CN101422963A - Method and equipment for manufacturing three-dimensional workpiece - Google Patents
Method and equipment for manufacturing three-dimensional workpiece Download PDFInfo
- Publication number
- CN101422963A CN101422963A CNA2008101665774A CN200810166577A CN101422963A CN 101422963 A CN101422963 A CN 101422963A CN A2008101665774 A CNA2008101665774 A CN A2008101665774A CN 200810166577 A CN200810166577 A CN 200810166577A CN 101422963 A CN101422963 A CN 101422963A
- Authority
- CN
- China
- Prior art keywords
- thin layer
- slurry
- workpiece
- energy beam
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 73
- 238000000034 method Methods 0.000 title claims abstract description 63
- 239000000843 powder Substances 0.000 claims abstract description 127
- 239000002002 slurry Substances 0.000 claims abstract description 122
- 239000000919 ceramic Substances 0.000 claims abstract description 50
- 239000000853 adhesive Substances 0.000 claims abstract description 32
- 230000001070 adhesive effect Effects 0.000 claims abstract description 32
- 229920003023 plastic Polymers 0.000 claims abstract description 30
- 239000004033 plastic Substances 0.000 claims abstract description 30
- 239000002131 composite material Substances 0.000 claims abstract description 28
- 239000002184 metal Substances 0.000 claims abstract description 23
- 229910052751 metal Inorganic materials 0.000 claims abstract description 23
- 238000005245 sintering Methods 0.000 claims abstract description 23
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 16
- 239000007884 disintegrant Substances 0.000 claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 37
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 27
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 27
- 238000002844 melting Methods 0.000 claims description 23
- 238000010438 heat treatment Methods 0.000 claims description 22
- 230000008018 melting Effects 0.000 claims description 22
- 239000002904 solvent Substances 0.000 claims description 20
- 239000011230 binding agent Substances 0.000 claims description 18
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 18
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 18
- 238000012546 transfer Methods 0.000 claims description 14
- 238000005096 rolling process Methods 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 7
- 239000001913 cellulose Substances 0.000 claims description 6
- 229920002678 cellulose Polymers 0.000 claims description 6
- 239000003960 organic solvent Substances 0.000 claims description 6
- 230000005855 radiation Effects 0.000 claims description 6
- 239000002270 dispersing agent Substances 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical group O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 5
- 238000007790 scraping Methods 0.000 claims description 5
- 239000002905 metal composite material Substances 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 239000006096 absorbing agent Substances 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 238000005485 electric heating Methods 0.000 claims description 3
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- 229920002472 Starch Polymers 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 claims description 2
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 2
- 238000002791 soaking Methods 0.000 claims description 2
- 239000008107 starch Substances 0.000 claims description 2
- 235000019698 starch Nutrition 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims 1
- 239000004677 Nylon Substances 0.000 claims 1
- 239000004698 Polyethylene Substances 0.000 claims 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 claims 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 claims 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 1
- 239000002518 antifoaming agent Substances 0.000 claims 1
- 229910052802 copper Inorganic materials 0.000 claims 1
- 239000010949 copper Substances 0.000 claims 1
- 238000007598 dipping method Methods 0.000 claims 1
- 229910052742 iron Inorganic materials 0.000 claims 1
- 229920001778 nylon Polymers 0.000 claims 1
- -1 polyethylene Polymers 0.000 claims 1
- 229920000573 polyethylene Polymers 0.000 claims 1
- 238000003892 spreading Methods 0.000 claims 1
- 229910001220 stainless steel Inorganic materials 0.000 claims 1
- 239000010935 stainless steel Substances 0.000 claims 1
- 238000000110 selective laser sintering Methods 0.000 abstract description 20
- 239000002994 raw material Substances 0.000 abstract description 5
- 230000003746 surface roughness Effects 0.000 abstract description 5
- 238000000280 densification Methods 0.000 abstract description 2
- 230000007547 defect Effects 0.000 abstract 1
- 239000011812 mixed powder Substances 0.000 abstract 1
- 239000012046 mixed solvent Substances 0.000 abstract 1
- 239000000463 material Substances 0.000 description 19
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 14
- 230000000694 effects Effects 0.000 description 11
- 230000007246 mechanism Effects 0.000 description 11
- 239000002245 particle Substances 0.000 description 10
- 238000012545 processing Methods 0.000 description 8
- 239000010408 film Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000005286 illumination Methods 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 229920000620 organic polymer Polymers 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000011165 3D composite Substances 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229920000426 Microplastic Polymers 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000006255 coating slurry Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000013530 defoamer Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000003232 water-soluble binding agent Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Powder Metallurgy (AREA)
- Producing Shaped Articles From Materials (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种制造塑料材料工件、陶瓷与塑料复合材料工件、金属与塑料复合材料工件及其他复合材料工件的方法与设备,特别涉及以有机黏结剂运用于层状加工的方式,制作出三维塑料材料工件及三维陶瓷与塑料复合材料工件以及三维金属与塑料复合材料工件及其他三维复合材料工件的一种制造方法与设备。The invention relates to a method and equipment for manufacturing plastic material workpieces, ceramic and plastic composite material workpieces, metal and plastic composite material workpieces, and other composite material workpieces, in particular to the use of organic binders in layered processing to produce three-dimensional A manufacturing method and equipment for plastic material workpieces, three-dimensional ceramic and plastic composite material workpieces, three-dimensional metal and plastic composite material workpieces, and other three-dimensional composite material workpieces.
背景技术 Background technique
快速原型制造方法可以制造三维工件,常见到的方法有立体印刷术(Stereolithography)、选择性雷射烧结法(Selective Laser Sintering)、熔融挤制成型法(Fused Deposition Modeling)、热喷射法(Thermo-Jet)、喷蜡建模法(Model Maker)等,均可以用来制造塑料工件。前两种方法为光照法,后三种方法为喷嘴法。光照法为利用紫外光照射液体感光树脂将之固化成形,或利用红外线将热塑性塑料粉熔结连结成形。喷嘴法为利用喷嘴将液态塑料挤出或喷出,然后经过降温固化成形。新近的OB喷射法(0BJET)却是利用喷嘴与光照复合法,其为利用喷嘴将液体感光树脂喷出再经由紫外光照射使其树脂固化。光照法使用雷射光来造型与喷嘴法比较,具备制造较精细工件的潜力。The rapid prototyping method can manufacture three-dimensional workpieces. The common methods are stereolithography (Stereolithography), selective laser sintering (Selective Laser Sintering), melt extrusion molding (Fused Deposition Modeling), thermal spraying (Thermo -Jet), wax spray modeling (Model Maker), etc., can be used to manufacture plastic workpieces. The first two methods are the illumination method, and the last three methods are the nozzle method. The illumination method is to use ultraviolet light to irradiate liquid photosensitive resin to solidify it, or use infrared light to fuse and link thermoplastic powder to form. The nozzle method is to use a nozzle to extrude or spray liquid plastic, and then solidify it after cooling down. The latest OB jetting method (OBJET) uses a composite method of nozzle and light, which uses a nozzle to spray liquid photosensitive resin and then irradiates it with ultraviolet light to cure the resin. Compared with the nozzle method, the illumination method uses laser light to shape, and has the potential to manufacture finer workpieces.
属于光照法的立体印刷术(Stereolithography)以及选择性雷射烧结法(Selective Laser Sintering)各有其优缺点。立体印刷术(Stereolithography)使用感光高分子液态材料,可以铺设相当薄(50um)的层厚,但必须设计支撑来支持突出的悬臂结构,且因以紫外光雷射照射树脂,可以得到较精确且微细特征明显的工件。选择性雷射烧结法(Selective Laser Sintering)利用粉末为材料,无论是塑料粉末、金属粉末或陶瓷粉末均可以加工。且选择性雷射烧结法(Selective LaserSintering)在加工塑料材料时,若工作室温度维持在粉末熔点以下20℃,加热时升温不高,粉末翘曲不严重,因粉末可以支持突出的悬臂结构,不需特别设计支撑。因没有支撑结构,在起出工件时只要清掉松散的粉末即可。Both Stereolithography and Selective Laser Sintering, which belong to the illumination method, have their own advantages and disadvantages. Stereolithography uses photosensitive polymer liquid materials, which can lay a relatively thin (50um) layer thickness, but supports must be designed to support the protruding cantilever structure, and because the resin is irradiated with ultraviolet light, it can be more accurate and accurate. Workpieces with obvious fine features. Selective Laser Sintering uses powder as material, whether it is plastic powder, metal powder or ceramic powder, it can be processed. And when the selective laser sintering method (Selective LaserSintering) processes plastic materials, if the studio temperature is maintained at 20°C below the melting point of the powder, the temperature rise will not be high during heating, and the warping of the powder will not be serious, because the powder can support the protruding cantilever structure. No special design support is required. Because there is no supporting structure, it is only necessary to remove loose powder when lifting the workpiece.
选择性雷射烧结法(Selective Laser Sintering)的粉末法相对于立体印刷术(Stereolithography)的液态法材料有甚多优点,例如种类限制较小,可以制造塑料、金属、陶瓷以及复合材料工件,并且加工塑料材料时不必特别建构支撑,但却有严重的缺点,就是其常用的粉末颗粒在50μm左右相对于立体印刷术(Stereolithography)的液态高分子材料的约50nm大了1000倍,因为不能使用细微(例如1μm)的粉末,并且属于干粉制造方法,无法使用分散剂,,做出的工件也较难以达到95%致密的程度,并且也因为不能使用细微(例如1μm)的粉末,层厚不能太薄(现有技术约在75um以上),做出的工件较不细致,这两项缺点限制了选择性雷射烧结法的使用范围。The powder method of Selective Laser Sintering has many advantages over the liquid method of stereolithography (Stereolithography). Plastic materials do not need to be specially constructed for support, but they have a serious disadvantage, that is, the commonly used powder particles are about 50 μm, which is 1000 times larger than the liquid polymer material of stereolithography (Stereolithography) about 50 nm, because it cannot use fine ( For example, 1μm) powder, and it belongs to the dry powder manufacturing method, dispersant cannot be used, and the workpiece made is difficult to achieve 95% compactness, and because fine (such as 1μm) powder cannot be used, the layer thickness should not be too thin (The existing technology is about 75um or more), and the workpieces made are less detailed. These two shortcomings limit the scope of use of the selective laser sintering method.
