JPH08156106A - 3D object manufacturing method - Google Patents
3D object manufacturing methodInfo
- Publication number
- JPH08156106A JPH08156106A JP4350093A JP35009392A JPH08156106A JP H08156106 A JPH08156106 A JP H08156106A JP 4350093 A JP4350093 A JP 4350093A JP 35009392 A JP35009392 A JP 35009392A JP H08156106 A JPH08156106 A JP H08156106A
- Authority
- JP
- Japan
- Prior art keywords
- dimensional object
- nozzle
- curing
- dimensional
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 54
- 229920005989 resin Polymers 0.000 claims abstract description 41
- 239000011347 resin Substances 0.000 claims abstract description 41
- 239000000126 substance Substances 0.000 claims abstract description 31
- 238000001723 curing Methods 0.000 claims abstract description 28
- 239000007787 solid Substances 0.000 claims abstract description 18
- 239000002184 metal Substances 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 11
- 239000000919 ceramic Substances 0.000 claims description 9
- 239000007789 gas Substances 0.000 claims description 8
- 239000012530 fluid Substances 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 7
- 150000001875 compounds Chemical class 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 5
- 239000004927 clay Substances 0.000 claims description 4
- 238000010894 electron beam technology Methods 0.000 claims description 4
- 230000005484 gravity Effects 0.000 claims description 4
- 230000005855 radiation Effects 0.000 claims description 4
- 238000005219 brazing Methods 0.000 claims description 3
- 239000012159 carrier gas Substances 0.000 claims description 3
- 238000010030 laminating Methods 0.000 claims description 3
- 230000009974 thixotropic effect Effects 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 238000002844 melting Methods 0.000 claims description 2
- 150000004767 nitrides Chemical class 0.000 claims description 2
- 239000004033 plastic Substances 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 claims description 2
- 230000001737 promoting effect Effects 0.000 claims description 2
- 238000005488 sandblasting Methods 0.000 claims description 2
- 229910000679 solder Inorganic materials 0.000 claims description 2
- 238000003756 stirring Methods 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims 1
- 230000008018 melting Effects 0.000 claims 1
- 238000003847 radiation curing Methods 0.000 claims 1
- 229910052709 silver Inorganic materials 0.000 claims 1
- 239000004332 silver Substances 0.000 claims 1
- 230000007704 transition Effects 0.000 claims 1
- 238000000016 photochemical curing Methods 0.000 abstract description 7
- 229920005992 thermoplastic resin Polymers 0.000 abstract description 5
- 230000007246 mechanism Effects 0.000 description 10
- 239000007788 liquid Substances 0.000 description 9
- 238000012937 correction Methods 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052573 porcelain Inorganic materials 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000013543 active substance Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- -1 solder Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
Abstract
(57)【要約】
【目的】光硬化樹脂プール法の寸法精度と形状安定性を
有し、熱可塑性樹脂法の省資源性を兼ね備えた3次元物
体製作法を提供する。
【構成】計算機等によって自動的に空間位置を制御され
たノズルから流動条件を自動的に制御されて流出する光
硬化性物質に、硬化促進因子として光を局所的に作用さ
せ、生じた固体成分を積層することによって任意形状を
有する3次元物体を製作する。
(57) [Abstract] [Purpose] To provide a three-dimensional object manufacturing method having the dimensional accuracy and shape stability of the photo-curing resin pool method and the resource saving of the thermoplastic resin method. [Structure] A solid component produced by causing light to act locally as a curing accelerator on a photocurable substance that flows out from a nozzle whose spatial position is automatically controlled by a computer etc. and whose flow conditions are automatically controlled. A three-dimensional object having an arbitrary shape is manufactured by stacking.
Description
【0001】[0001]
【産業上の利用分野】本発明は3次元物体製作法に関す
る。詳しくは、本発明は、立体的な形状を計算機制御に
より自動的に形成する方法に関する。FIELD OF THE INVENTION The present invention relates to a three-dimensional object manufacturing method. More specifically, the present invention relates to a method for automatically forming a three-dimensional shape by computer control.
【0002】人間工学、工業デザインの進歩とともに、
複雑な曲面が複雑に組み合わされた3次元的形状を有す
る物体を設計製作する技術的需要が増大し、CAD技術
の発達と相まって、そのような形状設計が可能になって
いる。同時に、設計された形状を、現実に試作形成した
いという技術的需要が必然的に増大しつつある。CAD
で生成されたデータより、複雑な3次元的な形状を迅速
に安価に製作できるならば、設計された形状の確認や試
作特性試験が効率的にできることになり設計作業が大い
に改善され効率化される。With the progress of ergonomics and industrial design,
The technical demand for designing and manufacturing an object having a three-dimensional shape in which complicated curved surfaces are complicatedly combined has increased, and such shape design has become possible together with the development of CAD technology. At the same time, the technical demand for actually forming a designed shape by trial is inevitably increasing. CAD
If a complex three-dimensional shape can be manufactured quickly and inexpensively from the data generated in, the design shape can be confirmed and the prototype characteristics test can be efficiently performed, and the design work can be greatly improved and streamlined. It
【0003】[0003]
【従来の技術】このような必要性に対して、従来、芸術
的技能による粘土や木型模型が製作されてきたが、CA
Dの数値データを生かすことができず、自動化も不可能
であった。NC工作機による試作も良く行われている
か、工数を要する本格的なプログラミングが不可欠であ
り、機械加工が可能な形状しか作ることができない。例
えば、工具の要らない入り組んだ内部構造を形成するこ
とはできない。2. Description of the Related Art In response to such a need, clay and a wooden model have been conventionally produced by artistic skill.
The numerical data of D could not be utilized and automation was impossible. Prototypes using NC machine tools are often performed, or full-scale programming that requires man-hours is essential, and only shapes that can be machined can be created. For example, it is not possible to form intricate internal structures that do not require tools.
【0004】最近、新しい3次元模型製作技術が市場に
登場してきた。このような技術として、光硬化樹脂プー
ル法がある。この技術は、溶液状光硬化樹脂のプール液
面を計算機によってスキャニング制御された細いレーザ
ービーム光によって、局所的に硬化させ、順次液面を上
昇させることにより、模型の下部より順次3次元物体を
形成する技術がある。この方法は、最初の3次元形状生
成技術として画期的であるが、化学的に活性な光硬化樹
脂を多量に必要とし、コストと時間的効率の問題ばかり
でなく、安全と廃棄物処理の欠点が指摘されている。Recently, a new three-dimensional model making technique has appeared on the market. As such a technique, there is a photocurable resin pool method. This technology locally cures the pool liquid surface of solution-type photo-curable resin by a thin laser beam that is scanning-controlled by a computer, and sequentially raises the liquid surface to sequentially generate three-dimensional objects from the bottom of the model. There is a forming technology. Although this method is epoch-making as the first three-dimensional shape generation technology, it requires a large amount of chemically active photo-curable resin, and not only cost and time efficiency problems but also safety and waste treatment A flaw is pointed out.
【0005】他の技術としては、熱可塑性樹脂法があ
る。これは、加熱溶融した熱可塑性樹脂を計算機によっ
て位置を制御された細いノズルより押し出しつつ、冷却
固化させつつ、3次元物体を形成する技術である。この
技術は、形成しようとする物体の実質的部分のみに直接
樹脂を供給するので樹脂の無駄が生じる欠点はなくなっ
たが、光硬化樹脂プール法に比べて制御性が劣り寸法精
度が悪く、また樹脂の冷却不足、再溶融や収縮変形が生
じるなどの問題点がある。Another technique is the thermoplastic resin method. This is a technique for forming a three-dimensional object while extruding a heat-melted thermoplastic resin from a thin nozzle whose position is controlled by a computer and cooling and solidifying the resin. This technique eliminates the drawback that resin is wasted because resin is directly supplied only to a substantial part of the object to be formed, but the controllability is poor and the dimensional accuracy is poor compared to the photocuring resin pool method, and There are problems such as insufficient cooling of the resin, remelting and shrinkage deformation.
【0006】[0006]
【発明が解決しようとする課題】本発明の目的は、光硬
化樹脂プール法の寸法精度と形状安定性を有し、熱可塑
性樹脂法の省資源性をも兼ね備えた3次元物体製作法を
提供することにある。さらに、本発明の目的は、使用可
能材料の種類を広げるために、金属やセラミックなどの
樹脂以外の物質に適用できる3次元物体製作法を提供す
ることにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a three-dimensional object manufacturing method which has the dimensional accuracy and shape stability of the photo-curing resin pool method and the resource saving of the thermoplastic resin method. To do. Further, it is an object of the present invention to provide a three-dimensional object manufacturing method that can be applied to substances other than resins such as metals and ceramics in order to expand the types of usable materials.
【0007】[0007]
【課題を解決するための手段】本願発明者は、この目的
達成のため鋭意研究の結果、計算機等によって自動的に
空間位置を制御されたノズルから流動条件を自動的に制
御されて流出する光硬化性物質に、硬化促進因子たる光
を局所的に作用させ、生じた固体成分を積層することか
ら成る3次元物体製作法を発明するに至った。The inventor of the present invention has conducted earnest research to achieve this object, and as a result, the light flowing out from a nozzle whose spatial position is automatically controlled by a computer or the like is automatically controlled. The inventors have invented a method for producing a three-dimensional object, which comprises locally applying a light as a hardening promoting factor to a curable substance and laminating the resulting solid component.
【0008】すなわち、前記の問題点を取り除くため
に、光硬化樹脂流出ノズルと硬化用光照射機構を組み合
わせた複合ノズルを用い、流出した光硬化樹脂を局所的
に硬化させつつ、複合ノズルの空間的位置を計算機によ
って自動的に制御し、3次元形状を有する物体を形成す
る方法を発明した。硬化用光は、光ファイバー、レンズ
又は反射鏡より構成された光照射光学系によって、光硬
化樹脂ノズルの近傍に集光する。That is, in order to eliminate the above-mentioned problems, a compound nozzle in which a photocurable resin outflow nozzle and a curing light irradiation mechanism are combined is used, and while the photocurable resin that has flowed out is locally cured, the space of the compound nozzle is reduced. The inventor has invented a method of automatically controlling a physical position by a computer and forming an object having a three-dimensional shape. The curing light is condensed near the photocuring resin nozzle by a light irradiation optical system including an optical fiber, a lens or a reflecting mirror.
【0009】本願発明の3次元物体製作法を図面によっ
て具体例について説明する。図1において、樹脂供給ノ
ズル2と光照射光学系が一体化された複合ノズル1の位
置を自動制御し、所定の位置で樹脂供給ノズル2より適
切な流量で未硬化樹脂4を流出させ、硬化用光3の照射
によって硬化樹脂5とし、製作目的の3次元物体6を積
層しつつ形成させる。この方法においては、光硬化樹脂
プールは不要である。A specific example of the three-dimensional object manufacturing method of the present invention will be described with reference to the drawings. In FIG. 1, the position of the composite nozzle 1 in which the resin supply nozzle 2 and the light irradiation optical system are integrated is automatically controlled, and the uncured resin 4 is flowed out from the resin supply nozzle 2 at a predetermined position at an appropriate flow rate to cure the resin. A curing resin 5 is formed by irradiating the application light 3 and a three-dimensional object 6 for manufacturing is formed while being laminated. No photocurable resin pool is required in this method.
