され制御手段10に入力される。In the first embodiment, the charging current flowing to charge the photoconductor 1 to the target potential was in the range of about 4 to 10 μA. Therefore, a voltage of 0.04 to 0.1 V was generated across the 10 kΩ resistor inserted between the photoconductor 1 and the ground. That is, 0.05 to 0.1 V of the applied voltage during charging was lost by the 10 kΩ resistance. However, −800
This loss has no effect on the applied voltage in the range of V to -1200V. The voltage across the 10 kΩ resistor passes through a low-pass filter 13 to remove high frequency noise components, and is further amplified by an amplifier 14 and input to the control means 10.
【0286】検証のため、第1から第7の実施例におい
て、電流測定手段11を電流測定手段12に置き換え、感光
体1から接地までの帯電電流から作画時の最適印加電圧
を決定した。その結果、第1から第7の実施例と同様
に、感光体1の表面電位を目標値にできた。以上のよう
に、感光体1から接地までの間に流れる電流を測定する
構成でも、本発明の目的を達成することができる。For verification, in the first to seventh embodiments, the current measuring means 11 was replaced with the current measuring means 12, and the optimum applied voltage at the time of image formation was determined from the charging current from the photoconductor 1 to the ground. As a result, the surface potential of the photoconductor 1 could be set to the target value as in the first to seventh embodiments. As described above, the object of the present invention can be achieved even with the configuration in which the current flowing from the photoconductor 1 to the ground is measured.
【0287】(第9の実施例)帯電部材が回転する帯電ロ
ーラである場合、帯電ローラ1周の周期で測定電流にノ
イズが発生した。ノイズを実測すると、帯電ローラ2を
新品にしたとき、感光体1を−450Vに帯電するとき流
れる帯電電流は、平均4.5μAに対してピーク間振幅ΔI
r_ppが約0.5μAのノイズが重畳していた。また電流ノイ
ズには周期性が認められ、帯電ローラ2が1回転する周
期Tpでくり返されていた。発明者らの検討の結果、こ
の電流ノイズは、帯電ローラ2が初期的に有する抵抗ム
ラや表面凹凸により感光体1との接触ムラによって生じ
ることが明らかになった。(Ninth Embodiment) When the charging member is a rotating charging roller, noise was generated in the measured current at a cycle of one round of the charging roller. When the noise is actually measured, when the charging roller 2 is made new, the charging current flowing when charging the photoconductor 1 to −450 V has an average peak amplitude ΔI of 4.5 μA.
Noise with r_pp of about 0.5 μA was superimposed. Further, the current noise has a periodicity and is repeated at a cycle Tp in which the charging roller 2 rotates once. As a result of the study by the inventors, it has been clarified that this current noise is caused by uneven contact with the photoconductor 1 due to uneven resistance and surface unevenness that the charging roller 2 initially has.
【0288】その対策として、本実施例では、帯電ロー
ラが1回転する間の平均帯電電流から作画時の最適印加
電圧を決定する。その構成として、帯電電流を測定する
手段に、カットオフ周波数が帯電ローラが1周する時間
の逆数以下のローパスフィルタを挿入する。以下、図面
を参照しながら説明する。As a countermeasure, in this embodiment, the optimum applied voltage at the time of image formation is determined from the average charging current during one rotation of the charging roller. As its configuration, a low-pass filter whose cutoff frequency is equal to or less than the reciprocal of the time taken for the charging roller to make one turn is inserted in the means for measuring the charging current. Hereinafter, description will be given with reference to the drawings.
【0289】図22(b)は帯電電流測定手段の具体的構成
を示したもので、1は感光体、2は帯電ローラ、3は除
電光、4は電源、10は制御手段である。電源4と接地間
には10kΩの抵抗が挿入されている。感光体1および帯
電ローラ2は矢印の方向に周速33mm/秒で回転してい
る。制御手段10は電源4と接地間に挿入された抵抗の電
圧を測定する機能を備えている。その他、図示していな
い制御手段10の機能として、電源4を制御する機能、お
よび第1の実施例における(式11),(式12),(式13)なら
びに(式14)を演算する機能を備えている。FIG. 22 (b) shows a concrete structure of the charging current measuring means, in which 1 is a photoconductor, 2 is a charging roller, 3 is static elimination light, 4 is a power source, and 10 is control means. A 10 kΩ resistor is inserted between the power supply 4 and the ground. The photoconductor 1 and the charging roller 2 rotate in the direction of the arrow at a peripheral speed of 33 mm / sec. The control means 10 has a function of measuring the voltage of a resistor inserted between the power source 4 and the ground. In addition, as a function of the control means 10 (not shown), a function of controlling the power supply 4 and a function of calculating (Equation 11), (Equation 12), (Equation 13) and (Equation 14) in the first embodiment. Is equipped with.
【0290】帯電ローラ2が1回転するのに要する時間
をTpとすると、Tp=1.14秒なので帯電ローラ2の周期
は0.87Hzであった。したがって、制御手段10の電流測定
の前段に挿入するローパスフィルタのカットオフ周波数
は、0.87Hz以下とした。When the time required for the charging roller 2 to make one rotation is Tp, Tp = 1.14 seconds, so the cycle of the charging roller 2 was 0.87 Hz. Therefore, the cutoff frequency of the low-pass filter inserted before the current measurement of the control means 10 was set to 0.87 Hz or less.
【0291】上記の条件を満たすローパスフィルタとし
て、図22(a)にカットオフ周波数が0.8Hzのローパスフィ
ルタの一例を示した。図22(a)はアナログの2次のロー
パスフィルタである。その周波数特性を図23に示した。
横軸は周波数、縦軸はゲインである。このローパスフィ
ルタは、0.8Hz以下の周波数成分は通すが、0.8Hzを超え
る周波数成分は著しく減衰する。As a low-pass filter satisfying the above conditions, FIG. 22A shows an example of a low-pass filter having a cutoff frequency of 0.8 Hz. FIG. 22 (a) shows an analog second-order low-pass filter. The frequency characteristics are shown in FIG.
The horizontal axis represents frequency and the vertical axis represents gain. This low-pass filter passes frequency components below 0.8 Hz, but significantly attenuates frequency components above 0.8 Hz.
【0292】図22(b)において、電源4は帯電ローラ2
に直流電圧を印加した。感光体1と接地の間の10kΩの
抵抗両端に発生する電圧は、ローパスフィルタを通った
後、制御手段10に入力する。制御手段10は、電圧を10k
Ωで割る演算を実行し、帯電電流Irを求める。In FIG. 22B, the power source 4 is the charging roller 2
A DC voltage was applied to. The voltage generated across the resistance of 10 kΩ between the photoconductor 1 and the ground is input to the control means 10 after passing through the low-pass filter. The control means 10 sets the voltage to 10k.
The charging current Ir is obtained by executing the operation of dividing by Ω.
【0293】帯電電流Ir1およびIr2は、第1の実施例
と同様に、図6に示されるタイミングで測定される。ま
た、作画時の最適印加電圧Vin_optは、第1の実施例と
同様に図7に示された手順で決定される。The charging currents Ir1 and Ir2 are measured at the timing shown in FIG. 6 as in the first embodiment. Further, the optimum applied voltage Vin_opt at the time of drawing is determined by the procedure shown in FIG. 7 as in the first embodiment.
