[go: up one dir, main page]

JPH08162152A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH08162152A
JPH08162152A JP6299895A JP29989594A JPH08162152A JP H08162152 A JPH08162152 A JP H08162152A JP 6299895 A JP6299895 A JP 6299895A JP 29989594 A JP29989594 A JP 29989594A JP H08162152 A JPH08162152 A JP H08162152A
Authority
JP
Japan
Prior art keywords
secondary battery
lithium secondary
aqueous electrolyte
solvent
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP6299895A
Other languages
Japanese (ja)
Inventor
Toshikazu Maejima
敏和 前島
Shinji Saito
慎治 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP6299895A priority Critical patent/JPH08162152A/en
Publication of JPH08162152A publication Critical patent/JPH08162152A/en
Abandoned legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

(57)【要約】 【目的】非水電解液のイオン導電率が高く高率放電性に
優れ、且つ安全性の高いリチウム二次電池とする。 【構成】リチウムイオンを吸蔵・放出できる炭素材から
なる負極1と、非水電解液と、リチウム含有酸化物から
なる正極2により構成されるリチウム二次電池におい
て、非水電解液中の溶媒に次の(a)(b)の特性を有
する鎖状エステルを溶媒の全体積の30%以下で混合す
る。(a)粘性率0.9cP以下、好ましくは0.6以
下。(b)誘電率4.7以上、好ましくは5.7以上。
前記鎖状エステルは、例えば、酢酸プロピル、ギ酸イソ
ブチル、プロピオン酸ブチルである。
(57) [Summary] [Purpose] To provide a lithium secondary battery having a high ionic conductivity of a non-aqueous electrolyte, a high rate discharge property, and a high safety. [Constitution] In a lithium secondary battery composed of a negative electrode 1 made of a carbon material capable of inserting and extracting lithium ions, a non-aqueous electrolyte solution, and a positive electrode 2 made of a lithium-containing oxide, a solvent in the non-aqueous electrolyte solution is used. A chain ester having the following characteristics (a) and (b) is mixed in 30% or less of the total volume of the solvent. (A) Viscosity is 0.9 cP or less, preferably 0.6 or less. (B) Dielectric constant of 4.7 or more, preferably 5.7 or more.
The chain ester is, for example, propyl acetate, isobutyl formate, or butyl propionate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池に関
し、殊に、リチウム二次電池の非水電解液の溶媒に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to a solvent for a non-aqueous electrolyte of a lithium secondary battery.

【0002】[0002]

【従来の技術】負極活物質にリチウムを用いたリチウム
電池は、高いエネルギーを有することから、数々の方面
でその二次電池化が試みられてきた。負極活物質に純金
属リチウムを用いた場合、充放電の繰り返しに伴う負極
リチウムの針状析出、いわゆるデンドライトの生成が問
題となっている。即ち、針状析出リチウムがセパレータ
を突き破り、正極に到達することによって電池内部での
短絡が起こり、電池性能が著しく低下するという性能面
と、内部短絡によって過大な電流が流れることによる温
度の異常上昇で有機電解液の揮発が起こり、電池内圧上
昇が最悪の場合電池の破裂、爆発を引き起こすという安
全面の両方で問題となっている。特に安全面では、電池
が破裂すると化学的に活性で反応性の高い金属リチウム
が空気中の水分と反応し、「Li+H2O→LiOH+
1/2H2」の反応による水素ガスと反応熱の発生が、
さらに安全性を低下させる。
2. Description of the Related Art Since a lithium battery using lithium as a negative electrode active material has high energy, it has been attempted to be used as a secondary battery in various fields. When pure metal lithium is used as the negative electrode active material, needle-like deposition of negative electrode lithium with repeated charging and discharging, that is, generation of so-called dendrites is a problem. That is, needle-like precipitated lithium pierces the separator and reaches the positive electrode, causing a short circuit inside the battery, resulting in a significant decrease in battery performance, and an abnormal rise in temperature due to an excessive current flowing due to the internal short circuit. At this point, the organic electrolyte volatilizes, causing the battery to explode or explode in the worst case, which is a safety issue. Particularly in terms of safety, when the battery ruptures, chemically active and highly reactive metallic lithium reacts with moisture in the air, resulting in “Li + H 2 O → LiOH +
The generation of hydrogen gas and reaction heat due to the reaction of "1/2 H 2 "
Further reduces safety.

【0003】このようなデンドライトの生成による問題
を解決するために、充放電に伴いリチウムイオンを吸蔵
・放出できる炭素材を負極に用いることが提案されてい
る。そして、電解液の溶媒としては、充放電効率および
耐酸化性に優れた環状炭酸エステル(例えば、炭酸エチ
レンや炭酸プロピレン、γ−ブチロラクトン)が注目さ
れ、また、電解質としては、LiClO4、LiBF4
LiPF6およびLiSO3CF3等が用いられている。
環状炭酸エステル、例えば、炭酸エチレンは誘電率が高
くイオン溶解度も大きいため、これを溶媒とすることに
より、イオン導電率の高い電解液を得ることができる。
しかし、その融点は36.4℃と高く、常温では固体で
ある。また、粘性が高いため単体で用いることは不可能
である。そこで、一般にリチウム二次電池の使用温度範
囲とされている−20℃〜60℃において電解液を液体
で存在させるために、環状炭酸エステルに、鎖状炭酸エ
ステル(例えば、炭酸ジメチル、炭酸ジエチル、炭酸メ
チルエチル)を混合することが提案されている。加え
て、前記電解液のイオン導電率あるいは充放電効率の向
上を図るため、さらに、一般式RCOOR’(式中、R
は炭素数3以上のアルキル基,R’は炭素数1または2
のアルキル基)で示されるカルボン酸エステルを混合す
ることが提案されている。
In order to solve such a problem caused by the generation of dendrites, it has been proposed to use a carbon material capable of inserting and extracting lithium ions in a negative electrode as it is charged and discharged. Then, as the solvent of the electrolytic solution, a cyclic carbonic acid ester (for example, ethylene carbonate, propylene carbonate, γ-butyrolactone) excellent in charge / discharge efficiency and oxidation resistance is noted, and as the electrolyte, LiClO 4 , LiBF 4 is used. ,
LiPF 6 and LiSO 3 CF 3 are used.
Since cyclic carbonic acid ester such as ethylene carbonate has a high dielectric constant and a large ionic solubility, an electrolytic solution having a high ionic conductivity can be obtained by using this as a solvent.
However, its melting point is as high as 36.4 ° C., and it is a solid at room temperature. Moreover, since it has a high viscosity, it cannot be used alone. Therefore, in order to allow the electrolytic solution to exist as a liquid at −20 ° C. to 60 ° C., which is generally regarded as the operating temperature range of a lithium secondary battery, a cyclic carbonic acid ester is added to a chain carbonic acid ester (for example, dimethyl carbonate, diethyl carbonate, It has been proposed to mix (methyl ethyl carbonate). In addition, in order to improve the ionic conductivity or charge / discharge efficiency of the electrolytic solution, the general formula RCOOR '(wherein R is
Is an alkyl group having 3 or more carbon atoms, R'is 1 or 2 carbon atoms
It is proposed to mix a carboxylic acid ester represented by

【0004】[0004]

【発明が解決しようとする課題】しかし、上記一般式R
COOR’のRの炭素数を大きくすると誘電率は低下
し、粘性率は増大する。従って、環状炭酸エステルと鎖
状炭酸エステルの混合溶媒に上記一般式RCOOR’で
示されるカルボン酸エステルを混合すると、鎖状炭酸エ
ステルの低粘性という特徴が損なわれ、これら混合溶媒
系のイオン導電率が充分に向上しないという問題があ
る。本発明が解決しようとする課題は、非水電解液のイ
オン導電率が高く高率放電性に優れ、且つ安全性の高い
リチウム二次電池を提供することである。
However, the above general formula R
When the carbon number of R in COOR 'is increased, the dielectric constant decreases and the viscosity increases. Therefore, when the carboxylic acid ester represented by the above general formula RCOOR 'is mixed in a mixed solvent of cyclic carbonic acid ester and chain carbonic acid ester, the low viscosity characteristic of chain carbonic acid ester is impaired, and the ionic conductivity of these mixed solvent systems is impaired. However, there is a problem that is not sufficiently improved. The problem to be solved by the present invention is to provide a lithium secondary battery in which the ionic conductivity of the non-aqueous electrolyte is high, the high rate discharge is excellent, and the safety is high.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係るリチウム二次電池は、リチウムイオン
を吸蔵・放出できる炭素材からなる負極と、非水電解液
と、リチウム含有酸化物からなる正極により構成される
リチウム二次電池において、前記非水電解液の溶媒とし
て、下記の(a)および(b)の特性を有する鎖状エス
テルを一種類以上含み、当該鎖状エステルの含有量を非
水電解液の溶媒全体の体積の30%以下にしたことを特
徴とする。 (a)粘性率0.9cP(20℃)以下 (b)誘電率4.7(20℃)以上 上記の(a)および(b)の特性を有する鎖状エステル
は、好ましくは、下記の(c)および(d)の特性を有
するものである。 (c)粘性率0.6cP(20℃)以下 (d)誘電率5.7(20℃)以上 上記の(a)および(b)ないし(c)および(d)の
特性を有する鎖状エステルを含む非水電解液の主溶媒
は、好ましくは、環状炭酸エステルと鎖状炭酸エステル
を主成分とする。
In order to solve the above problems, a lithium secondary battery according to the present invention comprises a negative electrode made of a carbon material capable of inserting and extracting lithium ions, a non-aqueous electrolyte, and a lithium-containing oxide. In a lithium secondary battery composed of a positive electrode made of a material, as a solvent of the non-aqueous electrolyte, one or more kinds of chain ester having the following characteristics (a) and (b) are contained, and the chain ester It is characterized in that the content is 30% or less of the volume of the whole solvent of the non-aqueous electrolyte. (A) Viscosity of 0.9 cP (20 ° C.) or less (b) Dielectric constant of 4.7 (20 ° C.) or more The chain ester having the characteristics (a) and (b) described above preferably has the following ( It has the characteristics of c) and (d). (C) Viscosity of 0.6 cP (20 ° C.) or less (d) Dielectric constant of 5.7 (20 ° C.) or more Chain ester having the above-mentioned characteristics (a) and (b) to (c) and (d) The main solvent of the non-aqueous electrolytic solution containing is preferably composed mainly of cyclic carbonic acid ester and chain carbonic acid ester.

【0006】[0006]

【作用】上記の(a)および(b)の特性を有する鎖状
エステルを非水電解液の溶媒として注目すると、低粘性
且つ低融点という長所がある一方で、低沸点で低引火点
という短所もある。非水電解液の溶媒として用いる場
合、安全性を確保するために、溶媒中への混合量は溶媒
全体の体積の30%以下にする必要がある。上記の
(a)および(b)の特性を有する鎖状エステルは、3
0%以下の量で用いても高粘性の環状炭酸エステルと鎖
状炭酸エステルの混合溶媒を低粘性化することができ、
尚且つ環状炭酸エステルの高誘電率という特徴を大きく
損なわない。このために非水電解液のイオン導電率は向
上し、良好な高率放電特性が得られる。また、鎖状エス
テルを上記の(c)および(d)の特性を有するものに
すると、その効果は一層顕著になる。
When a chain ester having the above characteristics (a) and (b) is focused on as a solvent for a non-aqueous electrolyte, it has the advantages of low viscosity and low melting point, but has the disadvantage of low boiling point and low flash point. There is also. When used as a solvent for the non-aqueous electrolyte, the amount of the solvent mixed in the solvent must be 30% or less of the total volume of the solvent to ensure safety. A chain ester having the above properties (a) and (b) is 3
Even when used in an amount of 0% or less, it is possible to reduce the viscosity of a mixed solvent of a highly viscous cyclic ester carbonate and a chain ester carbonate,
Moreover, the feature of the high dielectric constant of the cyclic carbonic acid ester is not significantly impaired. Therefore, the ionic conductivity of the non-aqueous electrolyte is improved, and good high rate discharge characteristics can be obtained. When the chain ester has the above-mentioned properties (c) and (d), the effect becomes more remarkable.

【0007】[0007]