【0010】図2に例示するように、硬化用光の射出部
3を、樹脂用ノズル1とは別途に設置し、光ビームを位
置制御して局所硬化させる方法も可能である。この方法
の変法として、放射線硬化樹脂をノズルより流出させつ
つ放射線ビームによって固化させることも可能である。As illustrated in FIG. 2, it is possible to install the curing light emitting portion 3 separately from the resin nozzle 1 and locally control the light beam by controlling the position of the light beam. As a modification of this method, it is also possible to solidify the radiation curable resin with a radiation beam while letting it out from the nozzle.
【0011】2成分接触硬化性樹脂を用いる方法、すな
わち、主成分樹脂と液状又は気体状の硬化剤をノズル先
端部で接触硬化させる方法も可能である。また、安価な
成分の流体プールの中に第2成分を流出させ接触硬化さ
せる方法も可能である。A method using a two-component contact-curable resin, that is, a method of contact-curing the main component resin and a liquid or gaseous curing agent at the tip of the nozzle is also possible. Further, a method of causing the second component to flow out into a fluid pool of inexpensive components and contact-curing it is also possible.
【0012】同様に、硬化材料と硬化促進因子の組み合
わせを考えると、粘土、高濃度泥漿等の揺変性(機械的
変形、震盪によって流動性を示す)物質を利用する方
法、すなわち、揺変性物質を攪拌、加振、超音波照射、
加熱によって震盪液状化状態にしてノズルより流出させ
ると、ノズルからある距離離れると揺変効果が及ばなく
なり塑性状態へ移行する現象を利用して固化させる方法
も可能である。Similarly, considering a combination of a hardening material and a hardening accelerating factor, a method utilizing a thixotropic substance (which exhibits fluidity by mechanical deformation or shaking) such as clay or high-concentration sludge, that is, a thixotropic substance. Stirring, shaking, ultrasonic irradiation,
It is also possible to use a phenomenon in which, when a liquid is shaken and liquefied by heating to flow out from a nozzle, the phenomenon that the rocking effect is not exerted at a certain distance from the nozzle and the plastic state is transitioned to is solidified.
【0013】局所的乾燥硬化を促進するため、乾燥ガス
を吹きつけること、赤外線の照射も考えられ、さらに、
炭酸ガス等の酸性ガス又は液体を局所に吹きつけ、また
は、その雰囲気中に流出させて凝集固化を促進すること
も考えられる。さらに、粉体を硬化性バインダーと混練
りした泥漿を硬化性物質とし、バインダーの硬化剤との
接触を硬化性因子として制御する方法も可能である。こ
れらの方法は、陶器、磁器、セラミック、炭素、黒鉛、
焼結金属等を材料として3次元形状を形成することを可
能にする。In order to accelerate the local dry curing, it is conceivable to spray a dry gas or to irradiate infrared rays.
It is also conceivable to locally spray an acidic gas such as carbon dioxide gas or a liquid, or to let it flow out into the atmosphere to promote coagulation and solidification. Further, it is also possible to use a slurry obtained by kneading powder with a curable binder as a curable substance and controlling contact of the binder with a curing agent as a curability factor. These methods include pottery, porcelain, ceramics, carbon, graphite,
It is possible to form a three-dimensional shape using a sintered metal or the like as a material.
【0014】さらに、金属を素材として用いるために、
ロー付け材料などの溶融金属を、熱伝導又は強制冷却に
よって硬化促進因子として制御する方法も可能である。
図3はその具体例を説明するもので、2枚の冷却ガイド
板(又はローラー)の位置を制御して、積層しつつある
部分に局所的鋳型4を構成し、形状形成を進める。この
溶融金属を用いる方法においては、再溶融温度が上昇す
るロー付け材料を採用するならば、生成した固体が流出
直後の溶融物によって再溶融することがないため温度制
御が容易となる。Furthermore, since metal is used as a material,
A method of controlling a molten metal such as a brazing material as a hardening accelerator by heat conduction or forced cooling is also possible.
FIG. 3 illustrates a specific example thereof, in which the positions of the two cooling guide plates (or rollers) are controlled and the local mold 4 is formed in the part which is being laminated to advance the shape formation. In the method using the molten metal, if a brazing material whose remelting temperature rises is adopted, the temperature control becomes easy because the generated solid does not remelt by the melt immediately after flowing out.
【0015】本発明の方法は、金属、セラミック等の高
融点物質や化学的活性物質に適用することも可能であ
る。すなわち、固体(高分子、硝子、金属、セラミッ
ク、又は原料成分を雰囲気ガスで化学反応させた酸化物
や窒化物等の化合物)の棒又は粉体を供給し、集束され
たレーザー又は電子線等によって溶融し、落下又はキャ
リヤーガスによる吹きつけ、電磁力による加振や駆動飛
行させることによって集積積層させる。図4に一具体例
を示す。収束する点を一制御された光又は電子線によっ
て原材料を溶融し、3次元物体に集積し積層する。The method of the present invention can also be applied to refractory substances such as metals and ceramics and chemically active substances. That is, a solid (polymer, glass, metal, ceramic, or compound such as oxide or nitride obtained by chemically reacting raw material components in an atmosphere gas) rod or powder is supplied, and a focused laser or electron beam is supplied. It is melted by, and dropped or sprayed with carrier gas, vibrated by electromagnetic force, or driven to fly to be integrated and laminated. FIG. 4 shows a specific example. The raw material is melted by a light or electron beam whose converging point is controlled, and the three-dimensional object is integrated and laminated.
【0016】さらに、下記の施工技術を組み合わせるな
らば、材料選択及び表面仕上げの自由度を拡大し、寸法
精度を改善することができる。 1)極めて柔軟で重力によって変形してしまう物質で3
次元物体を製作する場合、生成する固体成分とほぼ同一
の比重を有する流体中で操作を進める方法。 2)固体成分の積層によって直接得られる形状精度、面
精度が不十分である場合には、自動制御された切削及び
研磨ユニット・サンドブラストなど表面仕上げ機械加
工、印象押しつけ・へら仕上げ等の仕上げ加工、こてや
ローラーの押しつけ、加熱したこてや熱風吹きつけノズ
ル等による再溶融、又は軟化工程等を、各層毎に施すこ
とによって、寸法仕上げの改善、面仕上げの改善、さら
に任意の表面特性を付与する工程を同時にすすめること
が可能になる。図5はその具体例を示す。硬化生成物7
を供給形成する機構1、2、3に加えて、各積層部分毎
に表面及び形状を仕上げ加工する機構2、4、5から成
る。Furthermore, if the following construction techniques are combined, the degree of freedom in material selection and surface finishing can be expanded and dimensional accuracy can be improved. 1) Material that is extremely flexible and deforms by gravity 3
When manufacturing a three-dimensional object, a method in which the operation proceeds in a fluid having almost the same specific gravity as the solid component to be produced. 2) When the shape accuracy and surface accuracy directly obtained by laminating solid components are insufficient, surface finishing machining such as automatically controlled cutting and polishing unit and sandblasting, finishing such as impression pressing and spatula finishing, By applying a trowel or roller pressing, re-melting with a heated trowel or hot air blowing nozzle, or a softening process for each layer, it is possible to improve the dimensional finish, surface finish, and optional surface characteristics. It is possible to proceed with the applying step at the same time. FIG. 5 shows a specific example thereof. Cured product 7
In addition to the mechanisms 1, 2, and 3 for supplying and forming the above, the mechanisms 2, 4, and 5 for finishing the surface and shape of each laminated portion.
【0017】[0017]
【発明の効果】本発明の方法により、光硬化樹脂法の寸
法精度と安定性を有し、熱可塑性樹脂法の省資源性を兼
ねる方法が可能になり、また、光硬化樹脂、光硬化接着
剤、光硬化充填剤、二液硬化性樹脂など、多くの市場に
流通している材料を用いることが可能になった。さら
に、放射線硬化性樹脂、粘土などの泥漿物質、金属粉ス
ラリー、さらに半田などの溶融金属、耐熱金属やセラミ
ック、化学的化成物質等にも応用することができるよう
になった。生成する固体成分と同一の流体中で上記の操
作をすることにより、極めて柔軟な物質で3次元物体を
製作することが可能になった。他の加工技術を併用する
ことによって、寸法精度、表面仕上げを改善し、さらに
任意の表面状態を作り出すことが可能になった。According to the method of the present invention, a method having the dimensional accuracy and stability of the photo-curing resin method and the resource saving of the thermoplastic resin method can be realized, and the photo-curing resin and the photo-curing adhesive can be used. It has become possible to use materials that are distributed in many markets, such as adhesives, photocurable fillers, and two-component curable resins. Further, it can be applied to radiation-curable resins, sludge substances such as clay, metal powder slurries, molten metals such as solder, heat-resistant metals and ceramics, and chemical conversion substances. By performing the above operation in the same fluid as the solid component to be produced, it became possible to fabricate a three-dimensional object with an extremely flexible substance. By using other processing techniques together, it became possible to improve dimensional accuracy and surface finish, and to create an arbitrary surface condition.
図1 本発明の方法の概要を説明する図である。 図2 本発明の方法において、硬化性物質用ノズルと硬化促進
因子の制御を分けた一具体例の説明図である。 図3 本発明の方法において、局所的金型を併用した一具体例
の説明図である。 図4 本発明の方法において、金属・セラミックへの適用例の
説明図である。 図5 本発明の方法において、仕上げ加工を複合して組み合わ
せた一具体例の説明図である。1 is a diagram for explaining the outline of the method of the present invention. <Figure 2> In the method of this invention, it is the explanation drawing of one concrete example which divided control of the nozzle for the hardening substance and the hardening accelerator. <Figure 3> In the method of this invention, it is the explanation drawing of one concrete example which also uses the local metallic mold. <Figure 4> In the method of this invention, it is the explanation drawing of the application example to the metal / ceramic. <Figure 5> In the method of this invention, it is the explanation drawing of one concrete example which combines finishing processing in combination.
図1において、 1 複合ノズル 2 樹脂供給ノズル 3 硬化用光 4 未硬化樹脂 5 硬化樹脂 6 3次元物体 図2において、 1 硬化性物質用ノズル 2 位置制御機構 3 硬化促進因子(紫外線)照射口 4 硬化性物質(光硬化樹脂) 5 固体成分(生成物) 6 紫外線ビーム 7 3次元物体(製造物) 図3において、 1 硬化性物質用ノズル 2 位置制御機構 3 硬化促進因子(紫外線)照射口 4 局所鋳型 5 硬化性物質(光硬化性樹脂等) 6 固体成分(生成物) 7 硬化促進因子(紫外線) 図4において、 1 物質供給ノズル 2 位置制御機構 3 レーザー(電子線)収束照射ノズル 4 キャリヤガス 5 溶融液 6 溶融飛行液滴 7 3次元物体(製作物) 図4において、 1 硬化性物質用ノズル 2 位置制御機構 3 硬化促進因子(紫外線)照射口 4 加工ユニット(振動子、回転機) 5 加工端子(振動こて、エンドミルなど) 6 硬化性物質(光硬化性樹脂) 7 固体成分(硬化生成物) 8 硬化促進因子(紫外線) 7 3次元物体(製作物) In FIG. 1, 1 compound nozzle 2 resin supply nozzle 3 curing light 4 uncured resin 5 cured resin 6 three-dimensional object In FIG. 1, 1 nozzle for curable substance 2 position control mechanism 3 curing accelerator (ultraviolet) irradiation port 4 Curable substance (photocurable resin) 5 Solid component (product) 6 Ultraviolet beam 7 Three-dimensional object (manufactured product) In FIG. 1, 1 Nozzle for curable substance 2 Position control mechanism 3 Curing acceleration factor (ultraviolet) irradiation port 4 Local template 5 Curable substance (photocurable resin, etc.) 6 Solid component (product) 7 Curing accelerating factor (ultraviolet ray) In FIG. 1, 1 substance supply nozzle 2 position control mechanism 3 laser (electron beam) convergent irradiation nozzle 4 carrier Gas 5 Melt liquid 6 Melt flying droplet 7 Three-dimensional object (manufactured product) In FIG. 1, 1 Nozzle for curable substance 2 Position control mechanism 3 Curing accelerator (ultraviolet) irradiation port Processing unit (vibrator, rotating machine) 5 Processing terminal (vibrating iron, end mill, etc.) 6 Curable substance (photocurable resin) 7 Solid component (cured product) 8 Curing accelerating factor (ultraviolet ray) 7 3D object ( Production)
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成4年12月17日[Submission date] December 17, 1992
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【特許請求の範囲】[Claims]
【手続補正3】[Procedure 3]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0013[Correction target item name] 0013
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0013】局所的乾燥硬化を促進するため、乾燥ガス
を吹きつけること、赤外線の照射も考えられ、さらに、
炭酸ガス等の酸性ガス又は液体を局所に吹きつけ、また
は、その雰囲気中に流出させて凝縮固化を促進すること
も考えられる。さらに、粉体を硬化性バインダーと混練
りした泥奨を硬化性物質とし、バインダーの硬化剤との
接触を硬化性因子として制御する方法も可能である。ま
た、形成物質の微粉末を水などの揮発性液体及び油脂な
どの粘結助剤とともに混練し、揮発性液体が急速に蒸発
する温度でノズルより流出させて固化させることもでき
る。これらの方法は、陶器、磁器、セラミック、炭素、
黒鉛、焼結金属等を材料として3次元形状を形成するこ
とを可能にする。In order to accelerate the local dry curing, it is conceivable to spray a dry gas or to irradiate infrared rays.
It is also conceivable to locally spray an acidic gas such as carbon dioxide gas or a liquid, or to let it flow out into the atmosphere to accelerate the condensation and solidification. Furthermore, it is also possible to use a mud mixture obtained by kneading powder with a curable binder as a curable substance and controlling the contact of the binder with the curing agent as a curability factor. It is also possible to knead a fine powder of the forming substance together with a volatile liquid such as water and a caking aid such as oil and fat, and let it flow out from a nozzle at a temperature at which the volatile liquid evaporates rapidly and solidify. These methods include pottery, porcelain, ceramics, carbon,
It makes it possible to form a three-dimensional shape using graphite, sintered metal, or the like.
【提出日】平成6年10月4日[Submission date] October 4, 1994
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の方法の概要を説明する図である。FIG. 1 is a diagram illustrating an outline of a method of the present invention.
【図2】本発明の方法において、硬化性物質用ノズルと
硬化促進因子の制御を分けた一具体例の説明図である。FIG. 2 is an explanatory diagram of a specific example in which control of a nozzle for a curable substance and control of a curing accelerator are separated in the method of the present invention.
【図3】本発明の方法において、局所的金型を併用した
一具体例の説明図である。FIG. 3 is an explanatory view of a specific example in which a local mold is used together in the method of the present invention.
【図4】本発明の方法において、金属・セラミックへの
適用例の説明図である。FIG. 4 is an explanatory diagram of an application example to metal / ceramic in the method of the present invention.
【符号の説明】 図1において、 1 複合ノズル 2 樹脂供給ノズル 3 硬化用光 4 未硬化樹脂 5 硬化樹脂 6 3次元物体 図2において、 1 硬化性物質用ノズル 2 位置制御機構 3 硬化促進因子(紫外線)照射口 4 硬化性物質 5 固体成分(生成物) 6 紫外線ビーム 7 3次元物体(製造物) 図3において、 1 硬化性物質用ノズル 2 位置制御機構 3 硬化促進因子(紫外線)照射口 4 局所鋳型 5 硬化性物質(光硬化性樹脂等) 6 固体成分(生成物) 7 硬化促進因子(紫外線) 図4において、 1 硬化性物質用ノズル 2 位置制御機構 3 硬化促進因子(紫外線)照射口 4 加工ユニット(振動子、回転機) 5 加工端子(振動てこ、エンドミルなど) 6 硬化性物質(光硬化性樹脂等) 7 固体成分(硬化生成物) 8 硬化促進因子(紫外線)[Description of Reference Signs] In FIG. 1, 1 composite nozzle 2 resin supply nozzle 3 curing light 4 uncured resin 5 cured resin 6 three-dimensional object In FIG. 2, 1 curable substance nozzle 2 position control mechanism 3 curing acceleration factor ( Ultraviolet ray irradiation port 4 Curing substance 5 Solid component (product) 6 Ultraviolet beam 7 Three-dimensional object (manufactured product) In FIG. 1, 1 Curing substance nozzle 2 Position control mechanism 3 Curing acceleration factor (ultraviolet) irradiation port 4 Local template 5 Curable substance (photocurable resin, etc.) 6 Solid component (product) 7 Curing accelerating factor (UV) In FIG. 1, 1 Nozzle for curable substance 2 Position control mechanism 3 Curing accelerating factor (UV) irradiation port 4 Processing unit (vibrator, rotary machine) 5 Processing terminal (vibrating lever, end mill, etc.) 6 Curable substance (photocurable resin, etc.) 7 Solid component (cured product) 8 Curing acceleration factor ( Outside line)
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B29K 101:10 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display area // B29K 101: 10
Claims (10)
御されたノズルから流動条件を自動的に制御されて流出
する光硬化性物質に、硬化促進因子として光を局所的に
作用させ、生じた固体成分を積層することから成る任意
形状を有する3次元物体の製作方法。1. A photocurable substance that flows out from a nozzle whose spatial position is automatically controlled by a computer or the like and whose flow conditions are automatically controlled, is caused by locally acting light as a curing promoting factor. A method for manufacturing a three-dimensional object having an arbitrary shape, which comprises stacking solid components.
り、硬化促進因子の該光は放射腺である請求項1に記載
の3次元物体の製作方法。2. The method for producing a three-dimensional object according to claim 1, wherein the photocurable substance is a radiation-curing resin, and the light of the curing-promoting factor is a radiation radiation.
の先端部で接触させることから成る請求項1に記載の3
次元物体の製作方法。3. The method according to claim 1, wherein the two-component contact hardening resin is brought into contact with each other at the tip of each nozzle.
How to make a three-dimensional object.
成分を流出させノズルの先端部で局所硬化させることか
ら成る請求項3に記載の3次元物体の製作方法。4. A second component in the fluid pool formed by the first component.
The method for producing a three-dimensional object according to claim 3, wherein the components are caused to flow out and locally hardened at the tip of the nozzle.
る揺変性物質を、攪拌、加振、超音波照射によって震盪
流動状態にしてノズルから流出させ、流動停止後に塑性
状態に移行する現象を利用することから成る請求項1に
記載の3次元物体の製作方法。5. A phenomenon in which a thixotropic substance that fluidizes due to rocking such as clay or mud is made to flow in a shaking fluid state by stirring, vibrating, or irradiating ultrasonic waves, and flows out from a nozzle, and then transitions to a plastic state after the fluid flow is stopped. The method for manufacturing a three-dimensional object according to claim 1, which comprises using
制御したノズルから流出させ、冷却によって固化させる
ことから成る請求項1に記載の3次元物体の製作方法。6. The method for producing a three-dimensional object according to claim 1, wherein a brazing material such as solder or silver wax is caused to flow out from a nozzle whose temperature is controlled and is solidified by cooling.
たレーザー光、又は電子線等によって溶融し、落下、キ
ャリアーガスによる吹きつけ、又は電磁力による加振又
は駆動飛行させることによって集積積層させることから
成る請求項1に記載の3次元物体の製作方法。7. A solid rod or powder is supplied, melted by a focused laser beam, an electron beam, etc., and dropped, blown by a carrier gas, or vibrated or driven by an electromagnetic force to fly. The method for producing a three-dimensional object according to claim 1, comprising stacking and stacking.
子、金属、セラミック、又は雰囲気ガスで化学反応させ
た酸化物又は窒化物等の化合物である請求項7に記載の
3次元物体の製作方法。8. The three-dimensional structure according to claim 7, wherein the solid rod or powder is a polymer, glass, metal, ceramic, or compound such as oxide or nitride chemically reacted with atmospheric gas. How to make an object.
で3次元物体を製作する場合は、生成する固体成分とほ
ぼ同一の比重を有する流体中で操作することから成る請
求項1に記載の3次元物体の製作方法。9. The three-dimensional structure according to claim 1, wherein when a three-dimensional object is made of a material which is extremely flexible and deforms by gravity, it is operated in a fluid having a specific gravity almost equal to that of the solid component to be produced. How to make an object.
形状精度、面精度が不十分である場合は、各層毎に切
断、へら絞り、部分溶融、サンドブラストなどの機械
的、熱的加工技術を併用して、寸法精度、面仕上げ精度
の改善、任意の表面特性の付与工程を同時に行うことか
ら成る請求項1に記載の3次元物体の製作方法。10. When the shape accuracy and surface accuracy directly obtained by laminating solid components are insufficient, each layer is subjected to a combination of mechanical and thermal processing techniques such as cutting, spatula drawing, partial melting and sand blasting. The method for producing a three-dimensional object according to claim 1, wherein the steps of improving dimensional accuracy, surface finishing accuracy, and giving arbitrary surface characteristics are simultaneously performed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4350093A JPH08156106A (en) | 1992-11-13 | 1992-11-13 | 3D object manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4350093A JPH08156106A (en) | 1992-11-13 | 1992-11-13 | 3D object manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08156106A true JPH08156106A (en) | 1996-06-18 |
Family
ID=18408191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4350093A Pending JPH08156106A (en) | 1992-11-13 | 1992-11-13 | 3D object manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08156106A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010515606A (en) * | 2007-01-12 | 2010-05-13 | ストラタシス,インコーポレイテッド | Surface treatment method for three-dimensional object manufactured at high speed |
WO2013108914A1 (en) * | 2012-01-20 | 2013-07-25 | 兵神装備株式会社 | Three-dimensional structure modeling apparatus |
WO2016075801A1 (en) * | 2014-11-14 | 2016-05-19 | 株式会社ニコン | Shaping device and a shaping method |
WO2016075803A1 (en) * | 2014-11-14 | 2016-05-19 | 株式会社ニコン | Shaping device and shaping method |
WO2016130709A1 (en) * | 2015-02-10 | 2016-08-18 | Optomec, Inc. | Fabrication of three-dimensional structures by in-flight curing of aerosols |
JP2016533923A (en) * | 2013-07-24 | 2016-11-04 | ザ・ボーイング・カンパニーThe Boeing Company | Additive manufacturing system, apparatus and method |
JP2017002387A (en) * | 2015-06-16 | 2017-01-05 | セイコーエプソン株式会社 | 3D forming apparatus and 3D forming method |
US9607889B2 (en) | 2004-12-13 | 2017-03-28 | Optomec, Inc. | Forming structures using aerosol jet® deposition |
JP2017074773A (en) * | 2015-07-31 | 2017-04-20 | ザ・ボーイング・カンパニーThe Boeing Company | Systems and methods for additively manufacturing composite parts |
KR20170084196A (en) * | 2014-11-14 | 2017-07-19 | 가부시키가이샤 니콘 | Shaping device and shaping method |
WO2018031828A1 (en) * | 2016-08-10 | 2018-02-15 | Optomec. Inc. | Fabrication of three-dimensional materials gradient structures by in-flight curing of aerosols |
KR20180091807A (en) * | 2014-07-29 | 2018-08-16 | 씨씨3디 엘엘씨 | Method and apparatus for additional mechanical growth of tubular structure |
JP2018138694A (en) * | 2014-11-14 | 2018-09-06 | 株式会社ニコン | Modeling apparatus and modeling method |
JP2018138695A (en) * | 2018-03-30 | 2018-09-06 | 株式会社ニコン | Modeling apparatus and modeling method |
US10632746B2 (en) | 2017-11-13 | 2020-04-28 | Optomec, Inc. | Shuttering of aerosol streams |
US11577455B2 (en) | 2012-08-29 | 2023-02-14 | Continuous Composites Inc. | Method and apparatus for continuous composite three-dimensional printing |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01232024A (en) * | 1988-03-14 | 1989-09-18 | Mitsui Eng & Shipbuild Co Ltd | Manufacture of three-dimensional model using photosetting resin |
JPH0278531A (en) * | 1987-12-23 | 1990-03-19 | Cubital Ltd | Three-dimensional model automatic forming system and method |
-
1992
- 1992-11-13 JP JP4350093A patent/JPH08156106A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0278531A (en) * | 1987-12-23 | 1990-03-19 | Cubital Ltd | Three-dimensional model automatic forming system and method |
JPH01232024A (en) * | 1988-03-14 | 1989-09-18 | Mitsui Eng & Shipbuild Co Ltd | Manufacture of three-dimensional model using photosetting resin |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9607889B2 (en) | 2004-12-13 | 2017-03-28 | Optomec, Inc. | Forming structures using aerosol jet® deposition |
JP2010515606A (en) * | 2007-01-12 | 2010-05-13 | ストラタシス,インコーポレイテッド | Surface treatment method for three-dimensional object manufactured at high speed |
WO2013108914A1 (en) * | 2012-01-20 | 2013-07-25 | 兵神装備株式会社 | Three-dimensional structure modeling apparatus |
JP2013146936A (en) * | 2012-01-20 | 2013-08-01 | Heishin Engineering & Equipment Co Ltd | Modeling apparatus for three dimensional structure |
US12257772B2 (en) | 2012-08-29 | 2025-03-25 | Continuous Composites Inc. | Method and apparatus for continuous composite three-dimensional printing |
US12162215B2 (en) | 2012-08-29 | 2024-12-10 | Continuous Composites Inc. | Method and apparatus for continuous composite three-dimensional printing |
US12128613B2 (en) | 2012-08-29 | 2024-10-29 | Continuous Composites Inc. | Method and apparatus for continuous composite three-dimensional printing |
US11964426B2 (en) | 2012-08-29 | 2024-04-23 | Continuous Composites Inc. | Method and apparatus for continuous composite three-dimensional printing |
US12325185B1 (en) | 2012-08-29 | 2025-06-10 | Continuous Composites Inc. | Method and apparatus for continuous composite three-dimensional printing |
US11945160B2 (en) | 2012-08-29 | 2024-04-02 | Continuous Composites Inc. | Method and apparatus for continuous composite three-dimensional printing |
US11926094B2 (en) | 2012-08-29 | 2024-03-12 | Continuous Composites Inc. | Method and apparatus for continuous composite three-dimensional printing |
US11590699B2 (en) | 2012-08-29 | 2023-02-28 | Continuous Composites Inc. | Method and apparatus for continuous composite three-dimensional printing |
US11577455B2 (en) | 2012-08-29 | 2023-02-14 | Continuous Composites Inc. | Method and apparatus for continuous composite three-dimensional printing |
JP2016533923A (en) * | 2013-07-24 | 2016-11-04 | ザ・ボーイング・カンパニーThe Boeing Company | Additive manufacturing system, apparatus and method |
US10882291B2 (en) | 2013-07-24 | 2021-01-05 | The Boeing Company | Additive-manufacturing systems, apparatuses and methods |
KR20180091807A (en) * | 2014-07-29 | 2018-08-16 | 씨씨3디 엘엘씨 | Method and apparatus for additional mechanical growth of tubular structure |
KR20170084196A (en) * | 2014-11-14 | 2017-07-19 | 가부시키가이샤 니콘 | Shaping device and shaping method |
US11161202B2 (en) | 2014-11-14 | 2021-11-02 | Nikon Corporation | Shaping apparatus and shaping method |
CN111054920A (en) * | 2014-11-14 | 2020-04-24 | 株式会社尼康 | Molding device and molding method |
WO2016075801A1 (en) * | 2014-11-14 | 2016-05-19 | 株式会社ニコン | Shaping device and a shaping method |
CN111151750A (en) * | 2014-11-14 | 2020-05-15 | 株式会社尼康 | Forming device and forming method |
CN111151749A (en) * | 2014-11-14 | 2020-05-15 | 株式会社尼康 | Forming device and forming method |
CN111168066A (en) * | 2014-11-14 | 2020-05-19 | 株式会社尼康 | Forming device and forming method |
WO2016075803A1 (en) * | 2014-11-14 | 2016-05-19 | 株式会社ニコン | Shaping device and shaping method |
JPWO2016075801A1 (en) * | 2014-11-14 | 2017-09-28 | 株式会社ニコン | Modeling apparatus and modeling method |
US20170304946A1 (en) * | 2014-11-14 | 2017-10-26 | Nikon Corporation | Shaping apparatus and shaping method |
KR20210094166A (en) * | 2014-11-14 | 2021-07-28 | 가부시키가이샤 니콘 | Shaping device and a shaping method |
US11911844B2 (en) | 2014-11-14 | 2024-02-27 | Nikon Corporation | Shaping apparatus and shaping method |
US20210354243A1 (en) * | 2014-11-14 | 2021-11-18 | Nikon Corporation | Shaping apparatus and shaping method |
JP2018138694A (en) * | 2014-11-14 | 2018-09-06 | 株式会社ニコン | Modeling apparatus and modeling method |
US11806810B2 (en) | 2014-11-14 | 2023-11-07 | Nikon Corporation | Shaping apparatus and shaping method |
US10994473B2 (en) | 2015-02-10 | 2021-05-04 | Optomec, Inc. | Fabrication of three dimensional structures by in-flight curing of aerosols |
WO2016130709A1 (en) * | 2015-02-10 | 2016-08-18 | Optomec, Inc. | Fabrication of three-dimensional structures by in-flight curing of aerosols |
US10625339B2 (en) | 2015-06-16 | 2020-04-21 | Seiko Epson Corporation | Three-dimensional forming apparatus and three-dimensional forming method |
JP2017002387A (en) * | 2015-06-16 | 2017-01-05 | セイコーエプソン株式会社 | 3D forming apparatus and 3D forming method |
JP2017074773A (en) * | 2015-07-31 | 2017-04-20 | ザ・ボーイング・カンパニーThe Boeing Company | Systems and methods for additively manufacturing composite parts |
WO2018031828A1 (en) * | 2016-08-10 | 2018-02-15 | Optomec. Inc. | Fabrication of three-dimensional materials gradient structures by in-flight curing of aerosols |
US10850510B2 (en) | 2017-11-13 | 2020-12-01 | Optomec, Inc. | Shuttering of aerosol streams |
US10632746B2 (en) | 2017-11-13 | 2020-04-28 | Optomec, Inc. | Shuttering of aerosol streams |
JP2018138695A (en) * | 2018-03-30 | 2018-09-06 | 株式会社ニコン | Modeling apparatus and modeling method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08156106A (en) | 3D object manufacturing method | |
KR100368328B1 (en) | Mold manufacturing method | |
KR100271208B1 (en) | Selective infiltration manufacturing method and apparatus | |
CN107010963B (en) | Method for making mixed ceramic/metal, ceramic/ceramic body by 3D printing | |
CN109759579A (en) | Three-dimensional printing rapid forming method of metal matrix composite powder | |
US20030001313A1 (en) | Process and a device for producing ceramic molds | |
Hussain et al. | Digital light processing 3D printing of ceramic materials: a review on basic concept, challenges, and applications | |
Equbal et al. | Rapid tooling: A major shift in tooling practice | |
CN101422963A (en) | Method and equipment for manufacturing three-dimensional workpiece | |
Izdebska-Podsiadły | Classification of 3D printing methods | |
JP2005120475A (en) | Apparatus and method for manufacturing three-dimensional metallic object | |
JP2003191046A (en) | Method of manufacturing tool for earth boring | |
RU2668107C1 (en) | Method of manufacturing products from powder ceramic materials | |
CN106476266B (en) | A method of photocuring part is carried out using fibrous material compound in layer | |
CN114535498A (en) | Composite manufacturing method for increasing and decreasing materials of frozen sand mold | |
JP3537161B2 (en) | Manufacturing method of three-dimensional structure | |
Gibson et al. | Post-processing | |
Özden et al. | Additive manufacturing of ceramics from thermoplastic feedstocks | |
Tang | Direct laser fusing to form ceramic parts | |
CN105772712A (en) | Multi-material additive manufacturing powder separating method based on different particle sizes | |
Tang et al. | Ceramic laser gelling | |
CN109622969A (en) | A kind of photocuring metallic print method | |
CN106466712A (en) | Selective three-dimensional forming method | |
Mansi et al. | Additive manufacturing: a brief introduction | |
Krunić et al. | Rapid prototyping application |