【0294】検証のため、印加電圧Vin1=−900V、V
in2=−1100Vにおける実測値を示す。除電光3を点灯
させながら感光体1を帯電するときに流れる電流値を実
測すると、それぞれVin1に対してはIr1=2.6μA、Vi
n2に対してはIr2=4.4μAであった。k+Rrは電位の
単位をV、電流の単位をμAとすると、(式11)から、11
1.1(V/μA)であった。他方、予め測定された帯電抵抗
Rrは9.1MΩであった。したがって、帯電係数kの値は
k=102.1(V/μA)であった。For verification, applied voltage Vin1 = −900V, V
The measured value at in2 = -1100V is shown. When the values of the currents that flow when charging the photoconductor 1 while turning on the discharge light 3 are measured, Ir1 = 2.6 μA and Vi for Vin1 respectively.
Ir2 was 4.4 μA for n2. Assuming that the unit of potential is V and the unit of current is μA, k + Rr is
It was 1.1 (V / μA). On the other hand, the charging resistance Rr measured in advance was 9.1 MΩ. Therefore, the value of the charging coefficient k was k = 102.1 (V / μA).
【0295】感光体1の作画時の目標電位を−450Vと
すると、最適な電流値は(式12)から4.4μA、最適な印加
電圧の絶対値は(式13)から1101Vであった。電源4の出
力電圧は5Vステップなので、絶対値が1101Vに最も近
く、かつ極性が作画工程における感光体1の最適表面電
位Vo_optと同じ電圧−1100Vを実際に帯電ローラ2に
印加して検証を行った。その結果、感光体1の表面電位
は−440Vで、目標値に近い値が得られた。When the target potential at the time of image formation of the photoconductor 1 was -450 V, the optimum current value was (Formula 12) to 4.4 μA, and the optimum applied voltage absolute value was (Formula 13) to 1101 V. Since the output voltage of the power supply 4 is in 5V steps, the absolute value is closest to 1101V and the polarity is the same as the optimum surface potential Vo_opt of the photoconductor 1 in the image forming process, ie, -1100V is actually applied to the charging roller 2 for verification. It was As a result, the surface potential of the photoconductor 1 was -440V, which was close to the target value.
【0296】(比較例8)比較として、電流測定手段の前
段にローパスフィルタを挿入しない場合を試みた。この
場合、帯電ローラ1周の周期で測定電流にノイズが発生
した。図24は比較例8における帯電電流測定手段を示し
たものである。図24において、1は感光体、2は帯電ロ
ーラ、3は除電光、4は電源、10は制御手段である。電
源4と接地間には10kΩの抵抗が挿入されている。制御
手段10は電源4と接地間に挿入された抵抗の電圧を測定
する機能を備えている。その他、図示していない制御手
段10の機能として、電源4を制御する機能、および第1
の実施例における(式11),(式12),(式13)ならびに(式1
4)を演算する機能を備えている。(Comparative Example 8) As a comparison, the case where the low-pass filter was not inserted before the current measuring means was tried. In this case, noise was generated in the measured current in the cycle of one round of the charging roller. FIG. 24 shows the charging current measuring means in Comparative Example 8. In FIG. 24, 1 is a photoconductor, 2 is a charging roller, 3 is static elimination light, 4 is a power source, and 10 is a control means. A 10 kΩ resistor is inserted between the power supply 4 and the ground. The control means 10 has a function of measuring the voltage of a resistor inserted between the power source 4 and the ground. In addition, as a function of the control means 10 not shown, a function of controlling the power supply 4 and a first
(Equation 11), (Equation 12), (Equation 13) and (Equation 1
It has a function to calculate 4).
【0297】帯電ローラ2は図2で示したものが、また
感光体1は図3で示したものが使用されている。感光体
1および帯電ローラ2は、それぞれ矢印の方向に周速33
mm/秒で回転する。図24において電源4は帯電ローラ2
に直流電圧を印加した。その時に流れる電流を、感光体
1と接地の間の10kΩの抵抗両端に発生する電圧から、
電圧/10kΩで換算し求めた。The charging roller 2 shown in FIG. 2 is used, and the photoreceptor 1 shown in FIG. 3 is used. The photoconductor 1 and the charging roller 2 have a peripheral speed of 33 in the direction of the arrow.
Rotate at mm / sec. In FIG. 24, the power source 4 is the charging roller 2
A DC voltage was applied to. The current flowing at that time is calculated from the voltage generated across the resistance of 10 kΩ between the photoconductor 1 and the ground.
It was calculated by converting voltage / 10 kΩ.
【0298】実測すると、帯電ローラ2を新品にしたと
き、感光体1を−450Vに帯電するとき流れる帯電電流
は、平均4.5μAに対してピーク間振幅△Ir_ppが約0.5
μAのノイズが重畳していた。また電流ノイズには周期
性が認められ、帯電ローラ2が1回転する周期Tpで繰
り返されていた。As a result of actual measurement, when the charging roller 2 is made new, the charging current flowing when the photosensitive member 1 is charged to −450 V has an average peak-to-peak amplitude ΔIr_pp of about 0.5 μA with respect to 4.5 μA on average.
μA noise was superimposed. Further, the current noise has a periodicity, which is repeated at a cycle Tp in which the charging roller 2 rotates once.
【0299】感光体1の帯電係数kは約100なので、(式
4)から予測されるように、k・△Ir_pp=50Vの制御
誤差が生じた。また、長期使用により電流ノイズは大き
くなる傾向が認められ、10万枚の通紙ランニング試験の
結果、電流ノイズは0.8μAとなった。電流ノイズの増大
の原因を検討したところ、トナーやトナーへの添加剤、
また紙粉が帯電ローラ2に付着したため、帯電ローラ2
の表面抵抗値にムラが生じたためであった。また、10万
枚の通紙ランニング後の帯電ローラ2の表面を観察した
ところ、摩耗の痕が認められた。帯電ローラ2の摩耗も
電流ノイズの原因であった。感光体1の帯電係数kは約
100なので、(式4)から予測されるように、k・△Ir_p
p=80Vの制御誤差が生じた。Since the charging coefficient k of the photosensitive member 1 is about 100, a control error of kΔIr_pp = 50V has occurred as predicted from (Equation 4). In addition, the current noise tended to increase with long-term use. As a result of a running test of 100,000 sheets, the current noise was 0.8 μA. After investigating the cause of the increase in current noise, we found that toner, additives to toner,
Further, since the paper dust adheres to the charging roller 2, the charging roller 2
This was because the surface resistance value of No. 1 was uneven. Further, when the surface of the charging roller 2 was observed after running 100,000 sheets of paper, abrasion marks were found. Wear of the charging roller 2 was also a cause of current noise. The charging coefficient k of the photoconductor 1 is about
Since it is 100, as predicted from (Equation 4), k · ΔIr_p
A control error of p = 80V occurred.
【0300】(第10の実施例)作画命令から作画工程終了
まではできるだけ速い方が望ましい。図25は本発明の第
10の実施例の画像形成装置のブロック図で、10は制御手
段、15は時間管理手段、16は異常事態検知手段である。
制御手段10には、第1の実施例における(数11),(数1
2),(数13)並びに(数14)を演算する機能を備えている。
また制御手段10は、前記演算の実行開始信号を入力する
手段と異常信号を入力する手段を備えている。(Tenth Embodiment) It is desirable that the time from the drawing command to the end of the drawing process is as fast as possible. FIG. 25 shows the
In the block diagram of the image forming apparatus of the tenth embodiment, 10 is a control means, 15 is a time management means, and 16 is an abnormal situation detection means.
The control means 10 includes (Equation 11) and (Equation 1) in the first embodiment.
It has a function to calculate 2), (Equation 13) and (Equation 14).
Further, the control means 10 is provided with a means for inputting an execution start signal for the calculation and a means for inputting an abnormal signal.
【0301】時間管理手段15は、現在時刻を知る時計機
能と、時間を記憶する機能と、時間差の大小を比較する
機能と、作画命令の入力を検知する機能と、画像形成装
置が作画工程中であるか作画工程中でないかを検知する
手段を備えている。The time management means 15 has a clock function for knowing the current time, a function for storing time, a function for comparing the magnitude of the time difference, a function for detecting the input of a drawing command, and an image forming apparatus during the drawing process. It is provided with a means for detecting whether or not it is during the drawing process.
【0302】図26は時間管理手段15の動作を示したフロ
ーチャートで、制御手段作動は、制御手段10に対して実
行開始の命令を出すことを示している。時間管理手段15
は電源投入後から動作を開始し、電源を切るまで、また
は異常信号を入力するまで動作を止めることはない。FIG. 26 is a flow chart showing the operation of the time management means 15, and the operation of the control means shows that an instruction to start execution is issued to the control means 10. Time management means 15
Does not stop until the power is turned off or an abnormal signal is input, after the power is turned on.
【0303】まず電源投入後、制御手段10に対して実行
開始命令を出す。次に現在時刻をTsetに記憶し、引き
続き現在時刻をTnowに記憶する。次に、時刻Tset以後
に作画命令を検知したかを判断し、もし作画命令を検知
すれば作画工程が終了するまで待機し、作画工程終了直
後、制御手段10に実行開始命令を出す。もし作画命令を
検知しないならば、TnowとTsetの差を計算し、(Tnow
−Tset)値が一定の時間TL以下であればTnowを現在時
刻にセットし直し、画像命令の検知を繰り返す。本実施
例でTLは30分である。もし(Tnow−Tset)が一定時間
TLより大きければ、制御手段10へ実行開始命令を出
す。First, after the power is turned on, an execution start command is issued to the control means 10. Next, the current time is stored in Tset, and then the current time is stored in Now. Next, it is judged whether or not a drawing command is detected after the time Tset, and if the drawing command is detected, the process waits until the drawing process is completed, and immediately after the drawing process is finished, an execution start command is issued to the control means 10. If no drawing command is detected, the difference between Now and Tset is calculated, and (Tnow
If the value -Tset) is equal to or less than the predetermined time TL, then Know is reset to the current time and the image command detection is repeated. In this example, TL is 30 minutes. If (Tnow-Tset) is larger than the predetermined time TL, an execution start command is issued to the control means 10.
【0304】また、異常事態検知手段16は、画像形成装
置の異常を検知する手段と、異常信号を制御手段10に出
力する手段を備えている。紙詰まりやモータの異常停止
など装置の異常を検知すると、直ちに異常信号を制御手
段10に出力する。制御手段10は、異常信号を入力する
と、直ちに現在の処理を中断するとともに、図27に示す
緊急停止モードを実行する。Further, the abnormal situation detecting means 16 comprises means for detecting an abnormality in the image forming apparatus and means for outputting an abnormal signal to the control means 10. When an abnormality of the device such as a paper jam or an abnormal stop of the motor is detected, an abnormality signal is immediately output to the control means 10. When the control unit 10 receives the abnormal signal, the control unit 10 immediately interrupts the current process and executes the emergency stop mode shown in FIG.
【0305】図27は制御手段10の緊急停止モードにおけ
る処理を示したフローチャートである。異常信号を入力
すると、帯電部材に電圧を印加していた電源4をオフ
し、続いて転写電源37をフロート状態にし、除電光3を
消灯する。FIG. 27 is a flow chart showing the processing of the control means 10 in the emergency stop mode. When the abnormal signal is input, the power supply 4 that has applied the voltage to the charging member is turned off, the transfer power supply 37 is then floated, and the charge removal light 3 is turned off.
【0306】本発明の電圧制御にこの手順を加えた結
果、利用者の作画命令から作画終了までの間に、制御手
段10が電流測定を実行することがなく、利用者の待ち時
間の増加はなかった。また30分間に少なくとも1回は制
御手段10は電圧制御の動作を実行するので、雰囲気環境
の変化や作画装置自体のウォーミング・アップによる温
度や湿度の変化に、十分追従して作画時の感光体電位を
目標値にできた。As a result of adding this procedure to the voltage control of the present invention, the control means 10 does not execute the current measurement between the user's drawing command and the end of the drawing, and the waiting time of the user is not increased. There wasn't. Further, since the control means 10 executes the voltage control operation at least once in 30 minutes, it is possible to sufficiently follow the changes in the atmospheric environment and the changes in the temperature and humidity due to the warming up of the drawing apparatus itself so that the exposure at the time of drawing is performed. The body potential was able to reach the target value.
【0307】なお、第1の実施例から第8の実施例まで
除電手段として除電光を用いたが、除電手段としてはそ
の他に像書き込み手段による露光でもよいし、電流測定
期間中の転写手段への印加電圧を調整して転写手段を除
電手段として併用してもよい。In the first to eighth embodiments, the static elimination light is used as the static elimination means. However, the static elimination means may be an exposure by the image writing means or the transfer means during the current measurement period. The transfer means may be used in combination as the charge removing means by adjusting the applied voltage of.
【0308】また、第1の実施例から第8の実施例まで
は、帯電部材として帯電ローラを用いたが、帯電部材と
してはその他に導電性のブロック形状でもよいし、導電
性のブラシでもよい。また、導電性のブレードでもよい
し、導電性のベルト状の帯電部材でもよい。Further, although the charging roller is used as the charging member in the first to eighth embodiments, the charging member may have a conductive block shape or a conductive brush. . Further, a conductive blade or a conductive belt-shaped charging member may be used.
【0309】また、第1の実施例から第8の実施例まで
は、感光体としてドラム状の感光体を用いたが、感光体
としてはその他にベルト状でもよい。Further, in the first to eighth embodiments, the drum-shaped photoconductor is used as the photoconductor, but a belt-shaped photoconductor may be used instead.
【0310】また、第1の実施例から第8の実施例まで
は、転写電源37は+2μAとフロート状態を選択する構
成になっていたが、転写電源37は、フロート状態の代わ
りに、接地、または感光体が光導電性を示す極性と同極
の電圧、または絶対値が感光体と転写手段との間で帯電
を開始する電圧以下の電圧としてもよい。In the first to eighth embodiments, the transfer power supply 37 is configured to select +2 μA and the float state. However, the transfer power supply 37 is grounded instead of the float state. Alternatively, it may be a voltage having the same polarity as the polarity of the photoconductor exhibiting photoconductivity, or a voltage whose absolute value is equal to or lower than the voltage at which charging is started between the photoconductor and the transfer unit.
【0311】また、第1の実施例から第8の実施例まで
は、転写電源37は感光体1が回転する前からフロート状
態としたが、移動する感光体1上の1点が転写ローラ32
の作用領域から帯電ローラ2の帯電領域まで移動するの
に要する時間をTtr、また帯電ローラ2に発生した電流
の測定開始時刻をT7、また測定終了時刻をT8とする
と、少なくとも時刻(T7−Ttr)から時刻(T8−Ttr)ま
での間に、転写ローラ2はフロート状態、または接地、
または感光体が光導電性を示す極性と同極の電圧、また
は絶対値が感光体と転写手段との間で帯電を開始する電
圧以下の電圧としてもよい。In the first to eighth embodiments, the transfer power source 37 is in the float state before the photosensitive member 1 rotates, but one point on the moving photosensitive member 1 is the transfer roller 32.
When the time required to move from the action area of the charging roller 2 to the charging area of the charging roller 2 is Ttr, the measurement start time of the current generated in the charging roller 2 is T7, and the measurement end time is T8, at least the time (T7-Ttr ) To the time (T8-Ttr), the transfer roller 2 is in a floating state or grounded,
Alternatively, it may be a voltage having the same polarity as the polarity of the photoconductor exhibiting photoconductivity, or a voltage whose absolute value is equal to or lower than the voltage at which charging is started between the photoconductor and the transfer unit.
【0312】また、第9の実施例で、ローパスフィルタ
は電流測定手段の前段に設けたが、ローパスフィルタ
は、電流測定手段と制御手段の間に設けてもよい。Further, in the ninth embodiment, the low pass filter is provided before the current measuring means, but the low pass filter may be provided between the current measuring means and the control means.
【0313】また、第1の実施例から第8の実施例まで
は、非作画時の電源と作画時の電源は同じであったが、
作画用の電源を別に備え、作画開始前に非作画時の電源
から作画用の電源に切り換えてもよい。また、このとき
の作画用の電源は、決定された最適電圧を出力する電圧
源でもよいし、最適電流を出力する電流源でもよい。In the first to eighth embodiments, the power supply during non-printing and the power supply during printing are the same.
A power supply for drawing may be separately provided, and the power supply for non-drawing may be switched to the power supply for drawing before the start of drawing. The power source for drawing at this time may be a voltage source that outputs the determined optimum voltage or a current source that outputs the optimum current.
【0314】また、第1の実施例から第8の実施例まで
は、非作画時に印加する電圧を直流電圧としたが、非作
画時の電圧は、少なくとも直流電圧を含み、交流電圧ま
たは交流電流の重畳した電圧で、電流測定手段に、前記
交流成分を除去するローパスフィルタを備えた構成であ
ってもよい。In the first to eighth embodiments, the voltage applied during non-printing is a DC voltage. However, the voltage during non-printing includes at least DC voltage and includes AC voltage or AC current. The current measuring means may be provided with a low-pass filter that removes the alternating-current component with the superimposed voltage.
【0315】[0315]
【発明の効果】以上説明したように、本発明によれば、
次のような効果を奏するものである。 (第1の効果) 帯電抵抗Rrを逐次測定し、補正を加え
ながら帯電部材への最適な印加電圧を決定するので、雰
囲気温度と湿度による帯電抵抗の変化に影響されずに、
感光体を目標電位に設定することができる。As described above, according to the present invention,
It has the following effects. (First Effect) Since the charging resistance Rr is sequentially measured and the optimum applied voltage to the charging member is determined while making a correction, the charging resistance Rr is not affected by changes in the charging resistance due to ambient temperature and humidity,
The photoconductor can be set to a target potential.
【0316】(第2の効果) 帯電抵抗Rrを用いて、補
正を加えながら帯電部材への最適な印加電圧を決定する
ので、帯電抵抗Rrでの電圧損失の影響を受けずに、感
光体を目標電位に設定することができる。(Second Effect) Since the charging resistance Rr is used to determine the optimum voltage to be applied to the charging member while making a correction, the photosensitive member is not affected by the voltage loss at the charging resistance Rr. It can be set to the target potential.
【0317】(第3の効果) 感光体に流れる電流と感光
体電位の比例係数kを測定し、更に帯電抵抗Rrを用い
て帯電部材への最適な印加電圧を決定するので、感光体
の膜摩耗の影響を受けず、感光体を目標電位に設定する
ことができる。(Third Effect) Since the proportional coefficient k between the current flowing in the photoconductor and the photoconductor potential is measured and the optimum voltage applied to the charging member is determined by using the charging resistance Rr, the film of the photoconductor is determined. The photoreceptor can be set to the target potential without being affected by wear.
【0318】(第4の効果) 万一、帯電工程中の帯電部
材に流れる電流がリーク電流分を含んでいても、リーク
電流の影響を補正しながら、帯電部材への最適な印加電
圧を決定するので、感光体を目標電位に設定することが
できる。(Fourth Effect) Even if the current flowing through the charging member during the charging process includes a leakage current component, the optimum applied voltage to the charging member is determined while correcting the influence of the leakage current. Therefore, the photoconductor can be set to the target potential.
【0319】(第5の効果) 誤差要因であった、感光体
の過渡電流を測定することがないので、安定して感光体
を目標電位に設定することができる。(Fifth Effect) Since the transient current of the photoconductor, which was an error factor, is not measured, the photoconductor can be stably set to the target potential.
【0320】(第6の効果) 誤差要因であった、回転す
るローラ状の帯電部材の過渡電流を測定することがない
ので、安定して感光体を目標電位に制御することでき
る。(Sixth Effect) Since the transient current of the rotating roller-shaped charging member, which was an error factor, is not measured, the photosensitive member can be stably controlled to the target potential.
【0321】(第7の効果) 回転するローラ状の帯電部
材に起因するノイズを除去するので、安定して感光体を
目標電位に設定することができる。(Seventh Effect) Since the noise caused by the rotating roller-shaped charging member is removed, the photosensitive member can be stably set to the target potential.
【0322】(第8の効果) 作画命令後から作画終了ま
での間に、本発明の測定工程が実行されることはないの
で、画像形成装置の利用者が作画開始を待たされること
はない。(Eighth Effect) Since the measuring step of the present invention is not executed after the drawing command until the end of the drawing, the user of the image forming apparatus does not have to wait for the start of drawing.
【0323】(第9の効果) 帯電前の感光体電位が常に
0Vとなるので、測定電流の誤差がなく、安定して感光
体を目標電位に設定することができる。(Ninth Effect) Since the photoconductor potential before charging is always 0 V, there is no error in the measurement current and the photoconductor can be stably set to the target potential.
【図1】本発明の第1および第2の実施例における画像
形成装置の概略構成図である。FIG. 1 is a schematic configuration diagram of an image forming apparatus according to first and second embodiments of the present invention.
【図2】本発明の実施例に使用される帯電ローラの概略
構成図である。FIG. 2 is a schematic configuration diagram of a charging roller used in an embodiment of the present invention.
【図3】本発明の実施例に使用される感光体の概略構成
図である。FIG. 3 is a schematic configuration diagram of a photoconductor used in an example of the present invention.
【図4】本発明の実施例で用いた感光体における帯電電
流と表面電位の関係を示す図である。FIG. 4 is a diagram showing a relationship between a charging current and a surface potential in a photoconductor used in an example of the present invention.
【図5】帯電部材と感光体の帯電特性を測定するための
帯電試験機の概略構成図である。FIG. 5 is a schematic configuration diagram of a charging tester for measuring charging characteristics of a charging member and a photoconductor.
【図6】本発明の第1の実施例における電流測定のタイ
ミングチャートである。FIG. 6 is a timing chart of current measurement in the first embodiment of the present invention.
【図7】本発明の第1の実施例における電圧決定手順を
示すフローチャートである。FIG. 7 is a flowchart showing a voltage determination procedure in the first embodiment of the present invention.
【図8】本発明の第2の実施例における電流測定のタイ
ミングチャートである。FIG. 8 is a timing chart of current measurement according to the second embodiment of the present invention.
【図9】本発明の第2の実施例における電圧決定手順を
示すフローチャートである。FIG. 9 is a flowchart showing a voltage determination procedure in the second embodiment of the present invention.
【図10】本発明の第3,第4,第5および第6の実施
例における画像形成装置の概略構成図である。FIG. 10 is a schematic configuration diagram of an image forming apparatus in third, fourth, fifth and sixth embodiments of the present invention.
【図11】本発明の第3の実施例における電流測定のタ
イミングチャートである。FIG. 11 is a timing chart of current measurement in the third embodiment of the present invention.
【図12】本発明の第3の実施例における電圧決定手順
を示すフローチャートである。FIG. 12 is a flowchart showing a voltage determination procedure in the third embodiment of the present invention.
【図13】本発明の第4の実施例における電流測定のタ
イミングチャートである。FIG. 13 is a timing chart of current measurement according to the fourth embodiment of the present invention.
【図14】本発明の第4の実施例における電圧決定手順
を示すフローチャートである。FIG. 14 is a flowchart showing a voltage determination procedure in the fourth embodiment of the present invention.
【図15】本発明の第5の実施例における電流測定のタ
イミングチャートである。FIG. 15 is a timing chart of current measurement in the fifth embodiment of the present invention.
【図16】本発明の第5の実施例における電圧決定手順
を示すフローチャートである。FIG. 16 is a flowchart showing a voltage determination procedure in the fifth embodiment of the present invention.
【図17】本発明の第6の実施例における電流測定のタ
イミングチャートである。FIG. 17 is a timing chart of current measurement according to the sixth embodiment of the present invention.
【図18】本発明の第6の実施例における電圧決定手順
を示すフローチャートである。FIG. 18 is a flowchart showing a voltage determining procedure in the sixth embodiment of the present invention.
【図19】本発明の第7の実施例における前回の帯電と
今回の帯電との時間差が30秒のときの帯電電流と感光体
表面電位の関係を示す図(a),前回の帯電と今回の帯電
との時間差が3分のときの帯電電流と感光体表面電位の
関係を示す図(b)である。FIG. 19 is a diagram (a) showing the relationship between the charging current and the photoreceptor surface potential when the time difference between the previous charging and the current charging is 30 seconds in the seventh embodiment of the present invention, the previous charging and the current charging. FIG. 6B is a diagram (b) showing the relationship between the charging current and the surface potential of the photoconductor when the time difference from the charging is 3 minutes.
【図20】本発明の第7の実施例における電流測定のタ
イミングチャートである。FIG. 20 is a timing chart of current measurement according to the seventh embodiment of the present invention.
【図21】本発明の第8の実施例における電流測定箇所
の概略構成図(a),感光体と接地の間に挿入した10kΩ
抵抗両端に発生する電圧から帯電電流を測定する装置の
概略構成図(b)である。FIG. 21 is a schematic configuration diagram (a) of a current measurement point in the eighth embodiment of the present invention, 10 kΩ inserted between the photoconductor and the ground.
FIG. 4B is a schematic configuration diagram (b) of an apparatus that measures a charging current from a voltage generated across a resistance.
【図22】本発明の第9の実施例におけるカットオフ周
波数が0.8Hzのローパスフィルタの回路図(a),ローパス
フィルタを備えた電流測定箇所を示す図(b)である。22A is a circuit diagram of a low-pass filter having a cutoff frequency of 0.8 Hz according to the ninth embodiment of the present invention, and FIG. 22B is a diagram showing a current measurement point provided with the low-pass filter.
【図23】本発明の第9の実施例におけるローパスフィ
ルタの周波数特性を示す図である。FIG. 23 is a diagram showing frequency characteristics of a low pass filter according to a ninth embodiment of the present invention.
【図24】本発明の第9の実施例におけるローパスフィ
ルタを備えない電流測定箇所を示す図である。FIG. 24 is a diagram showing a current measurement point without a low-pass filter according to a ninth embodiment of the present invention.
【図25】本発明の第10の実施例における制御手段作動
のタイミングを管理する装置の概略構成図である。FIG. 25 is a schematic configuration diagram of an apparatus for managing the timing of operation of control means in the tenth embodiment of the present invention.
【図26】本発明の第10の実施例における制御手段作動
の手順を示すフローチャートである。FIG. 26 is a flow chart showing a procedure for operating control means in the tenth embodiment of the present invention.
【図27】本発明の第10の実施例における制御手段の緊
急停止モードのフローチャートである。FIG. 27 is a flowchart of the emergency stop mode of the control means in the tenth embodiment of the present invention.
1…感光体、 2…帯電ローラ、 3…除電光、 4…
電源、 5…除電電源、10…制御手段、 11,12…電流
測定手段、 13…ローパスフィルタ、 14…アンプ、
15…時間管理手段、 16…異常事態検知手段、 31…現
像器、 32…転写ローラ、 33…クリーニングブレー
ド、 34…紙、 35…レーザ光源、 36…ミラー、 37
…転写電源、 41…表面電位測定プローブ、 42…表面
電位計。1 ... Photosensitive member, 2 ... Charging roller, 3 ... Static elimination light, 4 ...
Power supply, 5 ... static elimination power supply, 10 ... control means, 11, 12 ... current measuring means, 13 ... low-pass filter, 14 ... amplifier,
15 ... Time management means, 16 ... Abnormal situation detection means, 31 ... Developing device, 32 ... Transfer roller, 33 ... Cleaning blade, 34 ... Paper, 35 ... Laser light source, 36 ... Mirror, 37
… Transfer power supply, 41… Surface potential measurement probe, 42… Surface potential meter.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 仲 昭行 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 長瀬 久典 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Akiyuki Naka, 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Hisanori Nagase, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.
Claims (27)
近接する帯電部材と、前記帯電部材に電圧を印加する電
源と、前記電源から前記帯電部材に流れる電流を測定す
る電流測定手段と、前記電流測定手段が測定した電流お
よび前記電源から前記帯電部材の帯電領域までの抵抗値
Rrに基づいて、前記被帯電体を所望電位にするための
前記帯電部材に印加する最適電圧Vin_optを決定し前記
電源を制御する制御手段とからなることを特徴とする帯
電装置。1. A body to be charged, a charging member in contact with or close to the body to be charged, a power supply for applying a voltage to the charging member, and a current measuring unit for measuring a current flowing from the power supply to the charging member. The optimum voltage Vin_opt applied to the charging member for setting the charged body to a desired potential is determined based on the current measured by the current measuring unit and the resistance value Rr from the power source to the charging area of the charging member. A charging device comprising a control means for controlling the power source.
と、前記被帯電体に接触または近接する帯電部材と、前
記帯電部材に少なくとも2種類の電圧を選択的に印加す
る電源と、前記被帯電体を移動させ、前記帯電部材に対
する第1の印加電圧Vin1によって発生する電流Ir1お
よび前記帯電部材に対する第2の印加電圧Vin2によっ
て発生する電流Ir2を測定する電流測定手段と、前記電
流測定手段が測定した電流値を入力しかつ記憶し、前記
帯電部材に印加した電圧、前記電流測定手段が測定した
電流および予め測定した前記電源から前記帯電部材の帯
電領域までの抵抗値Rrに基づいて演算を行い、作画工
程における前記被帯電体を所望電位にするための前記帯
電部材に印加する最適電圧Vin_optを決定し前記電源を
制御する制御手段とからなることを特徴とする帯電装
置。2. A member to be charged which is moved by a known driving means, a charging member which is in contact with or close to the member to be charged, a power source which selectively applies at least two kinds of voltages to the charging member, and the member to be charged. A current measuring unit that moves the charged body and measures a current Ir1 generated by the first applied voltage Vin1 to the charging member and a current Ir2 generated by the second applied voltage Vin2 to the charging member, and the current measuring unit. The measured current value is input and stored, and calculation is performed based on the voltage applied to the charging member, the current measured by the current measuring means, and the resistance value Rr measured in advance from the power source to the charging region of the charging member. And a control means for determining the optimum voltage Vin_opt to be applied to the charging member to bring the charged body to a desired potential in the drawing step and controlling the power supply. A charging device according to claim and.
動する被帯電体と、前記被帯電体に接触または近接する
帯電部材と、前記帯電部材に少なくとも2種類の電圧を
選択的に印加する電源と、前記被帯電体を除電する除電
手段と、前記帯電部材に流れる電流を測定する電流測定
手段と、前記電源および前記除電手段を制御する制御手
段とを備え、前記電流測定手段は、速度vpで循環移動
しかつ前記除電手段により除電された前記被帯電体の表
面に前記帯電部材の帯電領域が接触している状態で前記
帯電部材に前記電源が第1の電圧Vin1を印加したとき
発生する電流Ir1を測定し、続いて、前記状態で前記帯
電部材に第2の印加電圧Vin2を印加したとき発生する
電流Ir2を測定し、さらに、速度vpで循環移動する前
記被帯電体上の1点が、前記除電手段からの除電作用を
受ける領域から、前記帯電部材の帯電領域まで移動する
のに要する時間をTjr、電流Ir2の測定終了時刻をT2
としたとき、前記帯電部材に第2の印加電圧Vin2を印
加した状態で、時刻(T2−Tjr)以降に前記除電手段に
よる除電を停止し、除電されている被帯電体面と除電さ
れていない被帯電体面との境界が、前記帯電部材の帯電
領域に接触するかまたは最近接する時刻をT3とする
と、時刻T3から前記被帯電体が1周するまでの間に、
前記帯電部材に流れる電流Ir3を測定し、前記制御手段
は、前記電流測定手段が測定した電流Ir1,Ir2および
Ir3に基づいて演算を行い作画工程における前記被帯電
体を所望電位にするための前記帯電部材に印加する最適
電圧Vin_optを決定し前記電源を制御することを特徴と
する帯電装置。3. A power source for selectively applying at least two kinds of voltages to the charging member, which is circulated and moved at a speed vp by a known driving unit, a charging member which is in contact with or close to the charging member, and a charging member. And a discharging means for discharging the charged body, a current measuring means for measuring a current flowing through the charging member, and a control means for controlling the power source and the discharging means. This occurs when the power source applies the first voltage Vin1 to the charging member while the charging region of the charging member is in contact with the surface of the member to be charged, which is circulated and moved by the discharging unit. The current Ir1 is measured, and subsequently, the current Ir2 generated when the second applied voltage Vin2 is applied to the charging member in the above state is further measured, and further, one point on the charged body that circulates at the speed vp. But the above From the area which receives the neutralization effect of the conductive means, TJR the time required to move to the charging area of the charging member, the measurement end time of the current Ir2 T2
Then, in the state where the second applied voltage Vin2 is applied to the charging member, the static elimination by the static elimination means is stopped after the time (T2-Tjr), and the surface of the body to be discharged and the non-charged surface of the body to be charged are removed. Assuming that the time at which the boundary with the surface of the charged body comes into contact with or is closest to the charged area of the charging member is T3, from the time T3 until the charged body makes one revolution,
The control means measures the current Ir3 flowing through the charging member, and the control means performs calculation based on the currents Ir1, Ir2 and Ir3 measured by the current measurement means to bring the charged body to a desired potential in the drawing process. A charging device characterized by determining an optimum voltage Vin_opt applied to a charging member and controlling the power supply.
動する被帯電体と、前記被帯電体に接触または近接する
帯電部材と、前記帯電部材に少なくとも2種類の電圧を
選択的に印加する電源と、前記被帯電体を除電する除電
手段と、前記帯電部材に流れる電流を測定する電流測定
手段と、前記電源および前記除電手段を制御する制御手
段とを備え、前記電流測定手段は、速度vpで循環移動
しかつ前記除電手段により除電された前記被帯電体の表
面に前記帯電部材の帯電領域が接触している状態で前記
帯電部材に前記電源が第1の電圧Vin1を印加したとき
発生する電流Ir1を測定し、続いて、前記状態で前記帯
電部材に第2の印加電圧Vin2を印加したとき発生する
電流Ir2を測定し、さらに、速度vpで循環移動する前
記被帯電体上の1点が、前記除電手段からの除電作用を
受ける領域から、前記帯電部材の帯電領域まで移動する
のに要する時間をTjr、電流Ir2の測定終了時刻をT2
としたとき、前記帯電部材に第2の印加電圧Vin2を印
加した状態で、時刻(T2−Tjr)以降に前記除電手段に
よる除電を停止し、除電されている被帯電体面と除電さ
れていない被帯電体面との境界が、前記帯電部材の帯電
領域に接触するかまたは最近接する時刻をT3とする
と、時刻T3から前記被帯電体が1周するまでの間に、
前記帯電部材に流れる電流Ir3、および時刻T3から前
記被帯電体が1周以上するときに前記帯電部材に流れる
電流Ir4を測定し、前記制御手段は、前記電流測定手段
が測定した電流Ir1,Ir2,Ir3およびIr4に基づいて
演算を行い作画工程における前記被帯電体を所望電位に
するための前記帯電部材に印加する最適電圧Vin_optを
決定し前記電源を制御することを特徴とする帯電装置。4. A power source for selectively applying at least two types of voltages to the charging member, which is circulated and moved at a speed vp by a known driving unit, a charging member which is in contact with or close to the charging member, and a charging member. And a discharging means for discharging the charged body, a current measuring means for measuring a current flowing through the charging member, and a control means for controlling the power source and the discharging means. This occurs when the power source applies the first voltage Vin1 to the charging member while the charging region of the charging member is in contact with the surface of the member to be charged which is circulated and moved by the discharging unit. The current Ir1 is measured, and subsequently, the current Ir2 generated when the second applied voltage Vin2 is applied to the charging member in the above state is further measured, and further, one point on the charged body that circulates at the speed vp. But the above From the area which receives the neutralization effect of the conductive means, TJR the time required to move to the charging area of the charging member, the measurement end time of the current Ir2 T2
Then, in the state where the second applied voltage Vin2 is applied to the charging member, after the time (T2-Tjr), the static elimination by the static elimination means is stopped, and the surface of the body to be discharged and the non-charged surface Assuming that the time at which the boundary with the surface of the charged body comes into contact with or is closest to the charged area of the charging member is T3, from the time T3 until the charged body makes one revolution,
The current Ir3 flowing through the charging member and the current Ir4 flowing through the charging member when the charged body makes one or more turns from time T3 are measured, and the control means measures the currents Ir1 and Ir2 measured by the current measuring means. , Ir3 and Ir4 are calculated to determine the optimum voltage Vin_opt to be applied to the charging member to bring the charged body to a desired potential in the image forming step, and control the power supply.
動する被帯電体と、前記被帯電体に接触または近接する
帯電部材と、前記帯電部材に電圧を印加する電源と、前
記被帯電体を除電する除電手段と、前記帯電部材に流れ
る電流を測定する電流測定手段と、前記電源および前記
除電手段を制御する制御手段とを備え、前記電流測定手
段は、速度vpで循環移動しかつ前記除電手段により除
電された前記被帯電体の表面に前記帯電部材の帯電領域
が接触している状態で前記帯電部材に前記電源が第1の
電圧Vin1を印加したとき発生する電流Ir1を測定し、
さらに、速度vpで循環移動する前記被帯電体上の1点
が、前記除電手段からの除電作用を受ける領域から、前
記帯電部材の帯電領域まで移動するのに要する時間をT
jr、電流Ir1の測定終了時刻をT2としたとき、前記帯
電部材に印加電圧Vin1を印加した状態で、時刻(T2−
Tjr)以降に前記除電手段による除電を停止し、除電さ
れている被帯電体面と除電されていない被帯電体面との
境界が、前記帯電部材の帯電領域に接触するかまたは最
近接する時刻をT3とすると、時刻T3から前記被帯電体
が1周するまでの間に、前記帯電部材に流れる電流Ir3
を測定し、前記制御手段は、前記電流測定手段が測定し
た電流Ir1およびIr3に基づいて演算を行い作画工程に
おける前記被帯電体を所望電位にするための前記帯電部
材に印加する最適電圧Vin_optを決定し前記電源を制御
することを特徴とする帯電装置。5. A member to be charged that circulates at a speed vp by a known driving unit, a charging member that contacts or approaches the member to be charged, a power supply that applies a voltage to the charging member, and the member to be charged. A charge removing unit for removing charge, a current measuring unit for measuring a current flowing through the charging member, and a control unit for controlling the power source and the charge removing unit, the current measuring unit circulatingly moving at a speed vp and removing the charge. The current Ir1 generated when the power source applies the first voltage Vin1 to the charging member in a state where the charging area of the charging member is in contact with the surface of the body to be charged that has been discharged by the means,
Further, the time required for one point on the body to be charged, which circulates at a speed vp, to move to the charging area of the charging member from the area subjected to the discharging effect from the discharging means is T.
When the measurement end time of jr and the current Ir1 is T2, the time (T2−
Tjr) and thereafter, the static elimination by the static elimination means is stopped, and the time when the boundary between the surface of the charged body that has been discharged and the surface of the charged body that has not been discharged contacts or is closest to the charging area of the charging member is designated as T3. Then, the current Ir3 flowing through the charging member from time T3 until the charged body makes one turn.
Then, the control means performs an operation based on the currents Ir1 and Ir3 measured by the current measuring means to calculate an optimum voltage Vin_opt to be applied to the charging member to bring the charged body to a desired potential in the image forming step. A charging device characterized by determining and controlling the power supply.
動する被帯電体と、前記被帯電体に接触または近接する
帯電部材と、前記帯電部材に電圧を印加する電源と、前
記被帯電体を除電する除電手段と、前記帯電部材に流れ
る電流を測定する電流測定手段と、前記電源および前記
除電手段を制御する制御手段とを備え、前記電流測定手
段は、速度vpで循環移動しかつ前記除電手段により除
電された前記被帯電体の表面に前記帯電部材の帯電領域
が接触している状態で前記帯電部材に前記電源が第1の
電圧Vin1を印加したとき発生する電流Ir1を測定し、
さらに、速度vpで循環移動する前記被帯電体上の1点
が、前記除電手段からの除電作用を受ける領域から、前
記帯電部材の帯電領域まで移動するのに要する時間をT
jr、電流Ir1の測定終了時刻をT2としたとき、前記帯
電部材に印加電圧Vin1を印加した状態で、時刻(T2−
Tjr)以降に前記除電手段による除電を停止し、除電さ
れている被帯電体面と除電されていない被帯電体面との
境界が、前記帯電部材の帯電領域に接触するかまたは最
近接する時刻をT3とすると、時刻T3から前記被帯電体
が1周するまでの間に、前記帯電部材に流れる電流Ir
3、および時刻T3から前記被帯電体が1周以上するとき
に前記帯電部材に流れる電流Ir4を測定し、前記制御手
段は、前記電流測定手段が測定した電流Ir1,Ir3およ
びIr4に基づいて演算を行い作画工程における前記被帯
電体を所望電位にするための前記帯電部材に印加する最
適電圧Vin_optを決定し前記電源を制御することを特徴
とする帯電装置。6. A charging target member that circulates at a speed vp by a known driving unit, a charging member that contacts or approaches the charging target member, a power source that applies a voltage to the charging member, and the charging target member. A charge removing unit for removing charge, a current measuring unit for measuring a current flowing through the charging member, and a control unit for controlling the power source and the charge removing unit, the current measuring unit circulatingly moving at a speed vp and removing the charge. The current Ir1 generated when the power source applies the first voltage Vin1 to the charging member in a state where the charging area of the charging member is in contact with the surface of the body to be charged that has been discharged by the means,
Further, the time required for one point on the body to be charged, which circulates at a speed vp, to move to the charging area of the charging member from the area subjected to the discharging effect from the discharging means is T.
When the measurement end time of jr and the current Ir1 is T2, the time (T2−
Tjr) and thereafter, the static elimination by the static elimination means is stopped, and the time when the boundary between the surface of the charged body that has been discharged and the surface of the charged body that has not been discharged contacts or is closest to the charging area of the charging member is designated as T3. Then, the current Ir flowing through the charging member from the time T3 until the charged body makes one turn.
3, and the current Ir4 flowing through the charging member when the charged body makes one or more turns from time T3, and the control means calculates based on the currents Ir1, Ir3 and Ir4 measured by the current measuring means. The charging device is characterized by determining the optimum voltage Vin_opt applied to the charging member for making the charged body a desired potential in the image forming step and controlling the power supply.
含む公知の駆動手段により回転し、前記帯電部材が1回
転する時間をTrとしたとき、電流測定手段は、カット
オフ周波数が1/Tr以下のローパスフィルタを備えて
いることを特徴とする請求項1ないし6のうちの1項に
記載の帯電装置。7. The charging member is rotated by a known driving means including power transmission from an object to be charged, and when the time for one rotation of the charging member is Tr, the current measuring means has a cutoff frequency of 1 7. The charging device according to claim 1, further comprising a low-pass filter having a ratio of / Tr or less.
は、帯電部材に電圧が印加された時から、少なくとも前
記被帯電体が1周した後の電流であることを特徴とする
請求項1ないし6のうちの1項に記載の帯電装置。8. The current used for determining the voltage Vin_opt is a current after at least one revolution of the charged body since the voltage was applied to the charging member. The charging device according to item 1.
は、被帯電体からの駆動を含む公知の駆動手段により回
転する帯電部材に印加した電圧が変化した時刻から、少
なくとも前記帯電部材が1周以上回転した後の電流であ
ることを特徴とする請求項1ないし6のうちの1項に記
載の帯電装置。9. The current used to determine the voltage Vin_opt is at least one revolution of the charging member from the time when the voltage applied to the rotating charging member by a known driving means including driving from the member to be charged changes. The charging device according to any one of claims 1 to 6, wherein the current is a current after rotation.
圧印加を開始した時刻を含むことを特徴とする請求項9
記載の帯電装置。10. The time when the voltage changes includes the time when the voltage application to the charging member is started.
The charging device described.
光体と、前記感光体に接触または近接する帯電部材と、
前記帯電部材に電圧を印加する電源と、前記帯電部材に
流れる電流を測定する電流測定手段と、前記感光体を露
光によって除電する除電光と、前記感光体上に現像する
現像手段と、前記感光体上の像を像担持体に転写する転
写手段と、前記転写手段に電圧または電流のうち少なく
とも一つ以上を印加する転写電源とを備え、前記感光体
を移動させ、前記除電光を点灯させた状態で前記帯電部
材に電圧印加したときに発生した電流を用いて、作画工
程において前記帯電部材に印加する電圧を決定する画像
形成装置において、移動する前記感光体上の1点が、前
記転写手段の転写領域から、帯電部材の帯電領域まで移
動するのに要する時間をTtr、また前記帯電部材に発生
した電流の測定開始時刻をT7、また測定終了時刻をT8
とするとき、少なくとも時刻(T7−Ttr)から時刻(T8
−Ttr)までの間に、前記転写手段へ印加する電圧は、
接地、または前記感光体が光導電性を示す極性の電圧、
または前記帯電部材により帯電された前記感光体の表面
電位と前記転写手段に印加する電圧の差の絶対値が前記
感光体と前記転写手段との間の帯電開始電圧以下の電圧
であるか、ないしは前記転写手段は電気的にフロート状
態とすることを特徴とする帯電装置。11. A photosensitive member that circulates by known driving means, and a charging member that comes into contact with or comes close to the photosensitive member,
A power source for applying a voltage to the charging member, a current measuring means for measuring a current flowing through the charging member, a destaticizing light for destaticizing the photoconductor by exposure, a developing means for developing on the photoconductor, A transfer unit for transferring the image on the body to the image carrier and a transfer power source for applying at least one of voltage or current to the transfer unit are provided, and the photosensitive member is moved to turn on the neutralization light. In the image forming apparatus that determines the voltage applied to the charging member in the image forming process by using the current generated when the voltage is applied to the charging member in the above state, one point on the moving photoconductor is the transfer point. The time required to move from the transfer area of the means to the charging area of the charging member is Ttr, the measurement start time of the current generated in the charging member is T7, and the measurement end time is T8.
, At least from time (T7-Ttr) to time (T8
-Ttr), the voltage applied to the transfer means is
Ground, or a voltage of the polarity that the photoconductor exhibits photoconductivity,
Or, the absolute value of the difference between the surface potential of the photoconductor charged by the charging member and the voltage applied to the transfer unit is a voltage equal to or lower than the charging start voltage between the photoconductor and the transfer unit, or The charging device is characterized in that the transfer means is electrically floated.
露光手段であることを特徴とする請求項2,3,4,5
または6記載の帯電装置。12. The charged body is a photoconductor, and the discharging means is an exposing means.
Or the charging device according to 6.
電圧の決定に用いる電流は、被帯電体から接地までの間
に流れる電流であることを特徴とする請求項1ないし10
のうちの1項に記載の帯電装置。13. The current used for determining the voltage applied to the charging member in the image forming step is a current flowing from the body to be charged to the ground.
The charging device according to item 1.
までの間に流れる電流であることを特徴とする請求項11
記載の帯電装置。14. The charging current to be measured is a current flowing from the photoconductor to the ground.
The charging device described.
特徴とする請求項1ないし6,8,9,11のうちの1項
に記載の帯電装置。15. The charging device according to claim 1, wherein the charging member has a roller shape.
を特徴とする請求項1ないし6,8,11のうちの1項に
記載の帯電装置。16. The charging device according to claim 1, wherein the charging member has a blade shape.
特徴とする請求項1ないし11のうちの1項に記載の帯電
装置。17. The charging device according to claim 1, wherein the charging member has a brush shape.
とを特徴とする請求項2,3,4,5または6記載の帯
電装置。18. The charging device according to claim 2, wherein the current is measured at a constant time.
の作画工程開始直前までの間に行うことを特徴とする請
求項2,3,4,5または6記載の帯電装置。19. The charging device according to claim 2, wherein the current is measured immediately after the power is turned on and immediately before the start of the first image forming process.
とを特徴とする請求項2,3,4,5または6記載の帯
電装置。20. The charging device according to claim 2, wherein the current is measured immediately before the drawing process.
とを特徴とする請求項2,3,4,5または6記載の帯
電装置。21. The charging device according to claim 2, wherein the current is measured immediately after the image forming step.
の作画工程開始直前までの間、または一定時刻ごと、ま
たは作画工程直後のうち、2種類以上の組み合わせであ
ることを特徴とする請求項2,3,4,5または6記載
の帯電装置。22. The measurement of the current is a combination of two or more kinds from immediately after the power is turned on to immediately before the start of the first drawing process, at regular time intervals, or immediately after the drawing process. The charging device according to 2, 3, 4, 5 or 6.
とする請求項1ないし10のうちの1項に記載の帯電装
置。23. The charging device according to claim 1, wherein the member to be charged has a drum shape.
とする請求項1ないし10のうちの1項に記載の帯電装
置。24. The charging device according to claim 1, wherein the member to be charged has a belt shape.
する請求項11記載の帯電装置。25. The charging device according to claim 11, wherein the photoconductor has a drum shape.
する請求項11記載の帯電装置。26. The charging device according to claim 11, wherein the photoconductor has a belt shape.
る転写手段を備え、除電手段は前記転写手段が兼ねてい
ることを特徴とする請求項3,4,5または6記載の帯
電装置。27. A charging device according to claim 3, 4, 5 or 6, further comprising a transfer means for transferring the image on the surface of the body to be charged onto the image carrier, and the discharging means also serves as the discharging means. apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30891994A JP3330760B2 (en) | 1994-12-13 | 1994-12-13 | Charging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30891994A JP3330760B2 (en) | 1994-12-13 | 1994-12-13 | Charging device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08166706A true JPH08166706A (en) | 1996-06-25 |
JP3330760B2 JP3330760B2 (en) | 2002-09-30 |
Family
ID=17986861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30891994A Expired - Fee Related JP3330760B2 (en) | 1994-12-13 | 1994-12-13 | Charging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3330760B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006251321A (en) * | 2005-03-10 | 2006-09-21 | Ricoh Co Ltd | Image forming apparatus, image forming method and image forming program |
JP2006350087A (en) * | 2005-06-17 | 2006-12-28 | Ricoh Co Ltd | Image forming device |
JP2007316141A (en) * | 2006-05-23 | 2007-12-06 | Kyocera Mita Corp | Image forming apparatus |
JP2008003377A (en) * | 2006-06-23 | 2008-01-10 | Fuji Xerox Co Ltd | Charging device and image forming apparatus using the same |
JP2014132358A (en) * | 2014-03-05 | 2014-07-17 | Ricoh Co Ltd | Process cartridge and image forming apparatus |
JP2020173311A (en) * | 2019-04-09 | 2020-10-22 | 富士ゼロックス株式会社 | Image forming apparatus |
-
1994
- 1994-12-13 JP JP30891994A patent/JP3330760B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006251321A (en) * | 2005-03-10 | 2006-09-21 | Ricoh Co Ltd | Image forming apparatus, image forming method and image forming program |
JP2006350087A (en) * | 2005-06-17 | 2006-12-28 | Ricoh Co Ltd | Image forming device |
JP2007316141A (en) * | 2006-05-23 | 2007-12-06 | Kyocera Mita Corp | Image forming apparatus |
JP2008003377A (en) * | 2006-06-23 | 2008-01-10 | Fuji Xerox Co Ltd | Charging device and image forming apparatus using the same |
JP2014132358A (en) * | 2014-03-05 | 2014-07-17 | Ricoh Co Ltd | Process cartridge and image forming apparatus |
JP2020173311A (en) * | 2019-04-09 | 2020-10-22 | 富士ゼロックス株式会社 | Image forming apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP3330760B2 (en) | 2002-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3064643B2 (en) | Apparatus for detecting thickness of charged object and image forming apparatus | |
US5701551A (en) | Image forming apparatus including control means for controlling an output from en electrical power source to a charging member for charging an image bearing member | |
JP2001201921A (en) | Electrification controlling method, and image forming device | |
JP3214120B2 (en) | Charging device and image forming device | |
JP2006309144A (en) | Image forming apparatus | |
JP4902602B2 (en) | Image forming apparatus | |
JP2001201920A (en) | Control method of electrification, and image forming device | |
US5636009A (en) | Image forming apparatus having charging member | |
US9417548B2 (en) | Image forming apparatus in which charging current changes corresponding to voltage rise during transfer voltage determination | |
JP4882364B2 (en) | Image forming apparatus | |
US10359728B2 (en) | Image forming apparatus | |
JP3330760B2 (en) | Charging device | |
JP3275682B2 (en) | Charging device and image forming device | |
JP2017068128A (en) | Image formation device | |
JP3314041B2 (en) | Image forming device | |
EP3232273A1 (en) | Image formation device | |
US11852986B2 (en) | Image forming apparatus | |
JP2000305342A (en) | Electrostatic charger and image forming device | |
JP2007187930A (en) | Image forming apparatus and film thickness measuring method | |
JP2009251127A (en) | Image forming apparatus | |
US10663879B2 (en) | Image forming apparatus with plural corona chargers | |
US9733608B2 (en) | Determining light quantity of pre-charging exposure device in an image forming apparatus and cartridge | |
JP5328470B2 (en) | Image forming apparatus | |
JP2009003483A (en) | Image forming apparatus | |
JP6589889B2 (en) | Image forming apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |