JPH08132038A - Fresh water generator - Google Patents
Fresh water generatorInfo
- Publication number
- JPH08132038A JPH08132038A JP6278915A JP27891594A JPH08132038A JP H08132038 A JPH08132038 A JP H08132038A JP 6278915 A JP6278915 A JP 6278915A JP 27891594 A JP27891594 A JP 27891594A JP H08132038 A JPH08132038 A JP H08132038A
- Authority
- JP
- Japan
- Prior art keywords
- stage
- water
- reverse osmosis
- osmosis membrane
- membrane device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/138—Water desalination using renewable energy
- Y02A20/144—Wave energy
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は逆浸透膜法により純水、
脱塩水等を得る造水装置及び造水方法に関する。FIELD OF THE INVENTION The present invention uses pure water by the reverse osmosis membrane method,
The present invention relates to a desalination apparatus and a desalination method for obtaining demineralized water and the like.
【0002】[0002]
【従来の技術】逆浸透膜装置(以下RO装置)は被処理
水を不純物含量が低下した透過水と、不純物含量が増大
した濃縮水とに分離できるが、濃縮水中のシリカ、アル
ミニウム、硬度成分等が高くなるとこれらが逆浸透膜に
析出して濾過速度を低下させる。従来、RO装置におい
てはこれらの析出を防止するため、回収率(=透過水/
被処理水)を下げた状態で運転することが一般に行なわ
れている。例えば、シリカを含む被処理水の場合には、
通常濃縮水中のシリカ濃度がその飽和濃度である100
ppm程度(但し水温約25℃の場合)を上限とするよ
うにして運転されている。市水、工業用水等の被処理水
には15〜25ppmのシリカが通常含有されているの
で、この場合には回収率を75〜80%に設定して運転
することにより、濃縮水中のシリカ濃度をその飽和濃度
以下に保っている。この結果、給水された水のうち20
〜25%は利用されずに排水として捨てられている。こ
の問題を改善するため被処理水のpH調整を行なった
り、あるいは被処理水に分散剤を添加してシリカの析出
を防止するようにして、回収率を改善することが検討さ
れているが、必ずしも成功していない。2. Description of the Related Art A reverse osmosis membrane device (hereinafter referred to as RO device) can separate water to be treated into permeated water having a reduced impurity content and concentrated water having an increased impurity content. When the ratio becomes high, these deposit on the reverse osmosis membrane and reduce the filtration rate. Conventionally, in the RO device, in order to prevent these precipitations, the recovery rate (= permeated water /
It is common practice to operate with the water to be treated) lowered. For example, in the case of water to be treated containing silica,
Normally, the concentration of silica in concentrated water is its saturation concentration of 100
The operation is performed with the upper limit of about ppm (however, when the water temperature is about 25 ° C.). Since the treated water such as city water and industrial water usually contains 15 to 25 ppm of silica, in this case, by setting the recovery rate to 75 to 80% and operating, the silica concentration in the concentrated water is increased. Is kept below its saturation concentration. As a result, 20 of the water supplied
~ 25% is not used and is discarded as wastewater. In order to improve this problem, the pH of the water to be treated is adjusted, or a dispersant is added to the water to be treated to prevent the precipitation of silica, and it is considered to improve the recovery rate. Not necessarily successful.
【0003】回収率を改善する際には幾つかの問題点を
考慮する必要がある。上記のように、pH調整や分散剤
等の薬品を添加して回収率を改善することもある程度可
能である。しかし、複数のRO装置を用いて、前段の濃
縮水を次段のRO装置で逆浸透処理することにより、被
処理水の回収率等を向上させるような場合には、このよ
うにして回収率を高くしても、高濃度で運転されている
部分、すなわち下流に位置するRO膜の透過水量が数ケ
月で低下することがある。この場合には、RO装置の運
転を停止し、装置全体を酸、アルカリ等の薬品で洗浄
し、その後運転を再開している。Several problems need to be considered in improving recovery. As described above, it is possible to some extent to improve the recovery rate by adding pH adjusting agents or chemicals such as dispersants. However, in the case of improving the recovery rate of the water to be treated by performing reverse osmosis treatment of the concentrated water of the previous stage with the RO apparatus of the next stage using a plurality of RO apparatuses, the recovery rate is Even if the value is increased, the amount of permeated water in the portion operating at a high concentration, that is, the RO membrane located downstream may decrease in a few months. In this case, the operation of the RO device is stopped, the entire device is washed with a chemical such as acid or alkali, and then the operation is restarted.
【0004】この期間は、水の逆浸透処理はできず、こ
のため現実には装置の洗浄時間はできるだけ短縮され、
場合によっては充分の洗浄ができない問題もある。During this period, the reverse osmosis treatment of water cannot be performed, so that the cleaning time of the apparatus is actually shortened as much as possible.
In some cases, there is a problem that sufficient cleaning cannot be performed.
【0005】[0005]
【発明が解決しようとする課題】本発明は上記事情に鑑
みてなされたもので、その目的とするところは、水回収
率の高い造水装置及び造水方法を提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to provide a fresh water producing apparatus and a high fresh water producing method.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に本発明は、被処理水を逆浸透膜処理して前段透過水と
前段濃縮水とに分離する前段逆浸透膜装置と、前記前段
濃縮水を後段逆浸透膜装置に供給する供給パイプと、供
給パイプを介して供給される前記前段濃縮水を逆浸透膜
処理して後段透過水と後段濃縮水とに分離する造水装置
において、前記供給パイプに濃縮水取出しラインと、沈
着防止剤注入ラインと、洗浄薬品供給ラインと、これら
のラインの流路切換手段とを備えてなり、通常運転時に
は濃縮水取出しラインと洗浄薬品供給ラインとを閉とす
ると共に沈着防止剤注入ラインから供給パイプに沈着防
止剤を供給し、洗浄時には沈着防止剤注入ラインを閉と
して沈着防止剤の供給を停止しながら濃縮水取出しライ
ンから前段濃縮水を取出すと共に洗浄薬品供給ラインか
ら洗浄薬品を供給して前段逆浸透膜装置を運転しながら
後段逆浸透膜装置を洗浄することを特徴とする造水装置
を提案するもので、後段逆浸透膜装置の逆浸透膜が前段
逆浸透膜装置の逆浸透膜よりもルーズな逆浸透膜である
こと、前段濃縮水出口が後段逆浸透膜装置の供給水入口
とポンプを介することなく直接連結され後段逆浸透膜装
置が前段逆浸透膜装置の濃縮水の余圧で運転されるもの
であることを含む。In order to achieve the above object, the present invention provides a pre-stage reverse osmosis membrane device for treating water to be treated with a reverse osmosis membrane to separate the pre-stage permeated water and the pre-stage concentrated water, and the pre-stage. A supply pipe for supplying concentrated water to the latter-stage reverse osmosis membrane device, and a desalination apparatus for separating the former-stage concentrated water supplied via the supply pipe into a latter-stage permeated water and a latter-stage condensed water by reverse osmosis membrane treatment, The supply pipe is provided with a concentrated water extraction line, a deposition inhibitor injection line, a cleaning chemical supply line, and a flow path switching means for these lines, and in normal operation, the concentrated water extraction line and the cleaning chemical supply line are provided. The deposition inhibitor is supplied from the deposition inhibitor injection line to the supply pipe at the same time, and the deposition inhibitor injection line is closed during cleaning to stop the deposition of the deposition inhibitor and stop the concentrated water extraction line from the concentrated water extraction line. This is to propose a desalination apparatus that is characterized by cleaning the rear reverse osmosis membrane device while operating the front stage reverse osmosis membrane device by supplying the cleaning chemicals from the cleaning chemical supply line and removing the latter stage reverse osmosis membrane device. The reverse osmosis membrane is a looser reverse osmosis membrane than the reverse osmosis membrane of the former stage reverse osmosis membrane device, and the former stage concentrated water outlet is directly connected to the feed water inlet of the latter stage reverse osmosis membrane device without passing through a pump, and the latter stage reverse osmosis It includes that the membrane device is operated by the residual pressure of the concentrated water of the preceding stage reverse osmosis membrane device.
【0007】また本発明は、被処理水を前段逆浸透膜装
置で逆浸透膜処理して前段透過水と前段濃縮水とに分離
して前段透過水を得ると共に、前記前段濃縮水を後段逆
浸透膜装置で逆浸透膜処理して後段透過水と後段濃縮水
とに分離する造水方法において、後段逆浸透膜装置の逆
浸透膜の洗浄時には、前段逆浸透膜装置を運転して前段
透過水を取出しつつ、後段逆浸透膜装置の運転を停止し
て後段逆浸透膜装置の逆浸透膜の洗浄を行なうことを特
徴とする造水方法である。In the present invention, the water to be treated is subjected to reverse osmosis membrane treatment in a front-stage reverse osmosis membrane device to separate front-stage permeated water and front-stage concentrated water to obtain front-stage permeated water. In the water production method in which the reverse osmosis membrane treatment is performed with the osmosis membrane device to separate the latter-stage permeate water and the latter-stage concentrated water, when the reverse osmosis membrane of the latter-stage reverse osmosis membrane device is washed, the former-stage reverse osmosis membrane device is operated to perform the former-stage permeation. It is a water production method characterized in that the operation of the latter-stage reverse osmosis membrane device is stopped while water is taken out to wash the reverse-osmosis membrane of the latter-stage reverse osmosis membrane device.
【0008】以下、本発明を詳細に説明する。The present invention will be described in detail below.
【0009】本発明においては、複数のRO装置を前段
及び後段に分け、前段RO装置を運転しつつ、後段RO
装置を洗浄、例えば酸洗浄やアルカリ洗浄が可能な構成
にするものである。In the present invention, the plurality of RO devices are divided into the front stage and the rear stage, and the rear stage RO device is operated while the rear stage RO device is operating.
The apparatus is configured to be washable, for example, acid wash or alkali wash.
【0010】図1は本発明の造水装置の一態様を示すも
ので、図中、2は被処理水である。被処理水2として
は、工業用水、上水、井水、河川水、回収水等が例示で
きる。被処理水2はその水質に応じて、必要により前処
理装置4で除濁等の前処理がされる。FIG. 1 shows an embodiment of the water producing apparatus of the present invention. In the figure, 2 is water to be treated. Examples of the water to be treated 2 include industrial water, tap water, well water, river water, and recovered water. The water to be treated 2 is subjected to pretreatment such as turbidity by the pretreatment device 4 depending on the quality of the water.
【0011】前処理装置としては砂濾過装置、膜濾過装
置等が例示できる。Examples of the pretreatment device include a sand filtration device and a membrane filtration device.
【0012】6は酸供給ラインで、被処理水中の炭酸成
分を効率よく除去するために塩酸等の酸が前処理装置の
出口水に加えられ、そのpHを6程度に調節された後、
脱気装置8に送られ、炭酸ガス、酸素、窒素等が除去さ
れる。脱気装置8としては脱炭酸塔、真空脱気装置、膜
脱気装置等が目的に応じて選択される。なお、pH6程
度に調整された前処理装置の出口水は、脱気装置8で脱
炭酸されることによってそのpHが6.5程度に上昇す
る。脱気装置出口水は、次いでポンプ10で加圧され前
段RO装置12に送られ、ここで前段透過水14と前段
濃縮水16とに分離される。前記前段透過水14は前段
透過水取出しライン18から不純物濃度が低減された状
態で取出され、脱塩水として、あるいはさらに電気式脱
塩装置やイオン交換装置、逆浸透膜装置、限外濾過膜装
置等で純度を高めて各種用途に利用される。Reference numeral 6 is an acid supply line, in which an acid such as hydrochloric acid is added to the outlet water of the pretreatment apparatus in order to efficiently remove carbonic acid components in the water to be treated, and the pH thereof is adjusted to about 6;
It is sent to the deaerator 8 to remove carbon dioxide, oxygen, nitrogen and the like. As the deaerator 8, a decarbonation tower, a vacuum deaerator, a membrane deaerator or the like is selected according to the purpose. The outlet water of the pretreatment device adjusted to about pH 6 is decarbonated by the deaerator 8 so that its pH rises to about 6.5. The deaerator outlet water is then pressurized by the pump 10 and sent to the pre-stage RO device 12, where it is separated into the pre-stage permeated water 14 and the pre-stage concentrated water 16. The front-stage permeated water 14 is taken out from the front-stage permeated water extraction line 18 in a state where the impurity concentration is reduced, and is used as demineralized water or further as an electric desalination device, an ion exchange device, a reverse osmosis membrane device, an ultrafiltration membrane device. It is used for various purposes after increasing the purity.
【0013】20は供給パイプで、これにより前段RO
装置12の濃縮水出口22と後段RO装置24の供給水
入口26とが連結されている。Reference numeral 20 is a supply pipe, which allows the front RO
The concentrated water outlet 22 of the device 12 and the feed water inlet 26 of the post-stage RO device 24 are connected.
【0014】28は供給パイプ20に介装された第1圧
力調整バルブで、その下流側にはバルブ30が介装され
ている。Reference numeral 28 is a first pressure adjusting valve provided in the supply pipe 20, and a valve 30 is provided downstream of the first pressure adjusting valve.
【0015】31は濃縮水取出しラインで、第1圧力調
整バルブ28とバルブ30との間で供給パイプ20から
分岐されている。さらにバルブ30と後段RO装置24
の供給水入口26との間の供給パイプ20には沈着防止
剤注入ライン32及び洗浄薬品供給ライン34が連結さ
れている。なお、36,38,40はバルブ、42は注
入ライン32に介装された注入ポンプ、43は洗浄薬品
供給ライン34に介装されたポンプ、45は当該ポンプ
43の入口側に連通された洗浄薬品貯槽である。Reference numeral 31 denotes a concentrated water extraction line, which is branched from the supply pipe 20 between the first pressure adjusting valve 28 and the valve 30. Further, the valve 30 and the post-stage RO device 24
An anti-sedimentation agent injection line 32 and a cleaning chemicals supply line 34 are connected to the supply pipe 20 between the supply water inlet 26 and the supply water inlet 26. In addition, 36, 38, and 40 are valves, 42 is an injection pump installed in the injection line 32, 43 is a pump installed in the cleaning chemical supply line 34, and 45 is cleaning that is connected to the inlet side of the pump 43. It is a chemical storage tank.
【0016】前段RO装置12の前段濃縮水16は第1
圧力調整バルブ28、バルブ30を順次経由して供給パ
イプ20中を移動し、後段RO装置24の供給水入口2
6に供給され、後段RO装置24で後段透過水44と後
段濃縮水46に分離される。後段透過水44は回収ライ
ン48から取出され、各種の用途に供される。The first-stage concentrated water 16 of the first-stage RO device 12 is the first
It moves through the supply pipe 20 through the pressure regulating valve 28 and the valve 30 in order, and the supply water inlet 2 of the latter stage RO device 24
6, and is separated into the latter-stage permeated water 44 and the latter-stage concentrated water 46 by the latter-stage RO device 24. The second-stage permeated water 44 is taken out from the recovery line 48 and used for various purposes.
【0017】後段濃縮水は第2圧力調整バルブ50を介
装した排出ライン52を通り系外に放出される。The second-stage concentrated water is discharged to the outside of the system through a discharge line 52 provided with a second pressure adjusting valve 50.
【0018】沈着防止剤注入ライン32から供給パイプ
20に供給される沈着防止剤としては、pH調整用の酸
や、分散剤を使用するが、必要により殺菌剤等を添加し
てもよい。As the deposition inhibitor supplied from the deposition inhibitor injection line 32 to the supply pipe 20, an acid for pH adjustment or a dispersant is used, but a bactericide or the like may be added if necessary.
【0019】酸としては、具体的には塩酸や硫酸等が挙
げられる。また、電解装置により生成された酸性の液体
等も利用することができる。分散剤としては、ヘキサメ
タ燐酸ソーダ等の有機燐酸塩やポリアクリル酸ソーダ等
を挙げることができる。上記の酸は、後段RO装置24
の後段濃縮水46のpHを6以下、好ましくは4.0〜
5.5程度に調整する量を加えるもので、pHをこの範
囲に調整することにより後段濃縮水中のシリカ濃度がた
とえ飽和濃度以上となってもシリカの析出を確実に防止
することができる。なお、前段RO装置と後段RO装置
の間に酸を添加せず、前段RO装置の供給水に初めから
後段RO装置の濃縮水のpHが6以下となるように酸を
添加しておくことも考えられるが、このようにすると前
段RO装置から得られる透過水の純度が低下するので好
ましくない。また、必要に応じて酸と分散剤を併用して
もよい。Specific examples of the acid include hydrochloric acid and sulfuric acid. Further, an acidic liquid or the like generated by the electrolysis device can also be used. Examples of the dispersant include organic phosphates such as sodium hexametaphosphate and sodium polyacrylate. The above-mentioned acid is used in the latter stage RO device 24.
The pH of the second-stage concentrated water 46 is 6 or less, preferably 4.0 or less.
The amount is adjusted to about 5.5, and by adjusting the pH within this range, silica precipitation can be reliably prevented even if the silica concentration in the latter-stage concentrated water becomes equal to or higher than the saturation concentration. It should be noted that acid may not be added between the pre-stage RO device and the post-stage RO device, and acid may be added to the feed water of the pre-stage RO device from the beginning so that the concentrated water in the post-stage RO device has a pH of 6 or less. It is conceivable, but this is not preferable because the purity of the permeated water obtained from the former-stage RO device decreases. Moreover, you may use an acid and a dispersing agent together as needed.
【0020】洗浄薬品供給ライン34から供給パイプに
供給される洗浄薬品としては、塩酸、クエン酸、修酸等
の酸水溶液や苛性ソーダ等のアルカリ水溶液が好まし
い。As the cleaning chemical supplied from the cleaning chemical supply line 34 to the supply pipe, an acid aqueous solution of hydrochloric acid, citric acid, oxalic acid or the like or an alkaline aqueous solution of caustic soda or the like is preferable.
【0021】酸水溶液はpHが1.5〜3のものが好ま
しい。アルカリ水溶液はpHが10〜11のものが好ま
しい。The acid aqueous solution preferably has a pH of 1.5 to 3. The alkaline aqueous solution preferably has a pH of 10-11.
【0022】その他EDTA、界面活性剤、酵素水溶液
を用いてもよい。In addition, EDTA, a surfactant and an aqueous enzyme solution may be used.
【0023】本発明においては、前述のようにRO装置
を前段RO装置12とシリカスケール等の沈着により透
過水量の低下の起き易い後段RO装置24とに分け、透
過水量の低下が起きた場合には前段RO装置12を運転
し続けながら(したがって、前段透過水を製造し続けな
がら)、後段RO装置24の運転を停止して、後段RO
装置24の洗浄を行なうものである。In the present invention, as described above, the RO apparatus is divided into the front RO apparatus 12 and the rear RO apparatus 24 in which the decrease of the permeated water is apt to occur due to the deposition of silica scale or the like. Keeps operating the front-stage RO device 12 (thus, while continuing to produce the front-stage permeated water), stops the operation of the rear-stage RO device 24 to perform the rear-stage RO device 24.
The device 24 is cleaned.
【0024】このため、図1に示すように、前段RO装
置12と後段RO装置24との中間に洗浄薬品供給ライ
ン34を設置し、前段RO装置12を停止することなく
後段RO装置24を洗浄できるようにする。後段RO装
置24の薬品洗浄時にはバルブ30,38を閉、36,
40を開とすればよい。このような弁操作を行えば、後
段RO装置24で透過水量低下が発生しても、前段RO
装置12は運転を継続できるので、前段RO装置から常
時透過水を得ることができ、高回収率化に基づく透過水
量の急速な低下によるトラブルが起きにくい。Therefore, as shown in FIG. 1, a cleaning chemical supply line 34 is installed between the front RO device 12 and the rear RO device 24, and the rear RO device 24 is cleaned without stopping the front RO device 12. It can be so. When cleaning the rear RO device 24 with chemicals, close the valves 30, 38, 36,
40 may be opened. If such a valve operation is performed, even if the amount of permeated water decreases in the rear RO device 24, the front RO
Since the device 12 can be continuously operated, the permeated water can always be obtained from the pre-stage RO device, and troubles due to the rapid decrease in the amount of permeated water due to the high recovery rate are unlikely to occur.
【0025】本発明においては、前段RO装置12の部
分は脱塩を目的とした運転を行なう一方、前段RO装置
12の前段濃縮水を給水として利用する後段RO装置2
4は前段濃縮水の回収を主目的とするものである。すな
わち、通常後段RO装置24の透過水の水質は前段RO
装置12の透過水と比較して不純物濃度が高い。このた
め、そのまま利用することもできるが、前段RO装置と
は別の用途、例えば冷却水、雑用水、環境用水等に利用
することができれば、工場全体で水利用率の改善にな
る。また、後段RO装置の透過水を前段RO装置の給水
に混合して利用すれば、工場外から購入する工業用水等
の水量を減少させることができる。この場合は、後段R
O装置のRO膜として、後段RO装置の透過水濃度が工
業用水の濃度と同様、あるいは若干低くなる性能のRO
膜を採用することが望ましい。In the present invention, while the part of the front RO device 12 is operated for the purpose of desalting, the rear RO device 2 uses the front concentrated water of the front RO device 12 as water supply.
The main purpose of 4 is to collect the former-stage concentrated water. That is, the water quality of the permeate of the normal rear RO device 24 is usually the front RO
The impurity concentration is higher than the permeated water of the device 12. Therefore, although it can be used as it is, if it can be used for purposes other than the pre-stage RO device, such as cooling water, miscellaneous water, environmental water, etc., the water utilization rate can be improved in the entire factory. In addition, if the permeated water of the latter RO device is mixed with the water supply of the former RO device and used, the amount of water such as industrial water purchased from outside the factory can be reduced. In this case, the latter stage R
As an RO membrane of O equipment, RO of performance that the permeated water concentration of the latter stage RO equipment is the same as or slightly lower than the concentration of industrial water.
It is desirable to employ a membrane.
【0026】前段と後段との運転条件による分け方は、
前段は通常分散剤等の薬品を添加せずに運転できる濃縮
水シリカ濃度、例えば100ppm程度を目途として設
定し、後段は分散剤添加やpH調整によりシリカ濃度を
さらに高め300〜500ppmになるように設定する
ことが望ましい。How to divide according to the operating conditions of the front stage and the rear stage is as follows:
In the first stage, the concentration of concentrated water silica that can be normally operated without adding a chemical such as a dispersant, for example, is set to about 100 ppm, and in the second stage, the silica concentration is further increased to 300 to 500 ppm by adding a dispersant or adjusting the pH. It is desirable to set.
【0027】高回収率運転を経済的に実施するために
は、RO膜と分散剤等の沈着防止剤の薬品コストを削減
する必要がある。ところが運転コストを詳細に検討する
と、分散剤等のコストは高回収率になるにしたがって、
減少し、RO膜のコストは増加することがわかった。こ
れは、分散剤濃度は濃縮水中の濃度が一定の状態で運転
されるため、回収率が高くなると濃縮水量が減り、その
結果添加する分散剤の量が減少するためである。一方、
RO膜のコストは回収率を高くすると増加する。これは
回収率を高くすることは透過水量を増加させることであ
り、同一逆浸透膜の場合には使用するRO膜の量が増加
するからである。したがって、RO膜の使用量を減少さ
せることが高回収率運転の経済性を向上させる点で重要
であることがわかった。In order to economically carry out a high recovery rate operation, it is necessary to reduce the chemical costs of the RO membrane and the deposition preventive agent such as a dispersant. However, when the operating cost is examined in detail, as the cost of the dispersant and the like becomes higher, the
It was found that the cost of the RO membrane decreased and the cost of the RO membrane increased. This is because the dispersant concentration is operated in a state where the concentration in the concentrated water is constant, so that the amount of concentrated water decreases as the recovery rate increases, and as a result, the amount of dispersant added decreases. on the other hand,
The cost of RO membranes increases with higher recovery rates. This is because increasing the recovery rate increases the amount of permeated water, and in the case of the same reverse osmosis membrane, the amount of RO membrane used increases. Therefore, it was found that reducing the amount of RO membrane used is important in improving the economical efficiency of high recovery operation.
【0028】一般に、同一種類のRO膜ならば、透過水
量は操作圧力に比例する。したがって、同一操作圧力で
透過水を増加させるためには、膜面積を増加させるすな
わち、使用するRO膜モジュールの本数を増加させるし
か方法がない。Generally, in the case of RO membranes of the same type, the amount of permeated water is proportional to the operating pressure. Therefore, the only way to increase the permeated water under the same operating pressure is to increase the membrane area, that is, to increase the number of RO membrane modules used.
【0029】一方、RO膜には多くの種類があり、同一
操作圧力でも単位膜面積当り多くの透過水量が得られ
る、いわゆるルーズなRO膜がある。すなわち、このよ
うなルーズRO膜を用いることにより膜面積の増加を最
小限に保ちつつ、透過水量を増加させることができる。On the other hand, there are many types of RO membranes, and there is a so-called loose RO membrane that can obtain a large amount of permeated water per unit membrane area even with the same operating pressure. That is, by using such a loose RO membrane, it is possible to increase the amount of permeated water while keeping the increase in membrane area to a minimum.
【0030】本発明において、“ルーズな膜”とは同一
圧力でより多くの透過水量が得られる膜のことを指して
いる。本発明においては、新品時にルーズなRO膜はも
ちろんのこと、使用後に結果としてルーズな性能を持つ
に至ったRO膜も含める。In the present invention, the "loose membrane" means a membrane which can obtain a larger amount of permeated water under the same pressure. In the present invention, not only loose RO membranes when new, but also RO membranes that have loose performance after use are included.
【0031】一般にRO膜の分離性能はルーズになると
低下する。したがって、膜装置全体のRO膜をルーズな
膜にすると、透過水の水質が低下し、装置本来の目的で
ある脱塩性能が低下する結果となる。そこで、本発明に
おいては本来の脱塩を主目的とした前段RO装置では分
離性能が高いRO膜を利用する。また、経済的に回収率
を改善することを主目的とする後段RO装置ではルーズ
なRO膜を採用することが望ましい。これにより、それ
ぞれの透過水を別々に取出して有効利用することができ
る。Generally, the separation performance of the RO membrane deteriorates when it becomes loose. Therefore, if the RO membrane of the entire membrane device is made into a loose membrane, the quality of the permeated water will be lowered, and the desalination performance, which is the original purpose of the device, will be lowered. Therefore, in the present invention, the RO membrane having a high separation performance is used in the pre-stage RO device whose main purpose is the original desalination. Further, it is desirable to adopt a loose RO membrane in the latter-stage RO device whose main purpose is to economically improve the recovery rate. Thereby, each permeated water can be taken out separately and used effectively.
【0032】上記のように、後段RO装置にルーズRO
膜を採用すると、同一圧力では単位膜面積当たりの透過
水量が多くなるので、RO膜の必要膜面積は小さくな
る、換言すればROモジュールの必要本数を少なくでき
る一方膜が汚れ易くなり、透過水量の低下が発生し易く
なる。このため後段RO装置の運転を停止してRO膜の
洗浄をする機会が多くなる。したがって、前段RO装置
を運転しながら後段RO装置を薬品洗浄することのでき
る本発明の構成がさらに有効に活用できる。As described above, the loose RO is installed in the latter RO device.
If a membrane is used, the amount of permeated water per unit membrane area increases at the same pressure, so the required membrane area of the RO membrane becomes smaller. In other words, the required number of RO modules can be reduced, while the membrane easily fouls and the amount of permeated water increases. Is likely to occur. For this reason, there are many opportunities to stop the operation of the latter-stage RO device and clean the RO film. Therefore, the configuration of the present invention, which is capable of cleaning the rear RO device with chemicals while operating the front RO device, can be utilized more effectively.
【0033】本発明において、前段RO装置に利用する
RO膜としては、SU720、SC−3200(東
レ)、NTR759HR(日東電工)、FTー30(ダ
ウ)等の高脱塩タイプのRO膜が望ましい。後段RO装
置に利用するルーズRO膜としてはSU220、SU6
20(東レ)、NTR725(日東電工)、NF−70
(ダウ)等が挙げられる。In the present invention, the RO membrane used in the pre-stage RO apparatus is preferably a high desalting RO membrane such as SU720, SC-3200 (Toray), NTR759HR (Nitto Denko), FT-30 (Dow). . As the loose RO film used for the latter RO device, SU220, SU6
20 (Toray), NTR725 (Nitto Denko), NF-70
(Dow) and the like.
【0034】前段RO装置と後段RO装置の間でpH調
整剤及び/または分散剤を添加することにより、前段R
O装置の供給水にこれらの薬剤を添加する場合に比べ
て、RO膜を透過する極微量の分散剤やpH調整剤によ
る水質低下を防止することができる。すなわち、本発明
の場合は、少なくとも前段RO装置の透過水はpH調整
剤及び分散剤の影響を受けない。また後段RO装置の透
過水を前段RO装置の給水として利用したとしても、前
段RO装置の透過水水質に与えるpH調整剤及び分散剤
の影響を最小にすることができる。By adding a pH adjusting agent and / or a dispersant between the front RO apparatus and the rear RO apparatus, the front R
Compared with the case where these chemicals are added to the water supplied to the O apparatus, it is possible to prevent the deterioration of water quality due to the extremely small amount of the dispersant or pH adjuster that permeates the RO membrane. That is, in the case of the present invention, at least the permeated water of the front RO apparatus is not affected by the pH adjuster and the dispersant. Further, even if the permeated water of the latter RO apparatus is used as the water supply for the former RO apparatus, the influence of the pH adjuster and the dispersant on the permeated water quality of the former RO apparatus can be minimized.
【0035】本発明においては、前段RO装置と後段R
O装置を直列に接続して1台のポンプで運転することが
好ましい。この場合、前段RO装置と後段RO装置との
中間と、後段RO装置の濃縮水側に圧力調整手段(図1
中バルブ28,50)を設けることにより、前段RO装
置と後段RO装置を個々に圧力調整できるようにするこ
とが望ましい。これはRO膜を選択することにより、後
段RO装置のRO膜として、前段RO装置のRO膜に比
べて同一操作圧力で3倍以上の透過水量が得られる膜を
使用する場合があり、そのような場合には後段RO装置
の操作圧力を、前段RO装置に比べてかなり低圧力に調
整する必要があるからである。また、この場合は前段R
O装置と後段RO装置の中間に設置した圧力調整手段
(図1中のバルブ28)の下流でpH調整剤及び/また
は分散剤の添加を行なえば、圧力が低下する分、これら
の薬品の注入ポンプ(図1中の注入ポンプ42)の吐出
圧が低くて済み有利である。In the present invention, the front RO device and the rear R device
It is preferable to connect the O devices in series and operate with one pump. In this case, pressure adjusting means (see FIG. 1) is provided between the front RO device and the rear RO device and on the concentrated water side of the rear RO device.
It is desirable to provide the middle valves 28, 50) so that the pressures of the front RO device and the rear RO device can be adjusted individually. In this case, by selecting an RO membrane, a membrane that can obtain a permeated water amount three times or more at the same operating pressure as the RO membrane of the latter RO apparatus may be used as compared with the RO membrane of the former RO apparatus. In such a case, it is necessary to adjust the operating pressure of the latter-stage RO device to a considerably lower pressure than that of the former-stage RO device. In this case, the front stage R
If a pH adjusting agent and / or a dispersant is added downstream of the pressure adjusting means (valve 28 in FIG. 1) installed between the O apparatus and the RO apparatus at the latter stage, the injection of these chemicals will result in a decrease in pressure. Advantageously, the discharge pressure of the pump (injection pump 42 in FIG. 1) is low.
【0036】なお、前段透過水は、前述のごとくさらに
電気式脱塩装置やイオン交換装置、限外濾過膜装置等で
純度を高めて利用することもできる。It is to be noted that the permeated water in the former stage can be used after further improving its purity by an electric desalting apparatus, an ion exchange apparatus, an ultrafiltration membrane apparatus or the like as described above.
【0037】[0037]
実施例1 図1に示す構成の造水装置を用いて、以下のような処理
を行った。Example 1 The following treatment was performed using the water producing apparatus having the configuration shown in FIG.
【0038】被処理水2である工業用水を5トン/時で
膜除濁装置からなる前処理装置4で除濁し、次いで酸供
給ライン6から塩酸を注入してpHを6.0に調節した
後、脱気装置8で脱気し、その後高圧ポンプ10で加圧
して前段RO装置12に送った。前段濃縮水16は第1
圧力調整バルブ28で圧力調節して後段RO装置24に
供給した。後段透過水44は前段透過水18と別に回収
ライン48から取出した。後段濃縮水46は第2圧力調
整バルブ50を経て外部に放出した。Industrial water, which is the water to be treated 2, was turbid at 5 tons / hour by the pretreatment device 4 consisting of a membrane turbidity device, and then hydrochloric acid was injected from the acid supply line 6 to adjust the pH to 6.0. After that, it was deaerated by the deaeration device 8, then pressurized by the high pressure pump 10 and sent to the pre-stage RO device 12. The first-stage concentrated water 16 is the first
The pressure was adjusted by the pressure adjusting valve 28 and the pressure was supplied to the rear RO device 24. The rear-stage permeated water 44 was taken out from the recovery line 48 separately from the front-stage permeated water 18. The second-stage concentrated water 46 was discharged to the outside through the second pressure adjusting valve 50.
【0039】前段透過水は取出しライン18から脱塩水
として取出した。The former-stage permeated water was taken out as desalted water from the take-out line 18.
【0040】前段RO装置12、及び後段RO装置24
にはRO膜として東レSU720を用い、それぞれの運
転圧力を15Kgf/cm2 、13Kgf/cm2 とし
た。Front stage RO device 12 and rear stage RO device 24
As the RO membrane, Toray SU720 was used as the RO membrane, and the respective operating pressures were set to 15 Kgf / cm 2 and 13 Kgf / cm 2 .
【0041】沈着防止剤として塩酸を沈着防止剤注入ラ
イン32から注入して後段濃縮水のpHを5.5に保っ
た。Hydrochloric acid as an anti-deposition agent was injected from the anti-deposition agent injection line 32 to maintain the pH of the latter-stage concentrated water at 5.5.
【0042】前段RO装置12は濃縮水シリカ濃度75
ppm(回収率80%)まで濃縮し、後段RO装置24
はシリカ濃度300ppm(回収率75%)で運転し、
全回収率95%を得た。The former RO device 12 has a concentrated water silica concentration of 75.
Concentrated to ppm (recovery rate of 80%), post-stage RO device 24
Runs at a silica concentration of 300 ppm (recovery rate 75%),
A total recovery rate of 95% was obtained.
【0043】運転日数の経過と共に後段透過水量が低下
したので、前段RO装置12を運転し続けながらバルブ
30,38を閉、バルブ36,40を開とした。洗浄薬
品として洗浄薬品貯槽45で調整した塩酸水溶液(pH
2)をポンプ43によって洗浄薬品供給ライン34から
注入し、後段RO装置24の濃縮水側を通流させた後に
排出ライン52を経て点線Pで示される流路を循環させ
て後段RO装置24の循環洗浄を2時間行なった。その
後、ポンプ43を停止して系内に塩酸水溶液を満たした
まま1時間浸漬した。次いで、洗浄薬品貯槽45内の塩
酸水溶液を排出してこの貯槽内に水酸化ナトリウム水溶
液(pH11)を調整し、この水酸化ナトリウム水溶液
を用いて上記塩酸洗浄と同様に、2時間循環洗浄を行
い、その後ポンプ43を停止して1夜浸漬した。その
後、正常運転に復帰させた。Since the amount of permeated water in the latter stage decreased with the lapse of the number of operating days, the valves 30, 38 were closed and the valves 36, 40 were opened while continuing to operate the front stage RO device 12. Aqueous hydrochloric acid solution (pH adjusted as a cleaning chemical in the cleaning chemical storage tank 45)
2) is injected from the cleaning chemical supply line 34 by the pump 43, and is made to flow through the concentrated water side of the post-stage RO device 24, and then circulates through the discharge line 52 to the flow path indicated by the dotted line P to make the post-stage RO device 24 Circulation washing was performed for 2 hours. After that, the pump 43 was stopped and the system was immersed for 1 hour while being filled with the hydrochloric acid aqueous solution. Next, the hydrochloric acid aqueous solution in the cleaning chemicals storage tank 45 is discharged to adjust the sodium hydroxide aqueous solution (pH 11) in this storage tank, and this sodium hydroxide aqueous solution is circulated and washed for 2 hours in the same manner as the above hydrochloric acid cleaning. After that, the pump 43 was stopped and it was immersed overnight. After that, normal operation was restored.
【0044】図2に上記装置の運転結果を示した。図2
は、単位膜面積当りの透過水量の経時変化を、初期透過
水量を1とした時の比率(透過水量比)で示したもの
で、前段RO膜と後段RO膜のそれぞれについて示して
ある。図からわかるように、前段RO膜は約5ヵ月の
間、透過水量低下はほとんど見られず、また後段RO膜
は化学洗浄によって性能が回復しており、後段RO装置
のみを化学洗浄することにより安定して運転できること
がわかる。 実施例2 図3に上記実施例における後段RO装置24として、上
記SU720よりルーズなRO膜である東レSU220
Sを装着したRO装置を用い、このRO装置の運転圧力
を9kgf/cm2 としたこと以外は上記と同じ装置、
同じ条件で運転した場合の運転結果を示した。FIG. 2 shows the operation result of the above apparatus. Figure 2
Shows the change with time of the permeated water amount per unit membrane area as a ratio (permeated water amount ratio) when the initial permeated water amount is 1, and is shown for each of the front RO membrane and the rear RO membrane. As can be seen from the figure, the permeated water amount of the front RO membrane hardly decreased for about 5 months, and the performance of the rear RO membrane was recovered by chemical cleaning. You can see that you can drive stably. Embodiment 2 FIG. 3 shows the Toray SU220, which is an RO membrane looser than SU720, as the rear RO device 24 in the above embodiment.
The same device as above except that the RO device equipped with S was used and the operating pressure of this RO device was 9 kgf / cm 2 .
The operation results when operating under the same conditions are shown.
【0045】なお、東レSU220SはSU720に比
べて、同一圧力下において単位膜面積当り約3倍の透過
水量が得られるRO膜であるので、本実施例において
は、後段RO装置の膜面積が実施例1の場合の1/2と
なるようにして運転した。Since the Toray SU220S is an RO membrane that can obtain a permeated water amount of about three times per unit membrane area under the same pressure as the SU720, in this embodiment, the membrane area of the latter RO device is equal to that of the SU720. The operation was performed so as to be 1/2 of that in Example 1.
【0046】図3に示したごとく、後段RO膜装置の膜
面積を実施例1の1/2とし、単位膜面積当りの透過水
量を実施例1の場合の2倍としたことによって後段RO
装置の透過水量の低下は図2の場合より著しくなるが、
このような水量低下も化学洗浄によって、確実に運転初
期の状態に回復している。As shown in FIG. 3, the membrane area of the latter RO membrane device was set to 1/2 of that of Example 1, and the amount of permeated water per unit membrane area was made twice as large as that of Example 1, so that the latter RO membrane was formed.
The decrease in the amount of permeated water of the device is more remarkable than in the case of Fig. 2,
Such a decrease in the amount of water is reliably restored to the initial state of operation by chemical cleaning.
【0047】したがって、本実施例の場合は、後段RO
膜装置の膜面積を1/2に減少することができる分、膜
モジュールの使用本数、あるいは膜エレメントの使用本
数を削減することができ、その結果、水回収に必要なコ
ストが実施例1の場合に比べて大きく低下する。Therefore, in the case of this embodiment, the latter RO
Since the membrane area of the membrane device can be reduced to 1/2, the number of membrane modules used or the number of membrane elements used can be reduced, and as a result, the cost required for water recovery is lower than that of the first embodiment. It is much lower than the case.
【0048】[0048]
【発明の効果】本発明により、工業用水等を被処理水と
して用いるRO膜を用いた造水装置において、より安定
した高回収率運転が可能になり、高回収率運転の経済性
が大幅に改善される。EFFECTS OF THE INVENTION According to the present invention, a more stable and high recovery rate operation is possible in a desalination apparatus using an RO membrane that uses industrial water or the like as the water to be treated, and the economical efficiency of the high recovery rate operation is greatly improved. Be improved.
【図1】本発明の一実施例を示すフロー図である。FIG. 1 is a flow chart showing an embodiment of the present invention.
【図2】実施例1における透過水量比と運転時間の関係
を示すグラフである。FIG. 2 is a graph showing a relationship between a permeated water amount ratio and an operating time in Example 1.
【図3】実施例2における透過水量比と運転時間の関係
を示すグラフである。FIG. 3 is a graph showing a relationship between a permeated water amount ratio and an operating time in Example 2.
2 被処理水 4 前処理装置 6 酸供給ライン 8 脱気装置 10 ポンプ 12 前段RO装置 14 前段透過水 16 前段濃縮水 18 取出しライン 20 供給パイプ 22 前段濃縮水出口 24 後段RO装置 26 後段処理水入口 28 第1圧力調整バルブ 30 バルブ 31 濃縮水取出しライン 32 沈着防止剤注入ライン 34 洗浄薬品供給ライン 36 バルブ 38 バルブ 40 バルブ 42 注入ポンプ(沈着防止剤用) 43 ポンプ(洗浄薬品供給用) 44 後段透過水 45 洗浄薬品貯槽 46 後段濃縮水 48 回収ライン 50 第2圧力調整バルブ 52 排出ライン 2 Water to be treated 4 Pretreatment device 6 Acid supply line 8 Degassing device 10 Pump 12 Pre-stage RO device 14 Pre-stage permeated water 16 Pre-stage concentrated water 18 Extraction line 20 Supply pipe 22 Pre-stage concentrated water outlet 24 Post-stage RO device 26 Post-stage treated water inlet 28 First Pressure Adjustment Valve 30 Valve 31 Concentrated Water Extraction Line 32 Deposit Prevention Agent Injection Line 34 Cleaning Chemical Supply Line 36 Valve 38 Valve 40 Valve 42 Injection Pump (for Deposition Agent) 43 Pump (For Cleaning Chemical Supply) 44 Permeate Permeation Water 45 Cleaning chemical storage tank 46 Second-stage concentrated water 48 Recovery line 50 Second pressure adjustment valve 52 Discharge line
Claims (4)
と前段濃縮水とに分離する前段逆浸透膜装置と、前記前
段濃縮水を後段逆浸透膜装置に供給する供給パイプと、
供給パイプを介して供給される前記前段濃縮水を逆浸透
膜処理して後段透過水と後段濃縮水とに分離する造水装
置において、前記供給パイプに濃縮水取出しラインと、
沈着防止剤注入ラインと、洗浄薬品供給ラインと、これ
らのラインの流路切換手段とを備えてなり、通常運転時
には濃縮水取出しラインと洗浄薬品供給ラインとを閉と
すると共に沈着防止剤注入ラインから供給パイプに沈着
防止剤を供給し、洗浄時には沈着防止剤注入ラインを閉
として沈着防止剤の供給を停止しながら濃縮水取出しラ
インから前段濃縮水を取出すと共に洗浄薬品供給ライン
から洗浄薬品を供給して前段逆浸透膜装置を運転しなが
ら後段逆浸透膜装置を洗浄することを特徴とする造水装
置。1. A front-stage reverse osmosis membrane device for treating water to be treated by reverse osmosis membrane separation into front-stage permeate water and front-stage concentrated water; and a supply pipe for supplying the front-stage concentrated water to the rear-stage reverse osmosis membrane device,
In a fresh water generator that separates the former-stage concentrated water supplied through a supply pipe into a latter-stage permeated water and a latter-stage concentrated water by reverse osmosis membrane treatment, a concentrated-water take-out line in the supply pipe,
An anti-sedimentation agent injection line, a cleaning chemicals supply line, and a flow path switching means for these lines are provided, and in normal operation, the concentrated water take-out line and the cleaning chemicals supply line are closed, and the deposition inhibitor injection line is also provided. Supply anti-deposition agent from the supply pipe to the supply pipe, and close the anti-deposition agent injection line during cleaning to stop the anti-deposition agent supply and remove the preceding concentrated water from the concentrated water extraction line and supply the cleaning chemical from the cleaning chemical supply line. Then, the desalination apparatus is characterized in that the latter stage reverse osmosis membrane device is washed while operating the former stage reverse osmosis membrane device.
透膜装置の逆浸透膜よりもルーズな逆浸透膜である請求
項1に記載の造水装置。2. The desalination apparatus according to claim 1, wherein the reverse osmosis membrane of the rear stage reverse osmosis membrane device is a reverse osmosis membrane looser than the reverse osmosis membrane of the front stage reverse osmosis membrane device.
給水入口とポンプを介することなく直接連結され後段逆
浸透膜装置が前段逆浸透膜装置の濃縮水の余圧で運転さ
れるものである請求項1に記載の造水装置。3. The former-stage concentrated water outlet is directly connected to the feedwater inlet of the latter-stage reverse osmosis membrane device without a pump, and the latter-stage reverse osmosis membrane device is operated by the residual pressure of the concentrated water of the former-stage reverse osmosis membrane device. The fresh water generator according to claim 1.
処理して前段透過水と前段濃縮水とに分離して前段透過
水を得ると共に、前記前段濃縮水を後段逆浸透膜装置で
逆浸透膜処理して後段透過水と後段濃縮水とに分離する
造水方法において、後段逆浸透膜装置の逆浸透膜の洗浄
時には、前段逆浸透膜装置を運転して前段透過水を取出
しつつ、後段逆浸透膜装置の運転を停止して後段逆浸透
膜装置の逆浸透膜の洗浄を行なうことを特徴とする造水
方法。4. The front osmosis water is obtained by treating the water to be treated with a reverse osmosis membrane device by a reverse osmosis membrane device to obtain pre-stage permeated water and pre-stage concentrated water, and the pre-stage concentrated water is obtained from the post-stage reverse osmosis membrane device. In the water production method in which the reverse osmosis membrane treatment is performed with the latter to separate the latter-stage permeated water and the latter-stage concentrated water, when cleaning the reverse osmosis membrane of the latter-stage reverse osmosis membrane device, the former-stage reverse osmosis membrane device is operated to take out the former-stage permeated water. At the same time, the method for producing water is characterized in that the operation of the latter-stage reverse osmosis membrane device is stopped and the reverse-osmosis membrane of the latter-stage reverse osmosis membrane device is washed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27891594A JP3190218B2 (en) | 1994-11-14 | 1994-11-14 | Fresh water generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27891594A JP3190218B2 (en) | 1994-11-14 | 1994-11-14 | Fresh water generator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08132038A true JPH08132038A (en) | 1996-05-28 |
JP3190218B2 JP3190218B2 (en) | 2001-07-23 |
Family
ID=17603868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27891594A Expired - Fee Related JP3190218B2 (en) | 1994-11-14 | 1994-11-14 | Fresh water generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3190218B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0899238A1 (en) * | 1997-08-28 | 1999-03-03 | Hager + Elsässer GmbH | Method and apparatus for treating water by reverse osmosis or nanofiltration |
-
1994
- 1994-11-14 JP JP27891594A patent/JP3190218B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0899238A1 (en) * | 1997-08-28 | 1999-03-03 | Hager + Elsässer GmbH | Method and apparatus for treating water by reverse osmosis or nanofiltration |
Also Published As
Publication number | Publication date |
---|---|
JP3190218B2 (en) | 2001-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4472050B2 (en) | Fresh water generator and fresh water generation method | |
EP1424311B1 (en) | Method of multi-stage reverse osmosis treatment | |
JP4798644B2 (en) | Desalination method using reverse osmosis membrane | |
JP4996067B2 (en) | Water treatment apparatus using reverse osmosis membrane and method of using the same | |
JP4241684B2 (en) | Membrane module cleaning method | |
JP6860648B1 (en) | Water treatment system and water treatment method | |
JP2000189964A (en) | Fresh water maker and production of fresh water | |
JPH05269463A (en) | Membrane separation device | |
JP7580912B2 (en) | Concentration System | |
KR20230066266A (en) | How to operate the desalinator | |
JP3190218B2 (en) | Fresh water generator | |
JP3267468B2 (en) | Operating method of reverse osmosis membrane device | |
CN115461133B (en) | Liquid treatment device, pure water production system, and liquid treatment method | |
JP4208270B2 (en) | Pure water production method | |
JP4850467B2 (en) | Cleaning method for membrane deaerator | |
JP2006122787A (en) | Seawater desalination method | |
JPH11662A (en) | Demineralization apparatus and method for boiler water | |
JP2960258B2 (en) | Ultrapure water production equipment | |
JP2005046762A (en) | Water treatment method and water treatment apparatus | |
KR20210145125A (en) | Membrane degassing device cleaning method and ultrapure water production system | |
JP3227765B2 (en) | Membrane separation device | |
JPS63141694A (en) | Production of ultra-pure water | |
JP3729260B2 (en) | Water treatment method using reverse osmosis membrane | |
JP2005046801A (en) | Water treatment method and apparatus therefor | |
JPH09234349A (en) | Membrane separation apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090518 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090518 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100518 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110518 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110518 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120518 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |