[go: up one dir, main page]

JPH08162155A - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery

Info

Publication number
JPH08162155A
JPH08162155A JP6299896A JP29989694A JPH08162155A JP H08162155 A JPH08162155 A JP H08162155A JP 6299896 A JP6299896 A JP 6299896A JP 29989694 A JP29989694 A JP 29989694A JP H08162155 A JPH08162155 A JP H08162155A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
electrode
electrolyte battery
polyoxyethylene sorbitan
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6299896A
Other languages
Japanese (ja)
Inventor
Toshikazu Maejima
敏和 前島
Shinji Saito
慎治 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP6299896A priority Critical patent/JPH08162155A/en
Publication of JPH08162155A publication Critical patent/JPH08162155A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

(57)【要約】 【目的】非水電解液電池の電解液に対する電極の濡れ性
を改善して高率放電特性を向上させる。また、空隙率が
40%以下の電極を用いても高い放電容量を確保する。 【構成】Li含有金属酸化物からなる正極2と、炭素材
からなる負極1と、有機溶媒にリチウム塩を溶解した電
解液により構成される非水電解液電池において、電解液
にノニオン系界面活性剤を含有させる。ノニオン系界面
活性剤は、好ましくしは、ポリオキシエチレンソルビタ
ン脂肪酸エステル類(ポリオキシエチレンソルビタント
リオレエート)である。
(57) [Summary] [Objective] To improve the high rate discharge characteristics by improving the wettability of the electrode with respect to the electrolyte of the non-aqueous electrolyte battery. In addition, a high discharge capacity is ensured even when an electrode having a porosity of 40% or less is used. [Constitution] In a non-aqueous electrolyte battery composed of a positive electrode 2 made of a Li-containing metal oxide, a negative electrode 1 made of a carbon material, and an electrolytic solution in which a lithium salt is dissolved in an organic solvent, a nonionic surfactant is used as the electrolytic solution. Agent is included. The nonionic surfactant is preferably polyoxyethylene sorbitan fatty acid ester (polyoxyethylene sorbitan trioleate).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液電池に関
し、殊にその電解液に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery, and more particularly to the electrolyte solution thereof.

【0002】[0002]

【従来の技術】負極活物質にリチウムを用いたリチウム
電池は、高いエネルギーを有することから、数々の方面
でその二次電池化が試みられてきた。負極活物質に純金
属リチウムを用いた場合、充放電の繰り返しに伴う負極
リチウムの針状析出、いわゆるデンドライトの生成が問
題となっている。即ち、針状析出リチウムがセパレータ
を突き破り、正極に到達することによって電池内部での
短絡が起こり、電池性能が著しく低下するという性能面
と、内部短絡によって過大な電流が流れることによる温
度の異常上昇で有機電解液の揮発が起こり、電池内圧上
昇が最悪の場合電池の破裂、爆発を引き起こすという安
全性の両方で問題となっている。特に安全性の面では、
電池の破裂後は化学的に活性で反応性の高い金属リチウ
ムが空気中の水分と反応し、「Li+H2O→LiOH
+1/2H2」の反応による水素ガスと反応熱の発生が
さらに安全性を低下させる。
2. Description of the Related Art Since a lithium battery using lithium as a negative electrode active material has high energy, it has been attempted to be used as a secondary battery in various fields. When pure metal lithium is used as the negative electrode active material, needle-like deposition of negative electrode lithium with repeated charging and discharging, that is, generation of so-called dendrites is a problem. That is, needle-like precipitated lithium pierces the separator and reaches the positive electrode, causing a short circuit inside the battery, resulting in a significant decrease in battery performance, and an abnormal rise in temperature due to an excessive current flowing due to the internal short circuit. In this case, volatilization of the organic electrolytic solution occurs, and in the worst case, the rise in the internal pressure of the battery causes the battery to burst or explode, which is a safety issue. Especially in terms of safety,
After the rupture of the battery, the chemically active and highly reactive metallic lithium reacts with the water in the air, resulting in “Li + H 2 O → LiOH
+ 1 / 2H 2 "reactions generation of hydrogen gas and reaction heat to further lower the safety due to the.

【0003】このようなデンドライトの生成による問題
を解決するために、充放電に伴いリチウムイオンを吸蔵
・放出できる炭素材を負極に用いることが提案されてい
る。また、正極と負極は共に、活物質、導電助剤および
バインダを溶媒中に分散させ、この合剤を集電体上に薄
く塗工し、乾燥後プレスをする方法で製造されており、
体積エネルギー密度の向上を図っている。極板群は、正
極と負極をセパレータを介在させて捲回する方法で構成
されている。電解液の溶媒としては、充放電効率および
耐酸化性に優れた環状エステル(例えば、炭酸エチレ
ン、炭酸プロピレン、γ−ブチロラクトン)、鎖状エス
テル(例えば、炭酸ジメチル、炭酸ジエチル、炭酸メチ
ルエチル、プロピオン酸メチル、プロピオン酸エチ
ル)、鎖状エーテル(例えば、1,2−ジメトキシエタ
ン、メチルエチルエーテル、ジエチルエーテル、メチル
プロピルエーテル)から選ばれる2種類以上を混合した
ものが提案されている。電解質としては、LiCl
4、LiBF4、LiPF6、LiSO3CF3等のリチ
ウム塩が提案されている。
In order to solve such a problem caused by the generation of dendrites, it has been proposed to use a carbon material capable of inserting and extracting lithium ions in a negative electrode as it is charged and discharged. In addition, both the positive electrode and the negative electrode are manufactured by a method in which an active material, a conductive auxiliary agent and a binder are dispersed in a solvent, the mixture is thinly applied on a current collector, and dried and then pressed.
The volume energy density is being improved. The electrode plate group is formed by a method of winding a positive electrode and a negative electrode with a separator interposed therebetween. As the solvent of the electrolytic solution, cyclic ester (for example, ethylene carbonate, propylene carbonate, γ-butyrolactone) excellent in charge / discharge efficiency and oxidation resistance, chain ester (for example, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, propione) is used. It has been proposed to mix two or more kinds selected from methyl acid, ethyl propionate) and chain ethers (for example, 1,2-dimethoxyethane, methyl ethyl ether, diethyl ether, methyl propyl ether). As the electrolyte, LiCl
Lithium salts such as O 4 , LiBF 4 , LiPF 6 , and LiSO 3 CF 3 have been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記電解液を
用いた電池は、電解液に対する電極の濡れ性が悪く、高
率放電特性に劣るという問題がある。また、電池の体積
エネルギー密度を向上させるために電極の空隙率を低く
していくと、電極に電解液が浸透しにくくなり、この空
隙率がある値を下回ると電池としての容量が充分に得ら
れなくなるという問題もある。本発明が解決しようとす
る第1の課題は、非水電解液電池の電解液に対する電極
の濡れ性を改善して高率放電特性を向上させることであ
る。第2の課題は、空隙率の低い電極を用いても高い放
電容量の電池とすることである。
However, the battery using the above electrolytic solution has a problem that the wettability of the electrode with respect to the electrolytic solution is poor and the high rate discharge characteristics are poor. Further, when the porosity of the electrode is lowered to improve the volumetric energy density of the battery, it becomes difficult for the electrolytic solution to permeate into the electrode, and when the porosity is below a certain value, the battery capacity is sufficiently obtained. There is also the problem of being unable to do so. The first problem to be solved by the present invention is to improve the wettability of the electrode with respect to the electrolytic solution of the non-aqueous electrolyte battery to improve the high rate discharge characteristics. The second problem is to make a battery having a high discharge capacity even if an electrode having a low porosity is used.

【0005】[0005]

【課題を解決するための手段】上記第1の課題を解決す
るために、本発明に係る非水電解液電池は、Li含有金
属酸化物からなる正極と、炭素材からなる負極と、有機
溶媒にリチウム塩を溶解した電解液により構成されるも
のにおいて、電解液にノニオン系界面活性剤を含有する
ことを特徴とする。正極と負極の空隙率が40%以下で
あるときには、第2の課題が解決される。前記ノニオン
系界面活性剤は、好ましくは、ポリオキシエチレンソル
ビタン脂肪酸エステル類であり、さらに好ましくは、ポ
リオキシエチレンソルビタントリオレエートである。
In order to solve the first problem, a non-aqueous electrolyte battery according to the present invention comprises a positive electrode made of a Li-containing metal oxide, a negative electrode made of a carbon material, and an organic solvent. In an electrolyte solution containing a lithium salt dissolved therein, the electrolyte solution contains a nonionic surfactant. When the porosity of the positive electrode and the negative electrode is 40% or less, the second problem is solved. The nonionic surfactant is preferably polyoxyethylene sorbitan fatty acid ester, and more preferably polyoxyethylene sorbitan trioleate.

【0006】[0006]

【作用】電解液中にノニオン系界面活性剤を添加するこ
とにより、電解液に対する電極の濡れ性が向上するた
め、本来なら電解液が浸透できない電極の小さな隙間に
も電解液が浸透する。そのため、高率放電においても活
物質の利用率が高くなり、高率放電特性が向上する。ま
た、空隙率の低い電極を用いた非水電解液電池において
も、電解液の電極への浸透性が良くなることから活物質
の利用率の低下を防ぐことができ、その結果、高い放電
容量が得られる。
By adding a nonionic surfactant to the electrolytic solution, the wettability of the electrode with respect to the electrolytic solution is improved, so that the electrolytic solution also penetrates into the small gaps between the electrodes where the electrolytic solution should not normally penetrate. Therefore, the utilization rate of the active material is increased even in the high rate discharge, and the high rate discharge characteristics are improved. Further, even in a non-aqueous electrolyte battery using an electrode having a low porosity, it is possible to prevent a decrease in the utilization rate of the active material because the permeability of the electrolyte to the electrode is improved, resulting in a high discharge capacity. Is obtained.

【0007】[0007]

【実施例】図1に本発明に係る実施例の円筒形電池の構
成を示す。1は負極であり、その製造法は次のとおりで
ある。まず、人造黒鉛粉末(日本黒鉛(株)製「JS
P」)と、バインダとしてポリフッ化ビニリデンを、重
量比90:10の比率で秤量し、N−メチルピロリドン
(NMP)を添加して湿式混合する。これを集電体であ
る銅箔の両面に塗布し、120℃で30分乾燥後プレス
して作製した。2は正極であり、その製造法は次のとお
りである。まず、LiCoO2と導電助剤の黒鉛粉末と
バインダを、重量比85:10:5の比率で秤量して、
NMPを添加して湿式混合する。これを集電体であるア
ルミニウム箔の両面に塗布し、120℃で30分乾燥後
プレスして作製した。上記負極1と正極2を200℃で
4時間真空乾燥し、ドライ雰囲気の中で正極2、ポリプ
ロピレン製の微孔性フィルムからなるセパレータ3、負
極1、セパレータ3の順に重ね捲回し、これをケース4
に収納して、正極2は蓋を兼ねた正極端子5に、負極1
はケース4にそれぞれ超音波溶接により接続した。上記
の構成において、電解液を以下の実施例1〜4のように
調製し、これらをセパレータ3に3ml含浸させ公称容量
400mAhの電池を作製した。
EXAMPLE FIG. 1 shows the structure of a cylindrical battery of an example according to the present invention. 1 is a negative electrode, and its manufacturing method is as follows. First, artificial graphite powder (“JS” manufactured by Nippon Graphite Co., Ltd.)
P ”) and polyvinylidene fluoride as a binder are weighed in a weight ratio of 90:10, N-methylpyrrolidone (NMP) is added and wet-mixed. This was applied to both sides of a copper foil as a current collector, dried at 120 ° C. for 30 minutes and then pressed. 2 is a positive electrode, and its manufacturing method is as follows. First, LiCoO 2 , graphite powder as a conductive additive and a binder were weighed in a weight ratio of 85: 10: 5,
Add NMP and wet mix. This was applied on both sides of an aluminum foil as a current collector, dried at 120 ° C. for 30 minutes, and then pressed. The negative electrode 1 and the positive electrode 2 are vacuum-dried at 200 ° C. for 4 hours, and the positive electrode 2, the separator 3 made of a microporous film made of polypropylene, the negative electrode 1, and the separator 3 are wound in this order in a dry atmosphere, which is then wound. Four
The positive electrode 2 is stored in the positive electrode terminal 5 which also serves as a lid, and the negative electrode 1
Were connected to case 4 by ultrasonic welding. In the above-mentioned constitution, an electrolytic solution was prepared as in the following Examples 1 to 4, and 3 ml of the electrolytic solution was impregnated with the electrolytic solution to prepare a battery having a nominal capacity of 400 mAh.

【0008】実施例1 炭酸エチレンと炭酸ジメチルと炭酸ジエチルからなる混
合溶媒(体積比5:2:3)に電解質としてLiPF6
を1M溶解し、これに対してノニオン系界面活性剤であ
るポリオキシエチレンソルビタン脂肪酸エステル類とし
てポリオキシエチレンソルビタンモノラウレートを体積
比で5.0%添加した。
Example 1 LiPF 6 was used as an electrolyte in a mixed solvent of ethylene carbonate, dimethyl carbonate and diethyl carbonate (volume ratio 5: 2: 3).
Was dissolved in 1 M, and 5.0% by volume of polyoxyethylene sorbitan monolaurate as polyoxyethylene sorbitan fatty acid esters which are nonionic surfactants was added thereto.

【0009】実施例2 同じく、ポリオキシエチレンソルビタン脂肪酸エステル
類としてポリオキシエチレンソルビタントリオレエート
を体積比で7.0%添加し、ほかは実施例1同様に電解
液を調製した。
Example 2 Similarly, 7.0% by volume of polyoxyethylene sorbitan trioleate was added as polyoxyethylene sorbitan fatty acid esters, and an electrolyte solution was prepared in the same manner as in Example 1.

【0010】実施例3 ノニオン系界面活性剤であるポリオキシエチレンアルキ
ルエーテル類としてポリオキシエチレンラウリルエーテ
ルを体積比で8.0%添加し、ほかは実施例1と同様に
電解液を調製した。
Example 3 An electrolytic solution was prepared in the same manner as in Example 1 except that polyoxyethylene lauryl ether was added as a polyoxyethylene alkyl ether which is a nonionic surfactant in a volume ratio of 8.0%.

【0011】実施例4 ノニオン系界面活性剤であるグリセリン脂肪酸エステル
類としてグリセロールモノオレエートを体積比で6.0
%添加し、ほかは実施例1と同様に電解液を調製した。
Example 4 Glycerol monooleate as a glycerin fatty acid ester which is a nonionic surfactant is 6.0 in volume ratio.
%, And an electrolytic solution was prepared in the same manner as in Example 1 except for the above.

【0012】上記実施例の各電池と、電解液にノニオン
系界面活性剤が含まれない以外は上記実施例の電池と同
様に作製した電池(従来例)を、4.15Vの定電圧
(制限電流100mA)で5時間充電した後、1Aの電流
で終止電圧3Vまで高率放電をしたときの高率放電特性
を図2に示す。尚、電極の空隙率は、いずれも60%と
した。また、4.15Vの定電圧(制限電流100mA)
で5時間充電した後、100mAの電流で終止電圧3Vま
で放電をしたときの電極の空隙率と放電容量の関係を図
3に示す。尚、電極の空隙率は、正負両極共にプレス時
の力により調節した。図2から、実施例の各電池は、高
率放電特性において従来例より高い放電容量が得られて
いことが判る。また、図3から、実施例の各電池は、電
極の空隙率が40%以下になっても、従来例のような電
池容量の急激な低下は起こらないことが判る。前記両特
性は、ノニオン系界面活性剤として、ポリオキシエチレ
ンソルビタン脂肪酸エステル類を用いたときに特に顕著
であり、しかも、電極の空隙率の高低にかかわらず高容
量を維持することができる。ポリオキシエチレンソルビ
タン脂肪酸エステル類の中でもポリオキシエチレンソル
ビタントリオレエートを用いたときの効果は一層顕著で
ある。
A battery (conventional example) produced in the same manner as the battery of the above-mentioned example except that the nonionic surfactant was not contained in the electrolytic solution was used for the battery of the above-mentioned example (conventional example). FIG. 2 shows the high rate discharge characteristics when the battery was charged at a current of 100 mA) for 5 hours and then discharged at a final voltage of 3 V at a current of 1 A. The porosity of each electrode was set to 60%. Also, a constant voltage of 4.15V (limit current 100mA)
FIG. 3 shows the relationship between the porosity of the electrode and the discharge capacity when the battery was charged for 5 hours at 100 mA and then discharged at a final voltage of 3 V with a current of 100 mA. The porosity of the electrodes was adjusted by the force during pressing for both positive and negative electrodes. It can be seen from FIG. 2 that each of the batteries of the examples has a higher discharge capacity than the conventional example in the high rate discharge characteristics. Further, it can be seen from FIG. 3 that in each of the batteries of the examples, even when the porosity of the electrodes is 40% or less, the battery capacity does not sharply decrease as in the conventional example. Both of the above characteristics are particularly remarkable when polyoxyethylene sorbitan fatty acid esters are used as the nonionic surfactant, and furthermore, a high capacity can be maintained regardless of the porosity of the electrode. Among the polyoxyethylene sorbitan fatty acid esters, the effect of using polyoxyethylene sorbitan trioleate is more remarkable.

【0013】電解液の溶媒が上記実施例のほかに、炭酸
プロピレン、γ−ブチロラクトン等を用いた混合溶媒で
ある場合や、電解質が上記実施例のほかに、LiClO
4、LiBF4、LiSO3CF3等のリチウム塩である場
合にも、上記と同様な結果が得られた。また、ノニオン
系界面活性剤が上記実施例のほかに、ポリオキシエチレ
ンアルキルアリルエーテル類、ポリオキシエチレン誘導
体類、ソルビタン脂肪酸エステル類、ポリオキシエチレ
ンソルビトール脂肪酸エステル類、ポリオキシエチレン
脂肪酸エステル類、ポリオキシエチレンアルキルアミン
類及びアルキルアルカノールアミド類の場合にも従来例
より良好な結果が得られた。
In addition to the above examples, the solvent of the electrolytic solution is a mixed solvent using propylene carbonate, γ-butyrolactone, etc., and the electrolyte is LiClO 2 in addition to the above examples.
The same results as above were obtained when the lithium salt was 4 , LiBF 4 , LiSO 3 CF 3, or the like. In addition to the above examples, the nonionic surfactants are polyoxyethylene alkyl allyl ethers, polyoxyethylene derivatives, sorbitan fatty acid esters, polyoxyethylene sorbitol fatty acid esters, polyoxyethylene fatty acid esters, polyoxyethylene fatty acid esters, Also in the case of oxyethylene alkyl amines and alkyl alkanol amides, better results were obtained than in the conventional example.

【0014】[0014]

【発明の効果】上述したように、本発明にかかる非水電
解液電池は、電解液にノニオン系界面活性剤を添加した
ことを特徴とし、電解液に対する電極の濡れ性が向上す
るため、本来なら電解液が浸透できない電極の小さな隙
間にも電解液が浸透する。この結果、高率放電において
は活物質の利用率が高くなる。また、正極および負極の
空隙率が40%以下であっても、活物質の利用率の低下
を防いで高容量を維持することができる。ノニオン性界
面活性剤がポリオキシエチレンソルビタン脂肪酸エステ
ル類であるときは、高率放電放電特性と高容量を確保す
る効果が一層顕著になり、しかも、電極の空隙率の高低
にかかわらず高容量を維持することができる。
As described above, the non-aqueous electrolyte battery according to the present invention is characterized in that a nonionic surfactant is added to the electrolyte solution, and the wettability of the electrode with respect to the electrolyte solution is improved. If so, the electrolyte will also penetrate into the small gaps in the electrode where the electrolyte cannot penetrate. As a result, the utilization factor of the active material is increased in the high rate discharge. Further, even when the porosity of the positive electrode and the negative electrode is 40% or less, it is possible to prevent the utilization rate of the active material from decreasing and maintain a high capacity. When the nonionic surfactant is a polyoxyethylene sorbitan fatty acid ester, the effect of ensuring high rate discharge characteristics and high capacity becomes more remarkable, and high capacity is achieved regardless of whether the electrode porosity is high or low. Can be maintained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る実施例の非水電解液電池の構成を
示す説明図である。
FIG. 1 is an explanatory diagram showing a configuration of a non-aqueous electrolyte battery of an example according to the present invention.

【図2】本発明に係る実施例と従来例の非水電解液電池
において、電極の空隙率を60%にしたときの高率放電
特性図である。
FIG. 2 is a high rate discharge characteristic diagram when the porosity of the electrodes is set to 60% in the non-aqueous electrolyte batteries of the example according to the present invention and the conventional example.

【図3】本発明に係る実施例と従来例の非水電解液電池
の電極の空隙率と電池の容量の関係を示した曲線図であ
る。
FIG. 3 is a curve diagram showing the relationship between the porosity of the electrodes and the battery capacity of the non-aqueous electrolyte batteries of the example according to the present invention and the conventional example.

【符号の説明】[Explanation of symbols]

1は負極 2は正極 3はセパレータ 4はケース 5は正極端子 1 is negative electrode 2 is positive electrode 3 is separator 4 is case 5 is positive electrode terminal

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】Li含有金属酸化物からなる正極と、炭素
材からなる負極と、有機溶媒にリチウム塩を溶解した電
解液により構成される非水電解液電池において、 電解液にノニオン系界面活性剤を含有することを特徴と
する非水電解液電池。
1. A non-aqueous electrolyte battery comprising a positive electrode made of a Li-containing metal oxide, a negative electrode made of a carbon material, and an electrolyte solution in which a lithium salt is dissolved in an organic solvent. A non-aqueous electrolyte battery containing an agent.
【請求項2】正極と負極の空隙率が40%以下であるこ
とを特徴とする請求項1記載の非水電解液電池。
2. The non-aqueous electrolyte battery according to claim 1, wherein the porosity of the positive electrode and the negative electrode is 40% or less.
【請求項3】ノニオン系界面活性剤がポリオキシエチレ
ンソルビタン脂肪酸エステル類であることを特徴とする
請求項1ないし2のいずれかに記載の非水電解液電池。
3. The non-aqueous electrolyte battery according to claim 1, wherein the nonionic surfactant is a polyoxyethylene sorbitan fatty acid ester.
【請求項4】ポリオキシエチレンソルビタン脂肪酸エス
テル類がポリオキシエチレンソルビタントリオレエート
であることを特徴とする請求項3記載の非水電解液電
池。
4. The non-aqueous electrolyte battery according to claim 3, wherein the polyoxyethylene sorbitan fatty acid ester is polyoxyethylene sorbitan trioleate.
JP6299896A 1994-12-02 1994-12-02 Non-aqueous electrolyte battery Pending JPH08162155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6299896A JPH08162155A (en) 1994-12-02 1994-12-02 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6299896A JPH08162155A (en) 1994-12-02 1994-12-02 Non-aqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPH08162155A true JPH08162155A (en) 1996-06-21

Family

ID=17878248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6299896A Pending JPH08162155A (en) 1994-12-02 1994-12-02 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPH08162155A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164086A (en) * 2000-11-28 2002-06-07 Matsushita Electric Ind Co Ltd Method of manufacturing for nonaqueous secondary battery
JP2006114280A (en) * 2004-10-13 2006-04-27 Sharp Corp Lithium secondary battery
JP2007250424A (en) * 2006-03-17 2007-09-27 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2010123580A (en) * 2010-02-03 2010-06-03 Sharp Corp Lithium secondary battery
JP2011040318A (en) * 2009-08-17 2011-02-24 Hitachi Vehicle Energy Ltd Lithium secondary battery
JP2011108388A (en) * 2009-11-13 2011-06-02 Nippon Telegr & Teleph Corp <Ntt> Lithium air battery
JP2015201309A (en) * 2014-04-07 2015-11-12 旭化成株式会社 Electrolyte for nonaqueous power storage device, and lithium ion secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164086A (en) * 2000-11-28 2002-06-07 Matsushita Electric Ind Co Ltd Method of manufacturing for nonaqueous secondary battery
JP2006114280A (en) * 2004-10-13 2006-04-27 Sharp Corp Lithium secondary battery
JP2007250424A (en) * 2006-03-17 2007-09-27 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2011040318A (en) * 2009-08-17 2011-02-24 Hitachi Vehicle Energy Ltd Lithium secondary battery
JP2011108388A (en) * 2009-11-13 2011-06-02 Nippon Telegr & Teleph Corp <Ntt> Lithium air battery
JP2010123580A (en) * 2010-02-03 2010-06-03 Sharp Corp Lithium secondary battery
JP2015201309A (en) * 2014-04-07 2015-11-12 旭化成株式会社 Electrolyte for nonaqueous power storage device, and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP2003282055A (en) Non-aqueous electrolyte secondary battery
JP2009105069A (en) ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME
JP4626020B2 (en) Non-aqueous electrolyte secondary battery
JPH08236155A (en) Lithium secondary battery
JPH09147913A (en) Nonaqueous electrolyte battery
JP2000011996A (en) Non-aqueous electrolyte secondary battery
JP3199426B2 (en) Non-aqueous electrolyte secondary battery
JPH10289731A (en) Nonaqueous electrolytic battery
JP3380501B2 (en) Non-aqueous electrolyte secondary battery
JP2000021442A (en) Non-aqueous electrolyte secondary battery
JP3580209B2 (en) Lithium ion secondary battery
JP2000182669A (en) Battery electrolyte and non-aqueous electrolyte secondary battery
JPH11283667A (en) Lithium ion battery
JPH08162155A (en) Non-aqueous electrolyte battery
JP2007087941A (en) Lithium ion secondary battery
JP2014067490A (en) Nonaqueous electrolyte secondary battery
JP2000173653A (en) Nonaqueous electrolyte battery
JPH0963645A (en) Lithium secondary battery
JP3258907B2 (en) Non-aqueous electrolyte secondary battery
WO2018173452A1 (en) Non-aqueous electrolytic solution and non-aqueous electrolyte secondary battery
JP2002093463A (en) Nonaqueous electrolyte battery
JP2005078799A (en) Nonaqueous electrolyte battery
JP3239068B2 (en) Non-aqueous electrolyte battery
JP3214304B2 (en) Lithium secondary battery
JP4919771B2 (en) Nonaqueous electrolyte secondary battery