【実施例】環状炭酸エステルとして炭酸エチレンを、鎖
状炭酸エステルとして炭酸ジメチルと炭酸ジエチルを用
い、その混合比を2:1:1とした。この混合溶媒に表
1に示した特性(20℃における誘電率および粘性率)
を有する各種鎖状エステルを表1に示した割合(全溶媒
中に占める体積%)で混合して、非水電解液の溶媒を調
製した。電解質にはLiClO4を用い、その濃度は1
Mとした。尚、電解質を溶媒に添加する作業は、アルゴ
ン雰囲気中で行なった。表1には、調製した非水電解液
のイオン導電率を併せて示した。イオン導電率の測定
は、前記電解液が25℃になるのを待って、導電率計
(堀場製「DS−14」)にて行なった。表1から、本
発明の実施例に係る電解液のイオン導電率は、イオン導
電率が高い炭酸エチレン単独の場合(比較例1,炭酸ジ
メチルと炭酸ジエチルと鎖状エステルを含まない)より
さらに高くなっていることが判る。その中でも特に実施
例1(鎖状エステルの粘性率0.6cP以下で誘電率
5.7以上とした場合)のイオン導電率が高いことが判
る。尚、比較例1以外の電解液は、リチウム二次電池の
一般的な仕様温度範囲といわれる−20℃〜60℃にお
いて液体で存在した。
EXAMPLE Ethylene carbonate was used as the cyclic ester carbonate, and dimethyl carbonate and diethyl carbonate were used as the chain ester carbonate, and the mixing ratio was 2: 1: 1. The characteristics of this mixed solvent shown in Table 1 (dielectric constant and viscosity at 20 ° C.)
The various chain-like esters having the above were mixed at the ratio shown in Table 1 (volume% in all the solvents) to prepare a solvent for the non-aqueous electrolytic solution. LiClO 4 is used as the electrolyte and its concentration is 1
M. The operation of adding the electrolyte to the solvent was performed in an argon atmosphere. Table 1 also shows the ionic conductivity of the prepared non-aqueous electrolyte. The ionic conductivity was measured with a conductivity meter (“DS-14” manufactured by Horiba) after the temperature of the electrolytic solution reached 25 ° C. From Table 1, the ionic conductivity of the electrolytic solution according to the example of the present invention is higher than that of ethylene carbonate having a high ionic conductivity alone (Comparative Example 1, dimethyl carbonate, diethyl carbonate and chain ester are not included). You can see that it has become. Among them, it is found that the ionic conductivity is particularly high in Example 1 (when the viscosity of the chain ester is 0.6 cP or less and the dielectric constant is 5.7 or more). The electrolytes other than Comparative Example 1 were liquid at -20 ° C to 60 ° C, which is a general specification temperature range of lithium secondary batteries.

【0008】[0008]

【表1】 [Table 1]

【0009】非水電解液が上記の各種電解液である円筒
形リチウム二次電池を作製し、高率放電特性を調べた。
このリチウム二次電池の構成を図1に示す。1は負極で
あり、その製造法は次のとおりである。まず、人造黒鉛
粉末(日本黒鉛(株)製「JSP」)と、バインダとし
てポリフッ化ビニリデンを、重量比90:10の比率で
秤量し、N−メチルピロリドン(NMP)を添加して湿
式混合する。これを集電体である銅箔の両面に塗布し、
120℃で30分乾燥して作製した。2は正極であり、
その製造法は次のとおりである。まず、LiCoO2
導電助剤の黒鉛粉末とバインダを、重量比85:10:
5の比率で秤量し、NMPを添加して湿式混合する。こ
れを集電体であるアルミニウム箔の両面に塗布し、12
0℃で30分乾燥して作製した。上記の負極1と正極2
を200℃で4時間真空乾燥し、ドライ雰囲気の中で正
極2、ポリプロピレン製の微孔性フィルムからなるセパ
レータ3、負極1、セパレータ3の順に重ねて捲回し、
これをケース4に収納して公称容量400mAhの電池を
作製した。尚、正極2は蓋を兼ねた正極端子5に、負極
1はケース4にそれぞれ超音波溶接により接続した。
Cylindrical lithium secondary batteries in which the non-aqueous electrolyte was the above-mentioned various electrolytes were prepared and their high rate discharge characteristics were examined.
The structure of this lithium secondary battery is shown in FIG. 1 is a negative electrode, and its manufacturing method is as follows. First, artificial graphite powder (“JSP” manufactured by Nippon Graphite Co., Ltd.) and polyvinylidene fluoride as a binder are weighed at a weight ratio of 90:10, and N-methylpyrrolidone (NMP) is added and wet-mixed. . Apply this to both sides of the current collector copper foil,
It was prepared by drying at 120 ° C. for 30 minutes. 2 is a positive electrode,
The manufacturing method is as follows. First, LiCoO 2 and graphite powder as a conductive additive and a binder were mixed in a weight ratio of 85:10:
Weigh in a ratio of 5, NMP is added and wet mixed. Apply this to both sides of the current collector aluminum foil,
It was prepared by drying at 0 ° C. for 30 minutes. Negative electrode 1 and positive electrode 2
Is vacuum dried at 200 ° C. for 4 hours, and the positive electrode 2, the separator 3 made of a polypropylene microporous film, the negative electrode 1, and the separator 3 are layered and wound in this order in a dry atmosphere.
This was housed in Case 4 to prepare a battery having a nominal capacity of 400 mAh. The positive electrode 2 was connected to the positive electrode terminal 5 also serving as a lid, and the negative electrode 1 was connected to the case 4 by ultrasonic welding.

【0010】これらリチウム二次電池を、4.15Vの
定電圧(制限電流100mA)で5時間充電した後、1A
の電流で終止電圧3Vまで高率放電をした。その結果を
図2に示す。図2から、本発明の実施例に係るリチウム
二次電池は、高率放電において高い容量が得られている
ことが判る。電解液のイオン導電率が高いことによる結
果である。中でも、実施例1のリチウム二次電池(鎖状
エステルの粘性率0.6cP以下で誘電率5.7以上と
した場合)は、高率放電特性が優れていることが判る。
After charging these lithium secondary batteries for 5 hours at a constant voltage of 4.15V (limit current 100mA), 1A
High-rate discharge was performed at a final voltage of 3 V with the current of. The result is shown in FIG. From FIG. 2, it is understood that the lithium secondary battery according to the example of the present invention has a high capacity at high rate discharge. This is a result of the high ionic conductivity of the electrolytic solution. Among them, the lithium secondary battery of Example 1 (when the chain ester has a viscosity of 0.6 cP or less and a dielectric constant of 5.7 or more) has excellent high-rate discharge characteristics.

【0011】上記実施例において、電解液の主溶媒とし
て炭酸エチレンの代わりに炭酸プロピレンあるいはγ−
ブチロラクトンを用いた場合、電解質としてLiClO
4の代わりにLiBF4、LiPF6あるいはLiSO3
3等のリチウム塩を用いた場合にも、上記実施例とほ
ぼ同様の結果が得られた。
In the above embodiment, propylene carbonate or γ- is used as the main solvent of the electrolytic solution instead of ethylene carbonate.
When butyrolactone is used, LiClO is used as the electrolyte.
4 of LiBF instead 4, LiPF 6 or LiSO 3 C
Even when a lithium salt such as F 3 was used, almost the same results as in the above example were obtained.

【0012】[0012]

【発明の効果】上述したように、本発明に係るリチウム
二次電池は、非水電解液の溶媒として粘性率0.9cP
以下で誘電率が4.7以上である鎖状エステルを混合し
たので、従来のリチウム二次電池に比べ、電解液のイオ
ン導電率が向上し良好な高率放電特性を示す点で優れて
いる。粘性率0.6cP以下で誘電5.7以上の鎖状エ
ステルを混合することとすれば、その効果は一層顕著に
なる。また、鎖状エステルの混合量を溶媒全体の体積の
30%以下としたので安全性も高い。
As described above, the lithium secondary battery according to the present invention has a viscosity of 0.9 cP as a solvent of the non-aqueous electrolyte.
Since a chain ester having a dielectric constant of 4.7 or more is mixed below, the ionic conductivity of the electrolytic solution is improved and excellent high rate discharge characteristics are exhibited, as compared with the conventional lithium secondary battery. . If a chain ester having a viscosity of 0.6 cP or less and a dielectric constant of 5.7 or more is mixed, the effect becomes more remarkable. Further, since the amount of the chain ester mixed is 30% or less of the volume of the whole solvent, the safety is high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るリチウム二次電池の構成を示す説
明図である。
FIG. 1 is an explanatory diagram showing a configuration of a lithium secondary battery according to the present invention.

【図2】本発明の実施例と比較例に係るリチウム二次電
池の高率放電特性図である。
FIG. 2 is a high rate discharge characteristic diagram of lithium secondary batteries according to an example of the present invention and a comparative example.

【符号の説明】[Explanation of symbols]

1は負極 2は正極 3はセパレータ 4はケース 5は正極端子 1 is negative electrode 2 is positive electrode 3 is separator 4 is case 5 is positive electrode terminal

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】リチウムイオンを吸蔵・放出できる炭素材
からなる負極と、非水電解液と、リチウム含有酸化物か
らなる正極により構成されるリチウム二次電池におい
て、 上記非水電解液の溶媒として、下記(a)および(b)
の特性を有する鎖状エステルを一種類以上含み、当該鎖
状エステルの含有量を非水電解液の溶媒全体の体積の3
0%以下にしたことを特徴とするリチウム二次電池。 (a)粘性率0.9cP(20℃)以下 (b)誘電率4.7(20℃)以上
1. A lithium secondary battery comprising a negative electrode made of a carbon material capable of inserting and extracting lithium ions, a non-aqueous electrolyte, and a positive electrode made of a lithium-containing oxide, wherein the non-aqueous electrolyte is used as a solvent. , (A) and (b) below
One or more kinds of chain ester having the characteristics of 1) is contained, and the content of the chain ester is 3
A lithium secondary battery characterized by being 0% or less. (A) Viscosity of 0.9 cP (20 ° C) or less (b) Dielectric constant of 4.7 (20 ° C) or more
【請求項2】鎖状エステルが、下記(c)および(d)
の特性を有することを特徴とする請求項1記載のリチウ
ム二次電池。 (c)粘性率0.6cP(20℃)以下 (d)誘電率5.7(20℃)以上
2. A chain ester having the following (c) and (d):
The lithium secondary battery according to claim 1, having the characteristics of: (C) Viscosity of 0.6 cP (20 ° C) or less (d) Dielectric constant of 5.7 (20 ° C) or more
【請求項3】非水電解液の主溶媒として、環状炭酸エス
テルと鎖状炭酸エステルを主成分とすることを特徴とす
る請求項1ないし2のいずれかに記載のリチウム二次電
池。
3. The lithium secondary battery according to claim 1, wherein the main solvent of the non-aqueous electrolyte is a cyclic carbonate and a chain carbonate as main components.
JP6299895A 1994-12-02 1994-12-02 Lithium secondary battery Abandoned JPH08162152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6299895A JPH08162152A (en) 1994-12-02 1994-12-02 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6299895A JPH08162152A (en) 1994-12-02 1994-12-02 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH08162152A true JPH08162152A (en) 1996-06-21

Family

ID=17878235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6299895A Abandoned JPH08162152A (en) 1994-12-02 1994-12-02 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH08162152A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2339684A3 (en) * 2005-06-10 2011-10-19 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution, nonaqueous electrolyte secondary cell, and carbonate compounds
JP2014523096A (en) * 2011-07-14 2014-09-08 エルジー・ケム・リミテッド Non-aqueous electrolyte and lithium secondary battery using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2339684A3 (en) * 2005-06-10 2011-10-19 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution, nonaqueous electrolyte secondary cell, and carbonate compounds
US8178246B2 (en) 2005-06-10 2012-05-15 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution, nonaqueous electrolyte secondary cell, and carbonate compounds
JP2014523096A (en) * 2011-07-14 2014-09-08 エルジー・ケム・リミテッド Non-aqueous electrolyte and lithium secondary battery using the same

Similar Documents

Publication Publication Date Title
JP5209964B2 (en) Lithium secondary battery
JP3815087B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
US7695854B2 (en) Lithium secondary battery
JP2002358999A (en) Non-aqueous electrolyte secondary battery
JP2004022336A (en) Electrolyte for secondary battery and secondary battery using it
JP3911870B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP4319025B2 (en) Non-aqueous electrolyte secondary battery
JPH0822839A (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JPH10289731A (en) Nonaqueous electrolytic battery
JP4488994B2 (en) Electrolytic solution for lithium ion secondary battery and lithium ion secondary battery including the same
JP2000348759A (en) Nonaqueous electrolytic solution and secondary battery using it
JP7301449B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP5006599B2 (en) Lithium ion secondary battery
JP2000348760A (en) Nonaqueous electrolytic solution and secondary battery using it
JP4172175B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JPH0997626A (en) Nonaqueous electrolytic battery
CN117157796A (en) Nonaqueous electrolyte composition and lithium secondary battery comprising same
JPH08162155A (en) Non-aqueous electrolyte battery
JPH07254434A (en) Non-aqueous electrolyte for lithium batteries
JP4147691B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2001297763A (en) Nonaqueous electrolyte secondary cell
JPH08162152A (en) Lithium secondary battery
JP3448544B2 (en) Non-aqueous electrolyte battery
JPH09147864A (en) Nonaqueous electrolyte battery and its manufacture
JP2001351690A (en) Nonaqueous electrolyte cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20040823