本发明发明人创作陶瓷高能量束熔结法(US Patent No.6217816,中国台湾专利I228114号)其制造方法为:首先利用无机黏剂与陶瓷粉末加水混拌而成浆料,将调配好的浆料经由馈料设备铺上一层浆料薄层,干燥成生坏后,利用高能量束立即选择性地扫描生坏,直接熔结为陶瓷。如此反复动作完成3D工件,再将未经高能量束熔结的生坏部分崩解后,取出陶瓷工件,此法可称为陶瓷高能量束熔解法。可在快速原型机上直接做出陶瓷材质的工件,不需要做后段烧结。随后并创作高能量束烧结法(中国台湾专利I272261号),以液态烧结原理制作3D陶瓷材质工件以及3D陶金材质工件;系将陶瓷粉末与无机黏剂、稀释剂混合,搅拌成浆料,铺成厚度极薄的浆料薄层,经加热干燥,浆料中的陶瓷颗粒借着无机黏剂的胶合作用互相连结产生强度成为生坯。此生坯以高能量束快速扫描在具最高熔点的陶瓷粉末熔点以下的温度将无机黏剂熔解产生连结效应,除可以制出极薄的烧结薄层外也可以做出比溶结法较为细致的表面。此两专利使用无机黏结剂可以制作陶瓷与陶金工件,但不能像选择性雷射烧结法可较广泛的适用于塑料、金属、陶瓷与复合工件的制造。The inventors of the present invention created ceramic high-energy beam sintering method (US Patent No.6217816, China Taiwan Patent No. I228114). A thin layer of slurry is laid on the slurry through the feeding equipment, and after drying into raw materials, the raw materials are selectively scanned by high-energy beams immediately, and directly sintered into ceramics. Such repeated actions complete the 3D workpiece, and then disintegrate the raw and damaged parts that have not been sintered by the high-energy beam, and then take out the ceramic workpiece. This method can be called the ceramic high-energy beam melting method. Ceramic workpieces can be made directly on the rapid prototyping machine without post-sintering. Subsequently, a high-energy beam sintering method (China Taiwan Patent No. I272261) was created to produce 3D ceramic material workpieces and 3D ceramic gold material workpieces based on the principle of liquid sintering; it is to mix ceramic powder with inorganic binders and diluents, and stir them into a slurry. Pave a thin layer of slurry, heat and dry, and the ceramic particles in the slurry are connected to each other by the bonding of inorganic adhesives to generate strength and become a green body. The green body is quickly scanned with a high-energy beam to melt the inorganic binder at a temperature below the melting point of the ceramic powder with the highest melting point to produce a bonding effect. In addition to producing an extremely thin sintered layer, it can also be made more delicate than the sintering method. surface. These two patents can use inorganic binders to make ceramic and pottery gold workpieces, but they cannot be widely used in the manufacture of plastics, metals, ceramics and composite workpieces like the selective laser sintering method.
发明内容 Contents of the invention
本发明为了克服现有技术的不足,提供一种三维工件的制造方法与设备。In order to overcome the deficiencies of the prior art, the present invention provides a manufacturing method and equipment for a three-dimensional workpiece.
本发明解决其技术问题所采用的技术方案是:提供一种三维工件的制造方法,包括下述步骤:(1)将粉末与有机黏剂、溶剂混合,制成浆料;(2)将上述浆料在一限定区内铺成浆料薄层,并令此薄层因溶剂挥发而硬化;(3)以能量束依特定的路径扫描上述已硬化的薄层,使上述薄层上被扫描过的区域升温而烧结成工件薄层,而此工件薄层具三维工件的剖面形状;(4)重复步骤(2),(3)至预定次数,而制出预定数量的堆栈层,且这些堆栈层在受到步骤(3)能量束扫描时互相链接,形成三维工件的形状;以及(5)将未经能量束扫描烧结的硬化区块从已烧结的三维工件周围去除,得到三维工件。The technical solution adopted by the present invention to solve the technical problem is to provide a manufacturing method of a three-dimensional workpiece, comprising the following steps: (1) mixing the powder with an organic adhesive and a solvent to make a slurry; (2) mixing the above-mentioned The slurry is spread into a thin layer of slurry in a limited area, and the thin layer is hardened due to the volatilization of the solvent; (3) The above-mentioned hardened thin layer is scanned with an energy beam according to a specific path, so that the scanned (4) Repeat steps (2), (3) to a predetermined number of times to produce a predetermined number of stacked layers, and these The stacked layers are connected to each other when being scanned by the energy beam in step (3) to form the shape of the three-dimensional workpiece; and (5) removing the hardened block that has not been sintered by the energy beam scanning from around the sintered three-dimensional workpiece to obtain the three-dimensional workpiece.
另一种实施方案如下,提供一种三维工件的制造方法,包括下述步骤:(1)将粉末与有机黏剂、溶剂混合,制成浆料;(2)将上述浆料在一限定区内铺成浆料薄层,并令此薄层因溶剂挥发而硬化;(3)以能量束依特定的路径扫描上述已硬化的薄层,使上述薄层上被扫描过的区域升温而烧结成变质薄层,此变质薄层包含工件部份及支撑部份,工件部份具三维工件的剖面形状;(4)重复步骤(2),(3)至预定次数,而制出预定数量的堆栈层,且这些堆栈层在受到步骤(3)能量束扫描时互相链接,形成三维工件的形状和支撑的形状;以及(5)将未经能量束扫描烧结的硬化区块以及支撑结构从已烧结的三维工件周围去除,得到三维工件。Another embodiment is as follows, providing a method for manufacturing a three-dimensional workpiece, comprising the following steps: (1) mixing the powder with an organic adhesive and a solvent to form a slurry; (2) placing the slurry in a limited area A thin layer of slurry is laid inside, and the thin layer is hardened by the volatilization of the solvent; (3) The above-mentioned hardened thin layer is scanned by an energy beam according to a specific path, and the scanned area on the above-mentioned thin layer is heated and sintered Become metamorphic thin layer, this metamorphic thin layer comprises workpiece part and supporting part, and workpiece part has the cross-sectional shape of three-dimensional workpiece; (4) repeat step (2), (3) to predetermined number of times, and make predetermined quantity stacked layers, and these stacked layers are connected to each other when being scanned by the energy beam in step (3), forming the shape of the three-dimensional workpiece and the shape of the support; and (5) sintering the hardened block and the support structure without energy beam scanning The periphery of the sintered three-dimensional workpiece is removed to obtain a three-dimensional workpiece.
本发明还提供一种利用含有机黏结剂、粉末、溶剂的浆料来制造内含三维工件的生坯块的设备,包括:一制造生坯薄层设备,包括一铺薄层装置与一工作台;所述铺薄层装置与工作台做一定距离的相对运动,将所述浆料在工作台上铺成浆料薄层,并可令所述薄层因连结粉末的有机黏结剂经干燥而硬化成为生坯薄层;工作台支持所述薄层;还包括一能量束烧结设备,包括一能量束产生装置,与一能量束扫描装置;其中该能量束扫描仪引导能量束在前述生坯薄层上沿特定路径运动,而使上述生坯薄层被能量束扫描过的区域升温而烧结成工件薄层。The present invention also provides a device for manufacturing a green body block containing a three-dimensional workpiece by using a slurry containing an organic binder, powder, and solvent, including: a device for manufacturing a green body thin layer, including a thin layer laying device and a working platform; the thin-layer laying device moves relative to the worktable at a certain distance, and spreads the slurry on the worktable to form a thin layer of slurry, and the thin layer can be dried by the organic binder that links the powder. and hardened into a green thin layer; the workbench supports the thin layer; also includes an energy beam sintering device, including an energy beam generating device, and an energy beam scanning device; wherein the energy beam scanner guides the energy beam in the aforementioned The green thin layer moves along a specific path, so that the area of the green thin layer scanned by the energy beam is heated up and sintered into a workpiece thin layer.
本发明制作三维工件的第一步骤为将粉末(塑料粉末、陶瓷粉末、金属粉末或复合粉末)与溶剂(水或有机溶剂)以及有机黏结剂混合,调成浆料。浆料的特征为其做出的生坯能利用崩解剂使之崩解,而生坯受步骤(3)的能量束照射、烧结后不崩解于崩解剂中。此浆料可以铺成薄层。当此薄层浆料利用适当方式干燥后,浆料中的颗粒借着有机黏剂的胶合作用互相连结,产生强度成为固态的生坯薄层。该生坯薄层经由一能量束选择性地扫描,扫过的部份可变质形成极薄的不崩解于崩解剂的工件薄层。在工件薄层的下方仍为未变质的生坯薄层。生坯形成固体支撑,足以防止工件薄层因能量束扫描导致的热变形。如此反复动作完成3D工件,再将工件置于崩解剂中令未经能量束扫描的生坯部分崩解则得到所要的三维工件。The first step of making a three-dimensional workpiece in the present invention is to mix powder (plastic powder, ceramic powder, metal powder or composite powder) with solvent (water or organic solvent) and organic binder to prepare slurry. The characteristic of the slurry is that the green body made by it can be disintegrated by the disintegrating agent, and the green body is not disintegrated in the disintegrating agent after being irradiated by the energy beam in step (3) and sintered. This slurry can be spread in thin layers. When the thin-layer slurry is dried in a proper way, the particles in the slurry are connected to each other by the gluing of the organic adhesive, resulting in a solid green thin layer with strength. The green thin layer is selectively scanned by an energy beam, and the scanned part can be transformed into an extremely thin workpiece thin layer that does not disintegrate in the disintegrating agent. Below the thin layer of the workpiece is still a thin layer of unmodified green body. The green body forms a solid support sufficient to prevent thermal deformation of thin layers of the workpiece caused by energy beam scanning. Such repeated actions complete the 3D workpiece, and then place the workpiece in a disintegrant to disintegrate the green body that has not been scanned by the energy beam to obtain the desired three-dimensional workpiece.
若发生未经能量束扫描的生坯部分形成的固体支撑不足以防止能量束扫描导致的热变形时,上方的工件薄层与下方的生坯薄层可能分离,而产生翘屈的现象,则应于生坯部分特别增建结构支撑来与工件薄层连结,以防止工件薄层翘屈。If the solid support formed by the part of the green body that has not been scanned by the energy beam is not enough to prevent the thermal deformation caused by the energy beam scanning, the thin layer of the workpiece above and the thin layer of the green body below may be separated, resulting in warping, then Structural support should be specially added to the green part to connect with the thin layer of the workpiece to prevent the thin layer of the workpiece from warping.
本发明的制造方法包含四个步骤:Manufacturing method of the present invention comprises four steps:
(1).备制浆料;(1). Preparation of slurry;
(2).制造生坯薄层;(2). Manufacture green thin layer;
(3).能量束烧结生坯薄层成工件或工件加结构支撑;(3). Energy beam sintering green body thin layer into workpiece or workpiece plus structural support;
(4).去除未烧结的生坯或生坯加结构支撑。(4). Remove unsintered green body or green body plus structural support.
在此先探讨本发明制造方法中各道步骤相关的方法及设备。Here, the methods and equipment related to each step in the manufacturing method of the present invention will be discussed first.
第一步骤:备制原料Step 1: Prepare raw materials
本步骤将粉末1a与溶剂1b以及有机黏剂1c混合,调成浆料2。In this step, powder 1a is mixed with solvent 1b and organic adhesive 1c to prepare
粉末1a指塑料粉末、陶瓷粉末、金属粉末或包含两种以上材料的复合粉末(包括陶瓷/金属复合粉末,塑料/陶瓷复合粉末,塑料/金属复合粉末等)。Powder 1a refers to plastic powder, ceramic powder, metal powder or composite powder containing two or more materials (including ceramic/metal composite powder, plastic/ceramic composite powder, plastic/metal composite powder, etc.).
溶剂1b为水或有机溶剂如methyl ethyl ketone(MEK)、toluence等,其功能为将有机黏剂1c溶解使其能均匀的与粉末1a混合,并可调整浆料2的黏度。The solvent 1b is water or an organic solvent such as methyl ethyl ketone (MEK), toluence, etc. Its function is to dissolve the organic adhesive 1c so that it can be mixed with the powder 1a uniformly, and the viscosity of the
有机黏剂1c为聚乙烯醇(Polyvinyl alcohol,PVA)、淀粉、纤维素(Cellulose)等水溶性有机黏剂或是聚乙烯缩丁醛(Polyvinyl butyral,PVB)等非水溶性的有机黏剂。其性质为能溶解于溶剂1b中,与粉末混合后经干燥可将粉末连结成为生坯,但此生坯能浸于崩解剂14中而崩解,此生坯并在能量束10扫描烧结时能变质成为不溶于崩解剂14的工件,未经雷射扫描过的生坯部分可用来支撑工件;如此,在第四步骤时可以利用崩解剂14将支撑工件的生坯去除。The organic adhesive 1c is a water-soluble organic adhesive such as polyvinyl alcohol (PVA), starch, cellulose (Cellulose), or a water-insoluble organic adhesive such as polyvinyl butyral (PVB). Its property is that it can be dissolved in the solvent 1b, and after being mixed with the powder, the powder can be connected into a green body after being dried, but the green body can be immersed in the disintegrating agent 14 to disintegrate, and the green body can also be scanned and sintered by the
聚乙烯醇(PVA)溶于水,与陶瓷粉末混合后经干燥可将陶瓷粉末连结成为生坯,此生坯能浸于水中而崩解,但此生坯在加热熔解后会提高其防水性,所以聚乙烯醇适合做本发明的有机黏剂1c,可以用来连结塑料粉末、金属粉末或陶瓷粉末等依本发明的制造方法作出三维工件。但纤维素等其他水溶性的黏结剂等在加热熔解后防水性提高不多,所以虽然纤维素与陶瓷粉末混合后经干燥可将陶瓷粉末连结成为生坯,此生坯也能浸于水中而崩解,但此生坯在加热熔解后防水性变化不大,浸于水中也会崩解。所以光以纤维素连结金属粉末或陶瓷粉末等作出的工件无适当的方法使其与生坯分离而成形。Polyvinyl alcohol (PVA) is soluble in water, mixed with ceramic powder and dried to form a green body. The green body can be immersed in water and disintegrated, but the water resistance of the green body will be improved after heating and melting, so Polyvinyl alcohol is suitable as the organic adhesive 1c of the present invention, and can be used to connect plastic powder, metal powder or ceramic powder to make three-dimensional workpieces according to the manufacturing method of the present invention. However, other water-soluble binders such as cellulose do not improve the water resistance much after heating and melting, so although the cellulose and ceramic powder are mixed and dried to form a green body, the green body can also be immersed in water and collapse. However, the water resistance of the green body does not change much after heating and melting, and it will also disintegrate when immersed in water. Therefore, there is no proper way to separate the workpiece from the green body to form the workpiece made of cellulose-linked metal powder or ceramic powder.
但是聚乙烯醇连结压克力披覆金属粉末或压克力披覆陶瓷粉末做出的工件浸于水中可与生坯分离而成形。压克力(PMMA)不溶于水,涂料用的压克力乳胶内含分散于水的压克力微粒。压克力乳胶可以在常温成膜,形成的压克力膜具备防水的性质,若利用压克力(PMMA)披覆于陶瓷粉末或金属粉末表面,就可形成一层不溶于水的薄膜。聚乙烯醇连结压克力披覆金属粉末或压克力披覆陶瓷粉末做出的生坯,若置至于水中可以使生坯崩解;但当此生坯被能量束10照到时,粉末表面的压克力(PMMA)膜与邻近的聚乙烯醇均熔解、混合,形成不溶于水的复合材料,所以以此法所做出的工件不溶于水,以水去除生坯支撑相当容易。However, the workpiece made of polyvinyl alcohol linked with acrylic coated metal powder or acrylic coated ceramic powder can be separated from the green body and formed by immersing in water. Acrylic (PMMA) is insoluble in water, and acrylic latex for paint contains acrylic particles dispersed in water. Acrylic latex can form a film at room temperature, and the formed acrylic film has waterproof properties. If acrylic (PMMA) is used to coat the surface of ceramic powder or metal powder, a water-insoluble film can be formed. The green body made of polyvinyl alcohol linked with acrylic-coated metal powder or acrylic-coated ceramic powder can disintegrate the green body if placed in water; but when the green body is irradiated by the
以上所述的三种材料(粉末1a与溶剂1b以及有机黏剂1c)以适当比例混合,置于搅拌装置3或习用的球磨机中均匀搅拌,即可得到合用的浆料2。The above three materials (powder 1a, solvent 1b and organic adhesive 1c) are mixed in an appropriate proportion, placed in a stirring device 3 or a conventional ball mill and uniformly stirred to obtain a
为使粉末能悬浮、提高浆料的均匀性、增加粉末的含量、减少黏度、减少气泡,在浆料中可以加其他添加剂1d,如分散剂(聚丙烯酸铵)、消泡剂、吸光剂等,并且实施两段式处理,先加入分散剂将粉末分散后再加入黏结剂1c。In order to make the powder suspend, improve the uniformity of the slurry, increase the content of the powder, reduce the viscosity, and reduce the air bubbles, other additives 1d can be added to the slurry, such as dispersant (ammonium polyacrylate), defoamer, light absorbing agent, etc. , and implement two-stage treatment, first add the dispersant to disperse the powder and then add the binder 1c.
第二步骤:制造生坯薄层Step 2: Fabrication of Green Thin Layers
制造生坯薄层乃将备制好的浆料2铺成极薄的一层浆料薄层7,使之干燥硬化,此硬化的薄层叫生坯薄层9。为达此目的,首先,必须利用一制造生坯薄层设备16来制作生坯薄层9。制造生坯薄层设备16包括一铺薄层装置4与一工作台6。浆料2中的溶剂1b有的可以在常温下挥发,有的必需增添一加热器8,以将浆料薄层7快速加热使之硬化。Making the green thin layer is to spread the
浆料2若可靠重力流动,则可以简单容器为铺薄层装置4,浆料2从铺薄层装置4出口流出,该铺薄层装置4与工作台6做一定距离的相对运动,流出的浆料2经一简单的刮刀20刮动即可以在生坯块5上铺成浆料薄层7。但因多数浆料2黏度高,不易流动,故可利用一加压设备,例如螺旋机构18,提供输送压力,浆料2经一配料器19长方形出口端上多数小洞挤出;因配料器19出口端边的长度约等于浆料薄层7的宽边,所以挤出的浆料2形成一长线条;配料器19出口之后附一刮刀20,调整刮刀20与生坯块5之间的间隙,令刮刀20做浆料薄层7的长边方向的运动,刮动长线条浆料,形成浆料薄层7的形状。再者,也可在加压设备之后连结一出口为圆形的软管,挤出的浆料2为点状,令圆形的软管做浆料薄层7宽边方向的线性运动,则挤出的浆料将形成一长线条,令其长度等于浆料薄层7的宽边,再利用一刮刀20刮动长线条浆料做浆料薄层7的长边方向的运动,也可形成浆料薄层7的形状。利用上述制造生坯薄层设备16形成浆料薄层7的形状时,浆料必须均匀的涂布在生坯块5上并加压力以使浆料薄层7与下层生坯连结以及控制生坯的密度。铺薄层装置4具备此功能,其包括将浆料2定量输送到生坯块5顶面的馈料装置,与可以施加一定压力在浆料薄层7上的制膜工具。可将浆料在一限定区内铺成薄层的方法为滚动碾压法、滑动刮压法及刮刀成形法,他们使用的制膜工具可为滚轮、劈形板、刮刀。滚轮为滚动碾压法的制膜工具;滚动碾压法乃施压力于滚轮,碾压过浆料。浆料受压后由受压点流向压力低处,有减少厚度及压实的效果。劈形板为滑动刮压法的制膜工具;滑动刮压法乃施压力于一劈形板,同时推动此劈形板向前,因劈形板与浆料表面呈一小角度的夹角,劈形板前述动作有压实、滑磨及刮平膏状配料的三重效果。刮刀为刮刀成形法的制膜工具;利用刮刀成形法铺料,虽然,只利用刮刀20,没有使用特殊的加压工具,但若配合使用够细的粉末就会有压缩粉末的效果,因浆料2在干燥时会产生毛细管压力,使粉末互相接近,增加密度,例如粉末颗粒大小为0.35μm及0.68μm时产生的最大应力分别约为2MPa及1.1MPa。If the
制造生坯薄层设备16的工作台6,可以包括一工件座21及升降台22,工件座21承载生坯块5及工件12,升降台22承载工件座21做垂直运动。The workbench 6 for manufacturing green thin-
在以刮刀20涂布浆料2时必须使用推力,可能使下层的工件薄层11移动,导致上、下层工件剖面不能对正,制出的工件尺寸不正确。若浆料薄层7中的溶剂1b挥发,有机黏结剂1c连结粉末1a形成具相当强度的生坯,可以承受涂布上层浆料2时的推力,则下层的工件薄层11不会移动,则此问题可以解决。制造方法在浆料薄层7以能量束10依特定的路径扫描之前事先被加热,而可以快速干燥硬化,加快工作速率。加热的方法可由生坯块5上方加热也可由生坯块5下方加热;由生坯块5上方以辐射热传直接将能量加到浆料薄层7,能迅速的使浆料薄层7硬化,可用、微波、红外线等方式加热;实验显示使用远红外线(波长6μm以上)效果佳;由生坯块5上方以对流热传借热空气将能量加到浆料薄层7上,也能迅速的使浆料薄层7硬化。由工件座21下方利用电热丝以传导热传直接加热生坯块5,在厚度不高的生坯块5效果良好,且因整个生坯块5储存热量,干燥极为快速。这些加热方法可以利用红外线加热器、微波产生装置、热风扇、电热丝等加热器来实现。Must use thrust when coating
第三步骤:能量束扫描生坯,烧结形成工件薄层The third step: the energy beam scans the green body and sinters to form a thin layer of the workpiece
能量束烧结设备包括一能量束产生装置,与一能量束扫描仪。从能量束产生装置射出的能量束10,照射生坯薄层9时,能量束10与生坯材料在表面产生交互作用而生热,热量经由表面向里面传导,可使一定深度与宽度的生坯变质。藉调节制造方法参数,控制材料变质的深度与宽度,可使扫描过的区域互相链接。能量束扫描仪引导能量束10在生坯薄层9上沿特定路径运动,点与点互相重迭而成线,线与线互相重迭而成面,面与面互相重迭而成三维的工件12。The energy beam sintering equipment includes an energy beam generating device and an energy beam scanner. When the
能量束10照射生坯薄层9时,通常会导致表面与里面的温度差异,产生不同的收缩量。在冷却时,外表面冷却速度比内层快,容易产生翘屈的现象。本发明因粉末之间有黏结剂,若烧结温度不将工件薄层11中的有机黏结剂烧失,通常下方的生坯块5与上方的工件薄层11可以连结良好,没有翘屈的现象,所以不必特别建造结构支撑。但若烧结温度较高,例如可将陶瓷粉熔结,则会将工件薄层11中的有机黏结剂烧失,则上方的工件薄层11会与下方的生坯块5分离,产生翘屈的现象,此时,应于生坯部分特别增建结构支撑,此结构支撑的烧结参数与工件薄层11相同,也是将陶瓷粉熔结,实验结果显示,将结构支撑与工件薄层11连结可以防止工件薄层11翘屈。When the
生坯若以PVA为有机黏剂1c黏结粉末1a,雷射束26扫描加热可熔解PVA,PVA凝固后可以改变成为不溶于水的性质,所以雷射束26扫描过的工件薄层11具备不溶于水的特性,而雷射未扫描的生坯薄层9的有机黏剂1c还是原来可溶于水的PVA;如此,雷射束26扫描过的工件12性质上与雷射未扫描的生坯块5不同,可以利用水当崩解剂14使生坯块5崩解,而雷射束26扫描过的工件12形状可以保留。If the green body uses PVA as the organic adhesive 1c to bond the powder 1a, the laser beam 26 scans and heats to melt the PVA, and after solidification, the PVA can be changed to be insoluble in water, so the thin layer 11 of the workpiece scanned by the laser beam 26 has insoluble properties. However, the organic adhesive 1c of the green body
如于陶瓷粉末或金属粉末表面披覆压克力(PMMA),当能量束10扫描到粉末表面披覆的PMMA膜时,PMMA与邻近的PVA黏结剂同时熔解,混合物于冷却后固化形成不溶于水的PMMA/PVA复合材料,因PMMA原本就不溶于水,所以此复合材料就具备较佳的耐水性,可以做出较强的工件薄层11。Such as coating acrylic (PMMA) on the surface of ceramic powder or metal powder, when the
工业上常见的C02激光束与Nd:YAG激光束均为本发明的能量束10。不同粉末1a对C02雷射束与Nd:YAG雷射束的吸收率不同,有机黏剂1c对不同雷射束26的吸收率也不同,本发明主要利用有机黏剂1c熔解来黏结粉末1a,若有机黏剂1c与粉末1a对特种雷射的吸收率不高,也可增添吸光剂,以达到升高温度熔解有机黏剂1c的效果,例如,压克力与陶瓷粉对Nd:YAG雷射束的吸收率均不高,所以压克力披覆陶瓷粉的吸光效果不佳,可以添加碳黑进浆料2中,由碳黑吸光变热传给压克力升温熔解来连结陶瓷粉末。Commonly used CO2 laser beams and Nd:YAG laser beams are the energy beams 10 of the present invention. Different powders 1a have different absorption rates for CO2 laser beams and Nd:YAG laser beams, and organic adhesives 1c have different absorption rates for different laser beams 26. The present invention mainly utilizes the melting of organic adhesives 1c to bond powders 1a, If the absorption rate of the organic adhesive 1c and the powder 1a is not high for special lasers, a light absorbing agent can also be added to achieve the effect of melting the organic adhesive 1c at an elevated temperature. The absorption rate of the beam is not high, so the light absorption effect of the acrylic coating ceramic powder is not good, you can add carbon black into the
面光罩式投影装置,利用可见光光源经过面光罩筛选后将工件剖面影像经过光学系统成像于生坯面上,面光罩可为穿透式,例如一般的投影胶片或液晶光罩,也可为反射式,如美国德州仪器的微镜片光罩,反射式的可以承受较高的能量密度,以面光罩式投影装置照射生坯加工制作速可以较快。能量束扫描装置也可包括光束运动装置及光束聚焦装置。能量束10与生坯块5的X-Y方向的相对运动可以是生坯块5运动,能量束10静止,也可以是能量束10运动,生坯块5静止。能量束10的X-Y方向运动可利用振镜扫描机(Galvometer)或X-Y工作台29(X-Y table),来达成,此二种技术已很成熟。能量束聚焦镜36可以为透镜或面镜Mask-type projection device, which utilizes the visible light source to pass through the mask to image the profile image of the workpiece on the green surface through the optical system. The mask can be penetrating, such as a general projection film or a liquid crystal mask, or It can be reflective, such as the microlens mask of Texas Instruments, which can withstand higher energy density, and the processing and production speed of the green body can be faster by using a mask-type projection device to irradiate the green body. The energy beam scanning device may also include a beam moving device and a beam focusing device. The relative movement between the
能量束10与生坯块5的垂直方向的相对运动可以是生坯块5运动,能量束10静止,也可以是能量束10运动,生坯块5静止。The vertical relative movement between the
利用习用的CAD\CAM软件包可以自动创出向量式的扫描路径,首先,利用三次元绘图软件将工件的立体图绘出,再将之切成很多平行的剖面,再制作每一剖面的NC程序,将困难的三维加工问题转变成简单的二维加工方式,避开了三维加工常遇到的加工死角问题。Using the commonly used CAD\CAM software package can automatically create a vector-based scanning path. First, use the three-dimensional drawing software to draw the three-dimensional image of the workpiece, and then cut it into many parallel sections, and then create the NC program for each section. , transforming the difficult three-dimensional processing problem into a simple two-dimensional processing method, avoiding the processing dead angle problem often encountered in three-dimensional processing.
能量束10扫描生坯薄层9的主要的制造方法参数,以雷射束26为例,为功率及扫描速度。本制造方法所需功率视光热转换效率而定,以高效率的C02雷射束扫描氧化硅陶瓷生坯在3W以上的功率即有熔解有机黏剂1c的能力。扫描速度的设定亦与材料性质息息相关,举凡熔点高,熔解层厚度大,热传导率低的材料需要较低的扫描速度。The main manufacturing method parameters for the
当工件的每一剖面烧结后,生坯块5与雷射束26之间的距离即扩大,而空出一层厚度的空间,备再次铺设一层浆料薄层7。After each section of the workpiece is sintered, the distance between the green body block 5 and the laser beam 26 is expanded, and a space of one layer thickness is vacated for laying a thin layer of slurry 7 again.
第四步骤:去除未烧结的生坯Step Four: Removal of Unsintered Green Body
重复前述的制造生坯薄层9及能量束10扫描生坯薄层9烧结形成工件薄层11两步骤多次,可做出工件12,此工件12埋在硬化的生坯块5里面,必须将包围工件的生坯块5去除,才可以得到工件12。Repeat the aforementioned two steps of manufacturing green body
去除未经能量束扫描烧结的硬化区块以及支撑结构的方法为浸崩解剂14或以力量破坏,或浸崩解剂14加上力量破坏。以超音波的振动力去除生坯及支撑结构是很有效的,尤其当工件置于崩解剂14中加上超音波震荡的效果更佳。The method of removing the hardened blocks and supporting structures that have not been sintered by energy beam scanning is soaking the disintegrating agent 14 or destroying with force, or immersing the disintegrating agent 14 and destroying with force. It is very effective to remove the green body and support structure with ultrasonic vibration force, especially when the workpiece is placed in the disintegrant 14 and the effect of ultrasonic vibration is better.
形成工件12的区域如前步骤所述具备不崩解于崩解剂14的性质,未烧结的生坯块5的区域却可崩解于崩解剂14。崩解剂14可为水、有机溶剂、强酸或强碱。The region forming the
聚乙烯醇可溶于水,所以可利用水当崩解剂14。使用聚乙烯醇当有机黏剂1c的生坯块5浸入水内会因聚乙烯醇溶于水中而崩解。工件12不论是以雷射熔解PVA链接粉末,或以雷射熔解PVA以及PMMA披覆粉末表面的PMMA而连结粉末,置于水中均能保留原先的形状。将未烧结生坯块5连同工件12于烧结完成后移置于一去生坯容器13中,于此容器中放入水、或以水束冲刷或加上超音波震荡,均可以达到去除生坯块5的目的。Polyvinyl alcohol is soluble in water, so water can be used as a disintegrant14. When polyvinyl alcohol is used, when the green body 5 of the organic adhesive 1c is immersed in water, it will disintegrate due to the dissolution of polyvinyl alcohol in water. Whether the
另外,也可以利用强碱,例如氢氧化钠(Na0H)水溶液当崩解剂14。利用聚乙烯醇易溶于氢氧化钠但PMMA不溶于氢氧化钠的特性,PVA黏结剂加上PMMA披覆陶瓷粉末的浆料系统做成的生坯可以做成PVA为连结相,PMMA披覆陶瓷粉末为分散相,置于氢氧化钠中就崩解。经过雷射扫描的工件部份可以做成PMMA为连结相,PVA与陶瓷粉末均为分散相,置于氢氧化钠中不会崩解。In addition, a strong base, such as sodium hydroxide (NaOH) aqueous solution, can also be used as the disintegrant 14 . Utilizing the characteristics that polyvinyl alcohol is easily soluble in sodium hydroxide but PMMA is insoluble in sodium hydroxide, the green body made of the slurry system of PVA binder and PMMA coated ceramic powder can be made into PVA as the linking phase and PMMA coated The ceramic powder is a dispersed phase, which disintegrates when placed in sodium hydroxide. The part of the workpiece that has been scanned by laser can be made into PMMA as the linking phase, and PVA and ceramic powder are both dispersed phases, which will not disintegrate when placed in sodium hydroxide.
本发明与其他习用技术,例如选择性雷射烧结法相互比较时,具有下列的特征和优点:When the present invention compares with other conventional technologies, such as selective laser sintering, it has the following characteristics and advantages:
1.本发明的特征为以胶结及加热熔解两种不同的连结机制将材料连结。先以有机黏剂连结一层塑料颗粒、陶瓷颗粒、金属颗粒或复合材料颗粒成极薄的,简单形状的薄层生坯,此生坯具备易溶于崩解剂的性质,再以能量束扫描薄层生坯,连结部份生坯成为成品的某一剖面的形状,能量束扫描形成的烧结薄层的性质与生坯不同,不会溶于崩解剂中,所以可以将之浸于崩解剂中,使生坯部分崩解而与工件部分分离,去除生坯后在工件上不会留下任何痕迹。1. The present invention is characterized in that materials are joined by two different joining mechanisms of cementation and heating and melting. First connect a layer of plastic granules, ceramic granules, metal granules or composite material granules with an organic adhesive to form an extremely thin, simple-shaped thin-layer green body. Thin-layer green body, connecting part of the green body into a certain cross-sectional shape of the finished product, the properties of the sintered thin layer formed by energy beam scanning are different from the green body, and will not dissolve in the disintegrant, so it can be immersed in the disintegrant In the disintegrating agent, the green body is partially disintegrated and separated from the workpiece part, and no trace is left on the workpiece after the green body is removed.
2.本发明使用浆料,该浆料为粉末与水的混合物,其中粉末的大小可以是mm级、μm级,或是前述不同级数的混合物。故本发明铺层时不会因粉末颗粒太大而限制了铺层的厚度的下限,可以铺出很薄的铺层,减小了迭层的梯阶效应。另外,于浆料铺层后,将其加热干燥成一硬化的生坯,在此硬化的生坯上铺设浆料时,若层厚愈薄则铺料板必须使力愈大,生坯也受力愈大,但本发明使用的有机黏剂胶结的生坯于建构工件时自然形成固态支撑,在制作中该生坯可以抵挡铺层时产生的力量,工件及生坯不至于因铺层受力而移动,故本发明可确实的铺设极薄的切层,据实验本发明铺层的厚度可做到10μm左右,使得本发明制出工件的垂直轴分辨率可较习知方法为高。2. The present invention uses a slurry, which is a mixture of powder and water, wherein the size of the powder can be mm level, μm level, or a mixture of different levels of the aforementioned. Therefore, when laying layers in the present invention, the lower limit of the thickness of the laying layer will not be limited because the powder particles are too large, and a very thin laying layer can be laid out, which reduces the step effect of the laying layer. In addition, after the slurry is laid, it is heated and dried to form a hardened green body. When laying the slurry on the hardened green body, if the thickness of the layer is thinner, the greater the force must be applied to the layer, and the green body will also be affected. The greater the force, but the organic adhesive cemented green body used in the present invention naturally forms a solid support when constructing the workpiece, and the green body can resist the force generated during the layup during production, and the workpiece and the green body will not be affected by the layup. Therefore, the present invention can reliably lay extremely thin slices. According to experiments, the thickness of the present invention can reach about 10 μm, so that the vertical axis resolution of the workpiece produced by the present invention can be higher than that of conventional methods.
相反的,现有的选择性雷射烧结法系使用干粉为材料,若粉末颗粒大时,例如大于30μm,易于流动铺平,但当粉末颗粒小时,例如小于20μm,则不易流动、刮平。因此法能处理的颗粒不能太小,故铺料层也不能太薄。On the contrary, the existing selective laser sintering method uses dry powder as the material. If the powder particles are large, such as greater than 30 μm, it is easy to flow and flatten, but when the powder particles are small, such as less than 20 μm, it is difficult to flow and scrape. Therefore, the particles that can be processed by the method cannot be too small, so the pavement layer cannot be too thin.
3.高能量束扫描时,在工件形成温度梯度,在冷却时会产生热应力且会导致工件向上翘屈变形。本发明特有的有机黏剂胶结的生坯固态支撑可以防止工件变形,此功能在工件悬臂的构造部分特别需要。因工件不会向上翘屈,在做下一层时才不会接触工件,而可以顺利的加工。3. When the high-energy beam scans, a temperature gradient is formed on the workpiece, which will generate thermal stress during cooling and cause the workpiece to warp upward and deform. The green solid support of the unique organic adhesive cemented by the present invention can prevent the workpiece from deforming, and this function is especially required in the construction part of the workpiece cantilever. Because the workpiece will not warp upward, it will not touch the workpiece when making the next layer, and can be processed smoothly.
4.本发明的浆料系水与粉的混合物,可以添加分散剂使细小的粉末均匀分散,并且在水或有机溶剂蒸发时产生毛细管力,当粉末颗粒细小时此毛细管力增大可以压实粉末,增加生坯的密度,传统的选择性雷射烧结法使用干粉,缺少前述的功能,做出的工件较难致密。4. The slurry of the present invention is a mixture of water and powder. A dispersant can be added to disperse the fine powder evenly, and a capillary force is generated when the water or organic solvent evaporates. When the powder particles are fine, the capillary force increases and can be compacted Powder, to increase the density of the green body. The traditional selective laser sintering method uses dry powder, which lacks the aforementioned functions, and the workpiece made is difficult to be dense.
5.因使用浆料铺层可以铺成厚度极薄的薄层,减少了梯阶效应,增加工件垂直方向的分辨率,使得工件表面纹理更为细致;且因使用浆料铺层可以使用微细的粉末,能改善表面粗度,据实验可以做到Ra=1.5μm的表面粗度。前述两项特点减少了本发明所做出的工件的后续机械加工的必要性。5. Because the slurry layer can be laid into a very thin layer, the step effect is reduced, the resolution in the vertical direction of the workpiece is increased, and the surface texture of the workpiece is more detailed; and the use of the slurry layer can use fine The powder can improve the surface roughness. According to the experiment, the surface roughness of Ra=1.5μm can be achieved. The two aforementioned features reduce the necessity for subsequent machining of workpieces produced by the invention.
6.本发明的粉末可以是塑料粉末、陶瓷粉末、金属粉末或复合粉末。因使用有机黏结剂,利用本发明成形后的有机高分子/陶瓷复合材料工件、有机高分子/金属复合材料工件可以利用习用的烧失有机高分子材料、高温致密化烧结或掺渗低熔点材料等技术得到高强度的陶瓷工件与金属工件。6. The powder of the present invention may be plastic powder, ceramic powder, metal powder or composite powder. Due to the use of organic binders, the organic polymer/ceramic composite workpieces and organic polymer/metal composite workpieces formed by the present invention can use conventional burn-out organic polymer materials, high-temperature densification sintering or doping with low-melting point materials and other technologies to obtain high-strength ceramic workpieces and metal workpieces.
综合本发明上述特征和优点,可见本发明可以广泛的适用于塑料、金属与陶瓷工件的制造,并且消除传统粉末法,例如选择性雷射烧结法,的缺点,而可以使用细微粉末、层厚可以很薄,所以可以做出表面粗度、纹理细致度、强度均比传统粉末法,例如选择性雷射烧结法,为佳的成品,减少了后续机械加工的必要性。所以,本发明可供产业上应用,具有新颖性与进步性。Combining the above features and advantages of the present invention, it can be seen that the present invention can be widely applied to the manufacture of plastics, metal and ceramic workpieces, and eliminates the shortcomings of traditional powder methods, such as selective laser sintering, and can use fine powder, layer thickness It can be very thin, so it can produce finished products with better surface roughness, texture fineness, and strength than traditional powder methods, such as selective laser sintering, which reduces the necessity of subsequent mechanical processing. Therefore, the present invention can be applied in industry, and has novelty and progress.
本发明的目的在于提供一种三维工件的制造方法与设备,可以广泛的适用于塑料、金属、陶瓷与复合工件的制造,并且消除选择性雷射烧结法的缺点,可以使用细微粉末、层厚可以很薄,所以可以做出表面粗度、纹理细致度均比传统选择性雷射烧结法为佳的成品,并且经后至密化烧结处理的金属、陶瓷工件可以获得比传统选择性雷射烧结法为佳的强度。The purpose of the present invention is to provide a manufacturing method and equipment for three-dimensional workpieces, which can be widely used in the manufacture of plastics, metals, ceramics and composite workpieces, and eliminate the shortcomings of selective laser sintering, and can use fine powder, layer thickness It can be very thin, so it can make finished products with better surface roughness and texture fineness than the traditional selective laser sintering method, and the metal and ceramic workpieces that have been densified and sintered can be obtained better than the traditional selective laser sintering method. The sintering method is the best strength.
附图说明 Description of drawings
图1A至图1I为本发明的制作流程示意图。1A to 1I are schematic diagrams of the production process of the present invention.
图2A显示根据本发明的三维工件快速原型机的组合图Fig. 2A shows the assembly diagram of three-dimensional workpiece rapid prototyping machine according to the present invention
图2B为陶瓷快速原型机的分解图Figure 2B is an exploded view of the ceramic rapid prototyping machine
图3为三维工件快速原型机的控制系统架构方块图。Fig. 3 is a block diagram of the control system architecture of the three-dimensional workpiece rapid prototype machine.
具体实施方式 Detailed ways
以下内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。The following content is a further detailed description of the present invention in conjunction with specific preferred embodiments, and it cannot be assumed that the specific implementation of the present invention is limited to these descriptions. For those of ordinary skill in the technical field of the present invention, without departing from the concept of the present invention, some simple deduction or replacement can be made, which should be regarded as belonging to the protection scope of the present invention.
图1-图3中主要组件符号说明Description of main component symbols in Figure 1-Figure 3
1a、粉末;1b、溶剂;1c、有机黏剂;1d、添加剂;2、浆料;3、搅拌装置;4、铺薄层装置;5、生坯块;6、工作台;7、浆料薄层;8、加热器;9、生坯薄层;10、能量束;11、工件薄层;12、工件;13、去生坯容器;14、崩解剂;15、快速原型机;16、制造生坯薄层设备;17、能量束烧结设备;18、螺旋机构;19、配料器;20、刮刀;21、工件座;22、升降台;23、机架;24、往复机构;25、CO2雷射机;26、雷射束;27、反射镜;28、凸透镜;29、X-Y工作台;30、加热运动控制器;31、铺薄层装置控制器;32、升降台控制器;33、X-Y工作台控制器;34、加热温度控制器;35、雷射控制器;36、制造方法计算机制造方法制造方法实施例 1a, powder; 1b, solvent; 1c, organic adhesive; 1d, additive; 2, slurry; 3, stirring device; 4, laying thin layer device; 5, green block; 6, workbench; 7, slurry Thin layer; 8. Heater; 9. Green thin layer; 10. Energy beam; 11. Workpiece thin layer; 12. Workpiece; 13. Green body removal container; 14. Disintegrant; 15. Rapid prototyping machine; 16 17. Energy beam sintering equipment; 18. Screw mechanism; 19. Batching device; 20. Scraper; 21. Workpiece seat; 22. Lifting platform; 23. Rack; 24. Reciprocating mechanism; 25 , CO 2 laser machine; 26, laser beam; 27, mirror; 28, convex lens; 29, XY table; 30, heating motion controller; ; 33. XY table controller; 34. Heating temperature controller; 35. Laser controller; 36. Manufacturing method computer manufacturing method manufacturing method embodiment
请参阅图1所示,将披覆PMMA的氧化铝粉末(粉末1a)、水(溶剂1b)、聚丙烯酸胺(添加剂1d)置于搅拌装置3中以适当比例混合、搅拌,先使前述披覆PMMA的氧化铝粉末分散于水中,再加入适量的PVA(有机黏剂1c),充分搅拌调成浆料2〔图1A〕;将浆料2放入铺薄层装置4然后挤出落在生坯块5上〔图1B〕,并移动铺薄层装置4将浆料2铺设于生坯块5的顶面成为浆料薄层7〔图1C〕,然后以加热器8施加红外线能量于浆料薄层7上,使之加热升温〔图1D〕,干燥硬化形成生坯薄层9,此生坯薄层9的水溶性高;第一层生坯的厚度可较厚,约1mm,随后的生坯薄层9覆盖在前一层之上,厚度应尽可能减少,约在30μm左右,以便可以做出工件的细微部份形状;此后,以能量束10照射于生坯薄层9〔图1E〕,使之吸热升温,使表面以下到某一特定深度(例如45μm)的氧化铝表面的PMMA膜与用做黏结剂1c的聚乙烯醇两种有机材料熔解,连结氧化铝粉末,形成不溶于水的工件薄层11;雷射束26的行进路径系依欲成形的三维工件的剖面由计算机程序自动创造出来的,控制雷射束26扫描路径可制出任意形状的二维薄剖面。由于该雷射束26由上向下垂直扫描平面,使得生坯薄层9表面任何一点均可照射到,任意复杂的物体均无加工死角的问题;生坯块5随工作台6下降,下降距离等于每层工件薄层11的厚度(例如30μm)〔图1F〕;一再重复步骤B至步骤F的过程即可将三维工件所需的工件薄层11依序堆栈制出〔图1G〕。最后,取出含工件12的生坯块5置于去生坯容器13内〔图1H〕,该去生坯容器13内的水(崩解剂14)使包覆工件12的生坯块5崩解,即可得到所要制作的三维陶瓷/塑料工件12〔图1I〕。Please refer to shown in Fig. 1, place the aluminum oxide powder (powder 1a), water (solvent 1b), polyacrylamine (additive 1d) coated with PMMA in the stirring device 3 and mix and stir in an appropriate ratio, and the aforementioned coating Disperse PMMA-coated alumina powder in water, then add an appropriate amount of PVA (organic adhesive 1c), stir well to make slurry 2 (Fig. 1A); put
此制造方法做出的陶瓷/塑料复合工件可经后处理,例如先烧失有机物质再经1600℃烧结一小时,可以得到致密度达95%以上的氧化铝陶瓷工件。The ceramic/plastic composite workpiece made by this manufacturing method can be post-processed, for example, the organic matter is first burned off and then sintered at 1600° C. for one hour to obtain an alumina ceramic workpiece with a density of more than 95%.
设备实施例device embodiment
本发明的制造方法包括四个步骤。第一步骤(备制浆料)可用习用的搅拌装置3。第四步骤(去除未烧结的生坯或生坯加结构支撑)可使用习用的盛液体(崩解剂14)的容器13,以供去除未经雷射扫描烧结的生坯块5或使用盛崩解剂14的超音波设备槽,以供去除生坯块5与其内含的结构支撑。第二步骤(制造生坯薄层)及第三步骤(能量束烧结生坯薄层成工件或工件加结构支撑)必须重复执行多次,有必要发展工具及机构,并以计算机来操控所有工作。执行此二步骤的设备就是本发明的制造三维工件的装置,称为快速原型机15,请参阅图2、图3。The manufacturing method of the present invention includes four steps. The first step (preparation of slurry) can use conventional stirring device 3 . The fourth step (removal of unsintered green body or green body plus structural support) can use a conventional container 13 for liquid (disintegrant 14) for removal of unsintered green body 5 or use a container Ultrasonic device slot for disintegrating agent 14 for removing green body block 5 and its contained structural support. The second step (manufacturing green thin layer) and the third step (energy beam sintering green thin layer into workpiece or workpiece plus structural support) must be repeated many times, it is necessary to develop tools and mechanisms, and use computers to control all work . The equipment for performing these two steps is the device for manufacturing three-dimensional workpieces of the present invention, which is called
图2A显示根据本发明的三维工件快速原型机15的组合图,此机器包含制造生坯薄层设备16,能量束烧结设备17二部份。FIG. 2A shows a combination diagram of a three-dimensional workpiece
图2B为快速原型机15的分解图,显示各零组件的形状及相对位置。此设备的各重要组件系依照图1B至图1F所示的工作方法运动。FIG. 2B is an exploded view of the
制造生坯薄层设备16主要由铺薄层装置4与一工作台6及加热器8组成。铺薄层装置4包括馈料装置、制膜工具。馈料装置包括一螺旋机构18、配料器19及相关运动机构,制膜工具为刮刀20。浆料2由螺旋机构18打出,经过配料器19的出口,挤出落在生坯块5顶面,形成长条状。刮刀20装在配料器19之后,刮刀20底部与生坯块5顶面之间相隔一缝隙,配料器19下料后与刮刀20一起移动,刮刀20将落在生坯块5顶面上的浆料2刮平。变化刮刀20底部与生坯块5顶面之间缝隙的高度可以调整浆料薄层7的厚度。The green thin-
工作台6包括工件座21、升降台22及相关运动机构。工件座21置于升降台22上,其功能为装载生坯块5以及工件12;在每次制造生坯薄层9并且以能量束10烧结成工件薄层11后,升降台22即向下移动一层薄层厚度的距离,以继续另一层的工作。The workbench 6 includes a workpiece seat 21, a lifting platform 22 and related motion mechanisms. The workpiece seat 21 is placed on the lifting platform 22, and its function is to load the green body block 5 and the
红外线加热器8安装在机架23与工件座21之间,藉一往复机构24于制造方法需加热干燥时伸进工件座21的上面,将红外线能量以辐射热传的方式照射于浆料薄层7之上,使之快速干燥硬化。The infrared heater 8 is installed between the frame 23 and the workpiece seat 21, and a reciprocating mechanism 24 is used to extend into the top of the workpiece seat 21 when the manufacturing method needs to be heated and dried, so that the infrared energy is irradiated on the slurry thin film in the form of radiation heat transfer. Layer 7 on top, allowing it to dry and harden quickly.
能量束烧结设备17包括能量束产生装置,能量束扫描装置两部份。能量束产生装置为CO2雷射机25产生雷射束26,将电能转换成光能。能量束扫描装置包括能量束导光装置、能量束聚焦装置及能量束运动装置。能量束导光装置为反射镜27,雷射束经一只固定、二只移动的反射镜27改变其方向,而可做二次元平面的扫描。能量束聚焦装置为一凸透镜28。能量束运动装置为一X-Y工作台29,X-Y工作台29依数控程序的指令引导经过聚焦的雷射束26在X-Y平面上沿特定路径运动,照射生坯中的粉末使之连结,形成工件的剖面形状。The energy
图3为三维工件快速原型机15的控制系统架构方块图。快速原型机15的动作由加热运动控制器30、铺薄层装置控制器31、升降台控制器32、X-Y工作台控制器33来控制;干燥时所需的能量控制由加热温度控制器34来控制,而烧结时必需的雷射光的开启及关闭、功率大小、脉冲频率由雷射控制器35来调控。这些动作的先后顺序则由一制造方法计算机36来掌控。制造方法计算机36系一个人计算机,将三维绘图软件如PRO/E所绘制的三维工件实体模型以设定的精度将实体模型切成多片的二维剖面,转换成NC程序后,开始进行三维工件制作,先命令铺薄层装置4的铺薄层装置控制器31出料到生坯块5顶面上,刮刀20随后开始根据铺薄层装置控制器31的设定速度运动,并作用于浆料,形成一浆料薄层7。加热器8的加热运动控制器30于加热干燥时接受制造方法计算机36的指令命令一往复机构24将加热器8伸进坯块5顶面的上面,将红外线能量照射于浆料薄层7之上,使之快速干燥硬化成为生坯薄层9,红外线照射的能量系由加热温度控制器34调控;再协调雷射控制器35及X-Y工作台控制器33依照NC程序代码的指令以雷射束26扫描生坯薄层9,烧结形成工件薄层11。扫描完后,通知升降台控制器32将升降台22下降,再继续下一剖面的制作,直到成品完成为止。FIG. 3 is a block diagram of the control system architecture of the three-dimensional workpiece
本发明包括本发明的各种变化形式,只要这些变化在所声明的权利要求和其等价思想的范畴内。The present invention includes various modifications of the present invention as long as the modifications are within the scope of the stated claims and their equivalents.
Claims (40)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008101665774A CN101422963A (en) | 2008-10-14 | 2008-10-14 | Method and equipment for manufacturing three-dimensional workpiece |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008101665774A CN101422963A (en) | 2008-10-14 | 2008-10-14 | Method and equipment for manufacturing three-dimensional workpiece |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101422963A true CN101422963A (en) | 2009-05-06 |
Family
ID=40613934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2008101665774A Pending CN101422963A (en) | 2008-10-14 | 2008-10-14 | Method and equipment for manufacturing three-dimensional workpiece |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101422963A (en) |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102699324A (en) * | 2012-02-17 | 2012-10-03 | 湖北工业大学 | Novel method for plasma deposition modeling under ceramic mold restriction |
CN103419270A (en) * | 2012-05-21 | 2013-12-04 | 台北科技大学 | Method for producing inorganic green body with three-dimensional profile |
CN103640220A (en) * | 2013-12-17 | 2014-03-19 | 舟山市定海区巨洋技术开发有限公司 | Novel 3D (three dimensional) numerical-control printing and manufacturing device |
CN103909268A (en) * | 2014-04-19 | 2014-07-09 | 张远明 | Large-size solid-state free forming printer for metal powder slurry and printing method |
CN104064106A (en) * | 2014-07-11 | 2014-09-24 | 武汉理工大学 | Experiential engineering graphics model test platform |
CN104057084A (en) * | 2013-03-20 | 2014-09-24 | 江苏天一超细金属粉末有限公司 | Water-soluble ink for printing metal and ceramic products |
CN104059427A (en) * | 2013-03-20 | 2014-09-24 | 江苏天一超细金属粉末有限公司 | Solvent based ink for printing of metal and ceramic products |
CN105008073A (en) * | 2013-03-05 | 2015-10-28 | 联合工艺公司 | Build platforms for additive manufacturing |
CN105408091A (en) * | 2013-03-14 | 2016-03-16 | 斯特拉塔西斯公司 | Ceramic support structure |
CN105837216A (en) * | 2016-03-22 | 2016-08-10 | 西安铂力特激光成形技术有限公司 | Preparation method of ceramic part |
CN105837219A (en) * | 2016-03-22 | 2016-08-10 | 西安铂力特激光成形技术有限公司 | Preparation method of silicon carbide ceramic part |
CN105834422A (en) * | 2016-05-06 | 2016-08-10 | 西安铂力特激光成形技术有限公司 | Method and device for manufacturing metal additive materials |
CN105837214A (en) * | 2016-03-22 | 2016-08-10 | 西安铂力特激光成形技术有限公司 | Preparation method of graphene product |
US20160271696A1 (en) * | 2015-03-17 | 2016-09-22 | Seiko Epson Corporation | Three-dimensional forming apparatus and three-dimensional forming method |
CN106041072A (en) * | 2015-04-09 | 2016-10-26 | 西门子能源公司 | Laser additive manufacturing using filler material suspended in liquid carrier |
US9533350B2 (en) | 2012-01-20 | 2017-01-03 | Industrial Technology Research Institute | Device and method for powder distribution and additive manufacturing method using the same |
CN106334793A (en) * | 2016-11-08 | 2017-01-18 | 西安铂力特激光成形技术有限公司 | Method for Producing Parts with Tantalum and Tantalum Alloy |
CN106392067A (en) * | 2016-03-06 | 2017-02-15 | 武汉理工大学 | Selective laser fusing equipment based on wet-process powder spreading and printing process thereof |
CN106475557A (en) * | 2015-08-26 | 2017-03-08 | 精工爱普生株式会社 | Three-dimensionally formed device, three-dimensionally formed method and three-dimensionally formed thing |
CN106513673A (en) * | 2015-09-09 | 2017-03-22 | 丰田自动车株式会社 | Manufacturing method of metal member |
WO2017180314A1 (en) * | 2016-04-14 | 2017-10-19 | Desktop Metal, Inc. | Additive fabrication with support structures |
CN107282922A (en) * | 2016-04-12 | 2017-10-24 | 通用电气公司 | Increasing material manufacturing constructs the rotatable engagement of plate |
US10000011B1 (en) | 2016-12-02 | 2018-06-19 | Markforged, Inc. | Supports for sintering additively manufactured parts |
CN108188399A (en) * | 2017-12-20 | 2018-06-22 | 中北大学 | A kind of selective laser melting shapes feeding device |
CN108260348A (en) * | 2015-10-14 | 2018-07-06 | 西门子股份公司 | For manufacturing the method to manufacture workpiece, corresponding workpiece by production |
CN108602118A (en) * | 2015-11-10 | 2018-09-28 | 爱德曼技术欧洲公司 | The increasing material manufacturing of metal object |
JP2019501292A (en) * | 2015-12-23 | 2019-01-17 | アッドアップ | Additive manufacturing machine with powder distribution system with tray and injector |
CN109263085A (en) * | 2018-09-20 | 2019-01-25 | 广州阿旺斯复合材料技术有限公司 | Thermoplastic composite extrusion device and press molding process |
CN109396432A (en) * | 2017-08-18 | 2019-03-01 | 三维陶瓷-新东股份公司 | The method and machine of ceramic material or metal material are manufactured by increases material manufacturing technology |
CN110394976A (en) * | 2014-05-29 | 2019-11-01 | 三菱化学株式会社 | Support material for laminated molding by hot-melt lamination method, laminated product, and method for producing laminated molded product |
US10464131B2 (en) | 2016-12-02 | 2019-11-05 | Markforged, Inc. | Rapid debinding via internal fluid channels |
US10800108B2 (en) | 2016-12-02 | 2020-10-13 | Markforged, Inc. | Sinterable separation material in additive manufacturing |
CN111872397A (en) * | 2020-08-05 | 2020-11-03 | 吉林大学 | A metal 3D printing method |
CN112497735A (en) * | 2019-12-31 | 2021-03-16 | 管彩琴 | Multi-nozzle linkage type mechanical three-dimensional printer based on hierarchical contour coupling |
CN113733554A (en) * | 2021-08-23 | 2021-12-03 | 华中科技大学 | Method and device for forming high molecular parts by microwave and infrared radiation in composite mode |
CN114632668A (en) * | 2022-03-04 | 2022-06-17 | 李红莲 | EPS lines mud scraping device for directional installation |
CN116459997A (en) * | 2022-01-12 | 2023-07-21 | 威光自动化科技股份有限公司 | Automatic gluing device and automatic gluing method for UV glue cladding of object frame |
-
2008
- 2008-10-14 CN CNA2008101665774A patent/CN101422963A/en active Pending
Cited By (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9533350B2 (en) | 2012-01-20 | 2017-01-03 | Industrial Technology Research Institute | Device and method for powder distribution and additive manufacturing method using the same |
US10675655B2 (en) | 2012-01-20 | 2020-06-09 | Industrial Technology Research Institute | Device and method for powder distribution and additive manufacturing method using the same |
CN102699324A (en) * | 2012-02-17 | 2012-10-03 | 湖北工业大学 | Novel method for plasma deposition modeling under ceramic mold restriction |
CN103419270A (en) * | 2012-05-21 | 2013-12-04 | 台北科技大学 | Method for producing inorganic green body with three-dimensional profile |
CN103419270B (en) * | 2012-05-21 | 2016-01-20 | 台北科技大学 | Method for producing inorganic green body with three-dimensional profile |
CN105008073A (en) * | 2013-03-05 | 2015-10-28 | 联合工艺公司 | Build platforms for additive manufacturing |
US10022889B2 (en) | 2013-03-14 | 2018-07-17 | Stratasys, Inc. | Ceramic support structure |
US10272592B2 (en) | 2013-03-14 | 2019-04-30 | Stratasys, Inc. | Ceramic support structure |
CN105408091A (en) * | 2013-03-14 | 2016-03-16 | 斯特拉塔西斯公司 | Ceramic support structure |
US10059031B1 (en) | 2013-03-14 | 2018-08-28 | Stratasys, Inc. | Ceramic support structure |
CN105408091B (en) * | 2013-03-14 | 2018-12-18 | 斯特拉塔西斯公司 | Ceramic support structure |
CN104059427A (en) * | 2013-03-20 | 2014-09-24 | 江苏天一超细金属粉末有限公司 | Solvent based ink for printing of metal and ceramic products |
CN104057084A (en) * | 2013-03-20 | 2014-09-24 | 江苏天一超细金属粉末有限公司 | Water-soluble ink for printing metal and ceramic products |
CN103640220A (en) * | 2013-12-17 | 2014-03-19 | 舟山市定海区巨洋技术开发有限公司 | Novel 3D (three dimensional) numerical-control printing and manufacturing device |
CN103640220B (en) * | 2013-12-17 | 2015-12-02 | 舟山市定海区巨洋技术开发有限公司 | Novel 3D numerical control prints manufacturing equipment |
CN103909268A (en) * | 2014-04-19 | 2014-07-09 | 张远明 | Large-size solid-state free forming printer for metal powder slurry and printing method |
CN110394976A (en) * | 2014-05-29 | 2019-11-01 | 三菱化学株式会社 | Support material for laminated molding by hot-melt lamination method, laminated product, and method for producing laminated molded product |
CN110394976B (en) * | 2014-05-29 | 2021-08-27 | 三菱化学株式会社 | Support material for laminated molding by hot-melt lamination method, laminated product, and method for producing laminated molded product |
CN104064106A (en) * | 2014-07-11 | 2014-09-24 | 武汉理工大学 | Experiential engineering graphics model test platform |
JP2016172893A (en) * | 2015-03-17 | 2016-09-29 | セイコーエプソン株式会社 | 3D forming apparatus and 3D forming method |
CN105983696A (en) * | 2015-03-17 | 2016-10-05 | 精工爱普生株式会社 | Three-dimensional forming apparatus and three-dimensional forming method |
US20160271696A1 (en) * | 2015-03-17 | 2016-09-22 | Seiko Epson Corporation | Three-dimensional forming apparatus and three-dimensional forming method |
CN106041072A (en) * | 2015-04-09 | 2016-10-26 | 西门子能源公司 | Laser additive manufacturing using filler material suspended in liquid carrier |
CN106041072B (en) * | 2015-04-09 | 2018-11-09 | 西门子能源公司 | It is manufactured using the laser gain material for suspending packing material in a liquid carrier |
CN106475557A (en) * | 2015-08-26 | 2017-03-08 | 精工爱普生株式会社 | Three-dimensionally formed device, three-dimensionally formed method and three-dimensionally formed thing |
CN106513673A (en) * | 2015-09-09 | 2017-03-22 | 丰田自动车株式会社 | Manufacturing method of metal member |
CN106513673B (en) * | 2015-09-09 | 2019-02-22 | 丰田自动车株式会社 | Manufacturing method of metal member |
CN108260348A (en) * | 2015-10-14 | 2018-07-06 | 西门子股份公司 | For manufacturing the method to manufacture workpiece, corresponding workpiece by production |
CN108602118A (en) * | 2015-11-10 | 2018-09-28 | 爱德曼技术欧洲公司 | The increasing material manufacturing of metal object |
JP2019501292A (en) * | 2015-12-23 | 2019-01-17 | アッドアップ | Additive manufacturing machine with powder distribution system with tray and injector |
CN106392067A (en) * | 2016-03-06 | 2017-02-15 | 武汉理工大学 | Selective laser fusing equipment based on wet-process powder spreading and printing process thereof |
CN106392067B (en) * | 2016-03-06 | 2019-01-22 | 武汉理工大学 | Selective laser melting equipment and printing process based on wet powder coating |
CN105837219A (en) * | 2016-03-22 | 2016-08-10 | 西安铂力特激光成形技术有限公司 | Preparation method of silicon carbide ceramic part |
CN105837216A (en) * | 2016-03-22 | 2016-08-10 | 西安铂力特激光成形技术有限公司 | Preparation method of ceramic part |
CN105837214A (en) * | 2016-03-22 | 2016-08-10 | 西安铂力特激光成形技术有限公司 | Preparation method of graphene product |
CN107282922A (en) * | 2016-04-12 | 2017-10-24 | 通用电气公司 | Increasing material manufacturing constructs the rotatable engagement of plate |
WO2017180314A1 (en) * | 2016-04-14 | 2017-10-19 | Desktop Metal, Inc. | Additive fabrication with support structures |
US9815118B1 (en) | 2016-04-14 | 2017-11-14 | Desktop Metal, Inc. | Fabricating multi-part assemblies |
US11597011B2 (en) | 2016-04-14 | 2023-03-07 | Desktop Metal, Inc. | Printer for the three-dimensional fabrication |
US9833839B2 (en) | 2016-04-14 | 2017-12-05 | Desktop Metal, Inc. | Fabricating an interface layer for removable support |
US10456833B2 (en) | 2016-04-14 | 2019-10-29 | Desktop Metals, Inc. | Shrinkable support structures |
CN109874324A (en) * | 2016-04-14 | 2019-06-11 | 德仕托金属有限公司 | 3D Manufacturing by Locally Activated Bonding of Sinterable Powders |
US10350682B2 (en) | 2016-04-14 | 2019-07-16 | Desktop Metal, Inc. | Sinterable article with removable support structures |
US10272492B2 (en) | 2016-04-14 | 2019-04-30 | Desktop Metal, Inc. | Multi-part removable support structures |
US11969795B2 (en) | 2016-04-14 | 2024-04-30 | Desktop Metal, Inc. | Forming an interface layer for removable support |
CN105834422A (en) * | 2016-05-06 | 2016-08-10 | 西安铂力特激光成形技术有限公司 | Method and device for manufacturing metal additive materials |
CN106334793B (en) * | 2016-11-08 | 2018-09-25 | 西安铂力特增材技术股份有限公司 | A kind of preparation method of tantalum and tantalum alloy part |
CN106334793A (en) * | 2016-11-08 | 2017-01-18 | 西安铂力特激光成形技术有限公司 | Method for Producing Parts with Tantalum and Tantalum Alloy |
US10040242B2 (en) | 2016-12-02 | 2018-08-07 | Markforged, Inc. | Supports for sintering additively manufactured parts |
US11173550B2 (en) | 2016-12-02 | 2021-11-16 | Markforged, Inc. | Supports for sintering additively manufactured parts |
US10377083B2 (en) | 2016-12-02 | 2019-08-13 | Markforged, Inc. | Supports for sintering additively manufactured parts |
US10377082B2 (en) | 2016-12-02 | 2019-08-13 | Markforged, Inc. | Supports for sintering additively manufactured parts |
US10391714B2 (en) | 2016-12-02 | 2019-08-27 | Markforged, Inc. | Supports for sintering additively manufactured parts |
US10000011B1 (en) | 2016-12-02 | 2018-06-19 | Markforged, Inc. | Supports for sintering additively manufactured parts |
US10052815B2 (en) | 2016-12-02 | 2018-08-21 | Markforged, Inc. | Supports for sintering additively manufactured parts |
US10464131B2 (en) | 2016-12-02 | 2019-11-05 | Markforged, Inc. | Rapid debinding via internal fluid channels |
US10556384B2 (en) | 2016-12-02 | 2020-02-11 | Markforged, Inc. | Supports for sintering additively manufactured parts |
US10040241B2 (en) | 2016-12-02 | 2018-08-07 | Markforged, Inc. | Supports for sintering additively manufactured parts |
US10800108B2 (en) | 2016-12-02 | 2020-10-13 | Markforged, Inc. | Sinterable separation material in additive manufacturing |
US10035298B2 (en) | 2016-12-02 | 2018-07-31 | Markforged, Inc. | Supports for sintering additively manufactured parts |
US10828698B2 (en) | 2016-12-06 | 2020-11-10 | Markforged, Inc. | Additive manufacturing with heat-flexed material feeding |
CN109396432B (en) * | 2017-08-18 | 2021-03-30 | 三维陶瓷-新东股份公司 | Method and machine for manufacturing ceramic or metallic materials by additive manufacturing techniques |
CN109396432A (en) * | 2017-08-18 | 2019-03-01 | 三维陶瓷-新东股份公司 | The method and machine of ceramic material or metal material are manufactured by increases material manufacturing technology |
CN108188399A (en) * | 2017-12-20 | 2018-06-22 | 中北大学 | A kind of selective laser melting shapes feeding device |
CN109263085A (en) * | 2018-09-20 | 2019-01-25 | 广州阿旺斯复合材料技术有限公司 | Thermoplastic composite extrusion device and press molding process |
CN112497735A (en) * | 2019-12-31 | 2021-03-16 | 管彩琴 | Multi-nozzle linkage type mechanical three-dimensional printer based on hierarchical contour coupling |
CN111872397A (en) * | 2020-08-05 | 2020-11-03 | 吉林大学 | A metal 3D printing method |
CN113733554A (en) * | 2021-08-23 | 2021-12-03 | 华中科技大学 | Method and device for forming high molecular parts by microwave and infrared radiation in composite mode |
CN116459997A (en) * | 2022-01-12 | 2023-07-21 | 威光自动化科技股份有限公司 | Automatic gluing device and automatic gluing method for UV glue cladding of object frame |
CN114632668A (en) * | 2022-03-04 | 2022-06-17 | 李红莲 | EPS lines mud scraping device for directional installation |
CN114632668B (en) * | 2022-03-04 | 2024-05-31 | 南京万木泽华供应链有限公司 | EPS line scraping device for directional installation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101422963A (en) | Method and equipment for manufacturing three-dimensional workpiece | |
CN101612793A (en) | Method and apparatus for manufacturing three-dimensional workpiece | |
US20100323301A1 (en) | Method and apparatus for making three-dimensional parts | |
TWI228114B (en) | Method and equipment for making ceramic work piece | |
CN107553899B (en) | Recoating unit, recoating method, device and method for additive manufacturing of three-dimensional objects | |
Deckers et al. | Additive manufacturing of ceramics: A review | |
EP3261841B1 (en) | Additive manufacturing processes for making transparent 3d parts from inorganic materials | |
JP6390108B2 (en) | Sintered modeling material, sintered modeling method, sintered model and sintered modeling apparatus | |
US5354414A (en) | Apparatus and method for forming an integral object from laminations | |
AU2017248742A1 (en) | Three-dimensional fabrication with locally activated binding of sinterable powders | |
TW201609606A (en) | Sintering forming method, liquid bonding agent and sintered shape forming material | |
EP3593977B1 (en) | Water-based ceramic three-dimensional laminate material and method for using the same to manufacture ceramic objects | |
JP2007106108A (en) | High density performance process | |
CN109396433A (en) | The method and machine of at least one blank made of at least one ceramics and/or metal material are manufactured increases material manufacturing technology | |
CN104550952A (en) | Rapid laser printing device and method for water pump shell | |
WO2018159133A1 (en) | Composition for manufacturing three-dimensional printed article, method for manufacturing three-dimensional printed article, and device for manufacturing three-dimensional printed article | |
CN108290216B (en) | Powder for 3D printing and 3D printing method | |
EP2263861A1 (en) | Method and apparatus for making three-dimensional parts | |
Ma et al. | Approaches Used to Design Support Structures for Ceramic Additive Manufacturing: A Review | |
US20060119017A1 (en) | Method for making ceramic work piece and cermet work piece | |
CN108405865A (en) | A kind of 3D printing method of dusty material | |
US20040075197A1 (en) | Method for rapid forming of a ceramic green part | |
Tang et al. | Ceramic laser gelling | |
CN204749277U (en) | 3D device printing apparatus | |
TW200936365A (en) | Process and apparatus for making three dimensional parts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Open date: 20090506 |