JPH08122279A - Underground relative permittivity measuring method, geological measuring method, and position measuring method - Google Patents
Underground relative permittivity measuring method, geological measuring method, and position measuring methodInfo
- Publication number
- JPH08122279A JPH08122279A JP28151894A JP28151894A JPH08122279A JP H08122279 A JPH08122279 A JP H08122279A JP 28151894 A JP28151894 A JP 28151894A JP 28151894 A JP28151894 A JP 28151894A JP H08122279 A JPH08122279 A JP H08122279A
- Authority
- JP
- Japan
- Prior art keywords
- relative permittivity
- frequency
- ground
- attenuation
- waveform
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 32
- 238000005314 correlation function Methods 0.000 claims abstract description 6
- 230000005540 biological transmission Effects 0.000 claims description 15
- 238000005259 measurement Methods 0.000 claims description 9
- 238000000691 measurement method Methods 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 12
- 238000010276 construction Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 5
- 239000002689 soil Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000009412 basement excavation Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Landscapes
- Radar Systems Or Details Thereof (AREA)
- Excavating Of Shafts Or Tunnels (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
(57)【要約】
【目的】 地中の比誘電率を精度良く測定できるととも
に、反射物等までの距離及び地質も同様に精度良く測定
できるようにする。
【構成】 送信アンテナ3から一定周波数f0の電磁波
を地中に送信し、その送信波が合成した表面反射波を受
信アンテナ4で受信して第1周期の減衰周期から周波数
fを弁別し、この周波数fを、比誘電率との相関を示す
周波数・比誘電率特性データと照合することにより、対
応する比誘電率を得る。受信した対象信号波形と障害物
反射等が無いときの自然減衰波形との相互相関関数の電
圧ピーク点を求め、そのピーク点の時間Tと、先に測定
した比誘電率から求まる電磁波の伝播速度νとから反射
物等の位置を演算する。更に、障害物反射等がないとき
の自然減衰波形から減衰率を求め、この減衰率から比抵
抗又は導電率を算出し、この値と先に測定した比誘電率
とをパラメータとしてデータベースから該当する地質種
別を抽出する。
(57) [Abstract] [Purpose] To be able to measure the relative permittivity in the ground with high accuracy, and also to measure the distance to the reflector and the geology with high accuracy. [Structure] An electromagnetic wave having a constant frequency f0 is transmitted to the ground from a transmitting antenna 3, a surface reflected wave obtained by combining the transmitting waves is received by a receiving antenna 4, and the frequency f is discriminated from the attenuation period of the first period. The corresponding relative permittivity is obtained by collating the frequency f with the frequency / relative permittivity characteristic data showing the correlation with the relative permittivity. The voltage peak point of the cross-correlation function between the received target signal waveform and the natural attenuation waveform when there is no obstacle reflection, etc. is found, and the time T at that peak point and the electromagnetic wave propagation speed found from the previously measured relative permittivity The position of the reflector or the like is calculated from ν. Furthermore, the attenuation factor is obtained from the natural attenuation waveform when there is no obstacle reflection, etc., and the specific resistance or conductivity is calculated from this attenuation factor, and this value and the previously measured relative permittivity are used as parameters from the database. Extract geological classification.
Description
【0001】[0001]
【産業上の利用分野】本発明は、電磁波を地中に送信
し、その反射波を受信して地中の比誘電率を測定する方
法、その測定した比誘電率を利用して地質を測定する方
法、同じく測定した比誘電率を利用して地中の障害物等
の位置を測定する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of transmitting an electromagnetic wave to the ground and receiving the reflected wave to measure the relative permittivity in the ground, and measuring the geology using the measured relative permittivity. And a method of measuring the position of an obstacle in the ground using the measured relative permittivity.
【0002】[0002]
【従来の技術】従来、シールド工法において切羽前方の
地中探査を行うために、地中の比誘電率及び反射物まで
の距離を測定する方法として、例えば特開平5−529
49号公報に記載の方法があった。この方法は、送信ア
ンテナと受信アンテナを距離X1だけ離して配置し、こ
の距離X1と、受信した表面伝播波の伝播時間t1 とか
ら比誘電率εrを次の(2)式から求める。 εr={(t1 ×c)/X1}2 ・・・・・(2) 但し、cは光の速度である。また、電磁波の速度νはν
=c/√εrで与えられるため、その速度と、受信した
反射波のピーク点での伝播時間t2 とから、反射物まで
の距離X2を次の(3)式によって求める。 X2=ν・t2 /2 ・・・・・(3)2. Description of the Related Art Conventionally, as a method for measuring the relative permittivity in the ground and the distance to a reflecting object in order to perform an underground survey in front of a face in a shield construction method, for example, Japanese Patent Laid-Open No. 5-529.
There was a method described in Japanese Patent Publication No. 49. In this method, the transmitting antenna and the receiving antenna are arranged apart from each other by a distance X1, and the relative permittivity εr is obtained from the following expression (2) from this distance X1 and the propagation time t 1 of the received surface propagation wave. εr = {(t 1 × c) / X1} 2 (2) where c is the speed of light. In addition, the electromagnetic wave velocity ν is ν
= C / √εr, the distance X2 to the reflector is calculated from the velocity and the propagation time t 2 at the peak point of the received reflected wave by the following equation (3). X2 = ν · t 2/2 ····· (3)
【0003】しかし、これによると次のような問題点が
ある。 送信アンテナと受信アンテナとを離すことを前提と
した方法であるため、送信アンテナと受信アンテナと
は、必然的に所定の角度をもった配置関係とせざるを得
ず、その幾何学的な誤差が測定精度に大きく影響する。 電磁波は伝播しやすいところを通過することから、
送信アンテナと受信アンテナとに角度があることは、電
磁波の伝播・反射経路に非直線的要素を生じさせ、測定
精度の低下を招く。 シールド工法に適用する場合、送信アンテナと受信
アンテナとが分離した分離型電磁波レーダアンテナを用
い、送信アンテナと受信アンテナとを、シールド掘進機
のカッタ面板に離して取り付けることになるが、カッタ
面板は、その構造上、取り付けスペースに制限があり、
またレーダアンテナも選定する周波数によりサイズが異
なる。このため、十分な探査が行える所定の周波数のレ
ーダアンテナを取り付けるためには、カッタ面板の改造
が必要となり、費用及び工期が増大する。一方、カッタ
面板の改造が不可能な場合には、使用できるレーダアン
テナの周波数が制限され、満足な探査を行えない。However, this has the following problems. Since the method is based on the assumption that the transmitting antenna and the receiving antenna are separated from each other, the transmitting antenna and the receiving antenna inevitably have a positional relationship with a predetermined angle, and their geometrical error It greatly affects the measurement accuracy. Since electromagnetic waves pass through places where they can easily propagate,
The presence of the angle between the transmitting antenna and the receiving antenna causes a non-linear element in the propagation / reflection path of the electromagnetic wave, resulting in a decrease in measurement accuracy. When applied to the shield construction method, a separate electromagnetic radar antenna in which the transmitting antenna and the receiving antenna are separated is used, and the transmitting antenna and the receiving antenna are separately mounted on the cutter face plate of the shield machine, but the cutter face plate is Due to its structure, there is a limit to the mounting space,
The size of the radar antenna also differs depending on the selected frequency. For this reason, in order to attach a radar antenna with a predetermined frequency capable of sufficient exploration, it is necessary to modify the cutter face plate, which increases cost and construction period. On the other hand, if the cutter face plate cannot be modified, the frequency of the radar antenna that can be used is limited, and a satisfactory search cannot be performed.
【0004】また、シールド掘進中における地質(土
質)の測定方法としては、特公平5−25994号公報
に開示の方法がある。この方法は、シールド掘進機のチ
ャンバより土砂を採取してその粒度を粒度測定装置によ
り測定し、測定粒度から土質を判定する。As a method of measuring the geology (soil quality) during the shield excavation, there is a method disclosed in Japanese Examined Patent Publication No. 5-25994. In this method, earth and sand are sampled from the chamber of a shield machine, the particle size is measured by a particle size measuring device, and the soil quality is judged from the measured particle size.
【0005】しかし、これは、チャンバに取り込まれた
土砂の平均粒度のみをパラメータとした土質判定である
ため、掘削土に泥水や加泥材が混じる場合にはその影響
を受け、また、シールド掘進機の前方周辺の地山が異な
る地質で構成されている場合には、それぞれの地質を判
別できないため、その結果はシールド掘進機の前方周辺
の地質を表しているとはいい難い。However, since this is a soil quality judgment using only the average grain size of the earth and sand taken into the chamber as a parameter, when mud or mud is mixed in the excavated soil, it is affected, and the shield excavation proceeds. When the ground around the front of the machine is composed of different geology, it is difficult to say that the result shows the geology around the front of the shield machine because the geology cannot be distinguished.
【0006】[0006]
【発明が解決しようとする課題】本発明の目的は、上述
したような問題点がなく、地中の比誘電率を精度良く測
定できる地中の比誘電率測定方法、及びシールド掘進機
の前方周辺の地質を明確に区分測定できる地質測定方
法、並びに反射物等までの距離を精度良く測定できる位
置測定方法を提供することにある。The object of the present invention is to solve the above-mentioned problems and to measure the relative permittivity in the ground with high accuracy, and the forward direction of the shield machine. An object of the present invention is to provide a geological measurement method that can clearly measure the surrounding geology and a position measurement method that can accurately measure the distance to a reflector or the like.
【0007】[0007]
【課題を解決するための手段】本発明による比誘電率測
定方法では、送信アンテナから一定周波数f0の電磁波
を地中に送信し、その反射波を受信アンテナで受信して
第1周期の減衰周期から周波数fを弁別し、この周波数
fを、予め求めた周波数と比誘電率との相関を示す周波
数・比誘電率特性データと照合することにより、対応す
る比誘電率を得る。In the relative permittivity measuring method according to the present invention, an electromagnetic wave having a constant frequency f0 is transmitted from the transmitting antenna to the ground, and the reflected wave is received by the receiving antenna, and the attenuation period of the first period. Then, the frequency f is discriminated and the frequency f is compared with the frequency / dielectric constant characteristic data showing the correlation between the frequency and the dielectric constant obtained in advance to obtain the corresponding dielectric constant.
【0008】図5はこの周波数・比誘電率特性データを
グラフにしたもので、周波数fを横軸、比誘電率εγを
縦軸にとれば、周波数fの変化に対する比誘電率εγの
値は指数曲線を描く。これは次の関係式(4)で表現で
き、弁別した周波数fをこの関係式(4)に適用して比
誘電率εγを求めることができる。 εγ=a×b1/f ・・・・・(4) 但し、aは第1の比誘電率回帰係数、bは第2の比誘電
率回帰係数である。FIG. 5 is a graph of this frequency / dielectric constant characteristic data. If the frequency f is plotted on the horizontal axis and the relative dielectric constant εγ is plotted on the vertical axis, the value of the relative dielectric constant εγ with respect to changes in the frequency f is shown. Draw an exponential curve. This can be expressed by the following relational expression (4), and the discriminated frequency f can be applied to this relational expression (4) to obtain the relative permittivity εγ. εγ = a × b 1 / f (4) where a is the first relative permittivity regression coefficient and b is the second relative permittivity regression coefficient.
【0009】送信アンテナと受信アンテナとは従来のよ
うに離さずに一体化した電磁波レーダによって電磁波を
送受信する。Electromagnetic waves are transmitted and received by an electromagnetic wave radar in which the transmitting antenna and the receiving antenna are integrated without being separated from each other as in the conventional case.
【0010】また、本発明による地質測定方法では、障
害物反射等が無いときの自然減衰波形から減衰率を求
め、この減衰率から比抵抗又はその逆数の導電率を算出
し、この算出した比抵抗又は導電率と上記のように測定
した比誘電率とを、導電率又は比抵抗と比誘電率とをパ
ラメータとして地質区分して予め構築されているデータ
ベースの各パラメータ値と照合し、このデータベース中
から該当する地質を抽出する。Further, in the geological measuring method according to the present invention, the attenuation rate is obtained from the natural attenuation waveform when there is no obstacle reflection, etc., and the specific resistance or the reciprocal of the electrical conductivity is calculated from this attenuation rate, and the calculated ratio is calculated. The resistivity or conductivity and the relative permittivity measured as described above are compared with each parameter value of a database that is pre-built by geologically classifying the conductivity or resistivity and the relative permittivity as parameters, and this database The relevant geology is extracted from the inside.
【0011】更に、本発明による位置測定方法では、受
信した対象信号波形と障害物反射等が無いときの自然減
衰波形との相互相関関数の電圧ピーク点を求め、そのピ
ーク点の時間Tと、上記のように測定した比誘電率から
求まる電磁波の伝播速度νとから反射対象物等の位置を
演算する。Further, in the position measuring method according to the present invention, the voltage peak point of the cross-correlation function between the received target signal waveform and the natural attenuation waveform when there is no obstacle reflection or the like is obtained, and the time T of the peak point, The position of the reflection object or the like is calculated from the propagation velocity ν of the electromagnetic wave obtained from the relative permittivity measured as described above.
【0012】[0012]
【作用】ある変調周波数f0の電磁波が物質中を伝播す
るとき周波数がシフトすると、そのシフト量Δfは、当
該物質の比誘電率によって決まる。また、比誘電率の異
なる物質中に電磁波が浸透する場合、2つの物質の境界
面で電磁波が反射する。電磁波探査のように周期的に電
磁波を発生する場合には、境界面より繰り返し反射し、
その反射信号は、浸透した物質の比誘電率により決まる
周波数特性をもっており、送信周波数f0に対してΔf
周波数シフトしたものとなる。このことは、送信アンテ
ナから送信された周波数がf0で信号強度がV1の電磁
波と、これに対してΔf周波数シフトした信号強度V2
の信号とが合成されて受信アンテナに検出されることを
意味する。When an electromagnetic wave of a certain modulation frequency f0 propagates through a substance, the frequency shifts, and the shift amount Δf is determined by the relative permittivity of the substance. When an electromagnetic wave penetrates into a substance having a different relative dielectric constant, the electromagnetic wave is reflected at the interface between the two substances. When electromagnetic waves are generated periodically like electromagnetic wave exploration, they are repeatedly reflected from the boundary surface,
The reflected signal has a frequency characteristic determined by the relative permittivity of the permeated substance, and is Δf with respect to the transmission frequency f0.
It will be frequency-shifted. This means that the electromagnetic wave transmitted from the transmitting antenna has a frequency f0 and a signal strength V1, and the signal strength V2 frequency-shifted by Δf.
Signal is combined and detected by the receiving antenna.
【0013】そこで、本発明においては、送信波と地中
を伝播した反射波等とが合成し干渉した表面反射波の第
1周期の周波数を用いて比誘電率を求める。送信周波数
f0を一定とすれば、これに対する周波数シフト量Δf
の変化と比誘電率の値との関係は上記のように決まるの
で、周波数シフトした受信信号の周波数fの変化と比誘
電率の値との関係も決まることになり、図5のように周
波数fの変化に対する比誘電率εγの値は指数曲線を描
く。Therefore, in the present invention, the relative permittivity is obtained by using the frequency of the first period of the surface reflected wave which is the interference of the transmitted wave and the reflected wave propagating in the ground. If the transmission frequency f0 is constant, the frequency shift amount Δf corresponding to this is
Since the relationship between the change in R and the value of the relative permittivity is determined as described above, the relationship between the change in the frequency f of the frequency-shifted received signal and the value of the relative permittivity is also determined. As shown in FIG. The value of the relative permittivity εγ with respect to the change of f draws an exponential curve.
【0014】従って、表面反射波の第1周期の減衰周期
の周波数fをこの指数曲線に当てはめるようにすれば、
送信周波数f0を周波数fへシフトさせた地中の比誘電
率εγを知ることができる。Therefore, if the frequency f of the attenuation period of the first period of the surface reflected wave is applied to this exponential curve,
The relative permittivity εγ in the ground obtained by shifting the transmission frequency f0 to the frequency f can be known.
【0015】図5の特性グラフは上記のような関係式
(4)で表すことができるが、この関係式における第1
の比誘電率回帰係数a、第2の比誘電率回帰係数bは次
のようにして求めることができる。関係式(4)を、 Ln・εγ=Ln(a×b1/f )=Ln・a+(1/f)Ln・b と置き換え、y=α+βx(但し、y=Ln・εγ、x
=1/f、α=Ln・a、β=Ln・b)として、線形
回帰でfとεγにより比誘電率回帰係数a及びbを求め
る。The characteristic graph of FIG. 5 can be expressed by the above relational expression (4).
The relative permittivity regression coefficient a and the second relative permittivity regression coefficient b can be obtained as follows. The relational expression (4) is replaced with Ln · εγ = Ln (a × b 1 / f ) = Ln · a + (1 / f) Ln · b, and y = α + βx (where y = Ln · εγ, x
= 1 / f, α = Ln · a, β = Ln · b), the relative permittivity regression coefficients a and b are obtained by f and εγ by linear regression.
【0016】一方、受信アンテナの受信信号が自然減衰
波形である場合、地中には障害物等の反射物が存在しな
いことを示す。すなわち、自然減衰波形は、特定の反射
物が無い地中においてその比誘電率のみの影響を受けた
地山表面からの反射信号とみることができる。これに対
して、地中に障害物があった場合の反射信号は、地中の
比誘電率と障害物の比誘電率との影響を受けたものとな
る。そこで、自然減衰波形を仮の基準波形として、障害
物からの反射も含む反射信号と相互相関処理を行うと、
地表面と障害物とによる伝播時間差のみを抽出すること
ができる。そして、この伝播時間差Tと、先に測定した
比誘電率εγから求まる電磁波の伝播速度ν(ν=c/
√εγ)とから障害物までの例えば距離Lを、次の
(5)式から演算することができる。 L=ν×T ・・・・・(5)On the other hand, when the received signal of the receiving antenna has a natural attenuation waveform, it means that there is no obstacle such as an obstacle in the ground. That is, the natural attenuation waveform can be regarded as a reflection signal from the ground surface affected by only its relative permittivity in the ground without a specific reflector. On the other hand, when there is an obstacle in the ground, the reflected signal is influenced by the relative permittivity of the underground and the relative permittivity of the obstacle. Therefore, if the natural attenuation waveform is used as a temporary reference waveform and cross-correlation processing is performed with the reflection signal including the reflection from the obstacle,
Only the propagation time difference between the ground surface and the obstacle can be extracted. Then, the propagation velocity ν (ν = c / of the electromagnetic wave obtained from this propagation time difference T and the previously measured relative permittivity εγ
For example, the distance L from √εγ) to the obstacle can be calculated from the following equation (5). L = ν × T (5)
【0017】また、自然減衰波形を周知のように波形解
析することによりその減衰率αを求めることができる。
自然減衰波形の減衰特性は伝播媒体である地質によって
異なり、減衰率αと媒体(地質)の比抵抗ρ(導電率σ
の逆数、つまりρ=1/σ)とは次の(6)式の関係が
成り立つ。 α=(60π/ρ)×√εr ・・・・・(6) 但し、πは円周率である。Further, the attenuation rate α can be obtained by performing a waveform analysis of the natural attenuation waveform in a known manner.
The attenuation characteristics of the natural attenuation waveform differ depending on the geology that is the propagation medium, and the attenuation rate α and the specific resistance ρ (conductivity σ
The relation of the following equation (6) is established with the reciprocal of, that is, ρ = 1 / σ. α = (60π / ρ) × √εr (6) where π is the circular constant.
【0018】図11の(A)・(B)・(C)は地質の
比抵抗ρの違いによる自然減衰波形の変化を示す。な
お、この図において5は電磁波レーダである。また、図
12は比抵抗ρの変化による減衰特性変化をグラフに表
したものである。この図から判るように、比抵抗ρが大
きい(導電率σが小さい)と減衰率αは小さく、比抵抗
ρが小さい(導電率σが大きい)と減衰率αは大きくな
る。従って、減衰率αから比抵抗ρが求まり、比抵抗ρ
から地質の種別を推定することができる。しかし、この
ような比抵抗ρのみをパラメータとした地質判定では、
自然減衰波形の減衰特性を根拠としたものであるため、
誤差を生じやすい。そこで、本発明では、比誘電率も地
質によって異なることから、比抵抗ρ(又はその逆数の
導電率σ)に加えて上記のようにして求めた比誘電率も
パラメータとし、これら両方から地質の種別を判定する
ことにより精度の向上を図っているものである。11 (A), (B), and (C) show changes in the natural attenuation waveform due to the difference in the specific resistivity ρ of the geology. In this figure, 5 is an electromagnetic wave radar. Further, FIG. 12 is a graph showing the change in the attenuation characteristic due to the change in the specific resistance ρ. As can be seen from this figure, when the specific resistance ρ is large (the electrical conductivity σ is small), the attenuation rate α is small, and when the specific resistance ρ is small (the electrical conductivity σ is large), the attenuation rate α is large. Therefore, the specific resistance ρ can be obtained from the attenuation rate α, and the specific resistance ρ
The type of geology can be estimated from this. However, in such a geological judgment using only the specific resistance ρ as a parameter,
Since it is based on the attenuation characteristics of the natural attenuation waveform,
It is easy to make an error. Therefore, in the present invention, since the relative permittivity also varies depending on the geology, in addition to the specific resistance ρ (or its inverse conductivity σ), the relative permittivity obtained as described above is also used as a parameter and the The accuracy is improved by determining the type.
【0019】[0019]
【実施例】以下、本発明をシールド工法に適用した実施
例について図面を参照して詳細に説明する。Embodiments of the present invention applied to a shield construction method will be described in detail below with reference to the drawings.
【0020】図1に示すように、シールド掘進機1のカ
ッタ面板2の前面の一個所に、送信アンテナ3と受信ア
ンテナ4とを一体化した電磁波レーダ5が、レーダ保護
箱6に収納したまま埋め込まれており、送信アンテナ3
から地山7に向かって電磁波8を反射すると、地山から
の反射波が送信アンテナ3と同地点の受信アンテナ4に
よって受信される。レーダ保護箱6の前面は前面保護板
6aで閉じてある。As shown in FIG. 1, an electromagnetic wave radar 5 in which a transmitting antenna 3 and a receiving antenna 4 are integrated in one place on the front face of a cutter face plate 2 of a shield machine 1 remains housed in a radar protection box 6. Embedded and transmitting antenna 3
When the electromagnetic wave 8 is reflected from the ground to the ground 7, the reflected wave from the ground is received by the reception antenna 4 at the same point as the transmission antenna 3. The front surface of the radar protection box 6 is closed by a front protection plate 6a.
【0021】図2に本発明による方法を実施するシステ
ム構成を示す。このシステムは、上記電磁波レーダ5の
送受信を制御する送受信処理回路9、受信アンテナ3で
受信されてこの送受信処理回路9を通じて入力される受
信アナログ信号をデジタル信号に変換するA/D変換器
10、CPUやDSP(デジタルジグナルプロセッサ)
やメモリ(ROMやRAMやディスク記憶媒体等)を含
むコンピュータ11、このコンピュータ11の指示に従
い送信信号を送受信処理回路9へ送る送信信号出力ユニ
ット12及びCRTやプリンタ等の表示出力装置13と
で構成されている。FIG. 2 shows a system configuration for implementing the method according to the present invention. This system includes a transmission / reception processing circuit 9 for controlling transmission / reception of the electromagnetic wave radar 5, an A / D converter 10 for converting a reception analog signal received by the reception antenna 3 and input through the transmission / reception processing circuit 9 into a digital signal, CPU and DSP (Digital Signal Processor)
And a computer 11 including a memory (ROM, RAM, disk storage medium, etc.), a transmission signal output unit 12 for transmitting a transmission signal to a transmission / reception processing circuit 9 according to an instruction of the computer 11, and a display output device 13 such as a CRT or a printer. Has been done.
【0022】本実施例では、このシステムにより地中の
比誘電率を測定した後、障害物までの距離を測定し、更
に地質の種別も測定するもので、先ず比誘電率の測定方
法から説明する。In this embodiment, after measuring the relative permittivity in the ground by this system, the distance to the obstacle is measured and the type of geology is also measured. First, the method for measuring the relative permittivity will be described. To do.
【0023】図1に示すように、送信アンテナ3から探
査信号として電磁波8を送信すると、地山からの反射波
が受信アンテナ4に受信されるが、その反射波は、大き
く分けて地山表面14からの反射波15Aと、地中7に
浸透したその内部からの反射波15Bとである。地山表
面14からの反射波15Aは、送信された電磁波8の基
本周波数成分と等価的なものであるのに対し、地中内部
からの反射波15Bは、地中の比誘電率εγの影響を受
けて変化(シフト)しており、送受信処理回路9での受
信信号波形は、図3に示すようにこれら反射波15A・
15Bが合成した減衰波形となり、これが一般に表面反
射波と呼ばれているものである。但し、同図において表
面波領域16は第1周期の減衰信号である。As shown in FIG. 1, when an electromagnetic wave 8 is transmitted as a search signal from the transmitting antenna 3, a reflected wave from the natural ground is received by the receiving antenna 4. The reflected wave is roughly divided into the surface of the natural rock. A reflected wave 15A from 14 and a reflected wave 15B from the inside that penetrates into the ground 7. The reflected wave 15A from the ground surface 14 is equivalent to the fundamental frequency component of the transmitted electromagnetic wave 8, while the reflected wave 15B from the inside of the ground is affected by the relative permittivity εγ of the ground. The received signal waveform at the transmission / reception processing circuit 9 is changed (shifted) in response to the reflected waves 15A.
15B becomes the synthesized attenuation waveform, which is generally called a surface reflected wave. However, in the figure, the surface wave region 16 is the attenuation signal of the first period.
【0024】この受信された表面波は、地中7に浸透し
た電磁波8が前述のとおり地中7の比誘電率εγに応じ
て変化したものであり、図4に示すように、地中7の比
誘電率が例えばεγ1であれば、探査信号時間領域で周
波数f1(ピーク点がt1時間)となり、地中7の比誘
電率がεγ2であれば、探査信号時間領域で周波数f2
(ピーク点がt2時間)となる。このような比誘電率と
周波数の関係を特性グラフで表すと、図5に示すような
指数曲線となり、これは前記のように関係式(4)で表
現できる。This received surface wave is the electromagnetic wave 8 that has penetrated into the ground 7 changed according to the relative permittivity εγ of the ground 7 as described above. As shown in FIG. If the relative permittivity of εγ1 is εγ1, for example, the frequency is f1 (peak point is t1 hour) in the exploration signal time domain, and if the relative permittivity of the underground 7 is εγ2, the frequency f2 is in the exploration signal time domain.
(The peak point is t2 hours). When the relationship between the relative permittivity and the frequency is represented by a characteristic graph, an exponential curve as shown in FIG. 5 is obtained, which can be expressed by the relational expression (4) as described above.
【0025】そこで、本実施例では、この関係式(4)
をコンピュータ11に予め蓄積しておき、受信アナログ
信号をA/D変換器10でデジタル信号に変換してその
第1周期の減衰周期から周波数fを弁別した後、この弁
別した周波数fを、コンピュータ11による演算ないし
照合処理により関係式(4)に従って評価して、当該周
波数fに対応する比誘電率εγを求める。その求めた比
誘電率εγは、距離測定のためのパラメータとしてメモ
リに記憶しておく。また、必要に応じ、表示出力装置1
3によりディスプレイ画面上に表示したりプリントアウ
トすることができる。Therefore, in this embodiment, this relational expression (4)
Is stored in the computer 11 in advance, the received analog signal is converted into a digital signal by the A / D converter 10, and the frequency f is discriminated from the attenuation period of the first period. The relative dielectric constant εγ corresponding to the frequency f is obtained by evaluation according to the relational expression (4) by calculation or collation processing by 11. The obtained relative permittivity εγ is stored in the memory as a parameter for distance measurement. Further, if necessary, the display output device 1
3 can be displayed on the display screen or can be printed out.
【0026】次に、本発明による位置測定方法によっ
て、地中7に存在する障害物までの距離を測定する例に
ついて説明する。Next, an example of measuring the distance to an obstacle existing in the ground 7 by the position measuring method according to the present invention will be described.
【0027】本発明は信号解析手法として相互相関法を
利用しているもので、先ずこれについて概説すると、基
準信号x(t)と、これとの時間差kを比較する対象信
号y(t)との相互相関関数は次の(7)式又は(8)
式で表すことができる。The present invention utilizes the cross-correlation method as a signal analysis method. First, an outline of this method will be described. A reference signal x (t) and a target signal y (t) for comparing a time difference k with the reference signal x (t). The cross-correlation function of is the following equation (7) or (8)
It can be represented by a formula.
【0028】[0028]
【数1】 [Equation 1]
【0029】[0029]
【数2】 [Equation 2]
【0030】そこで、本実施例では、基準信号の波形と
して図6に示すように自然減衰波形に近いものを設定し
ておき、この基準信号と、受信アンテナ4で現実に受信
した対象信号との相関関数をコンピュータ11によって
演算する。図7は障害物が無い場合の受信波形、図8は
障害物が有ったときの受信波形で、それぞれ図6の基準
波形と相互相関処理を行うと、障害物が無い場合の相互
相関波形は図9、障害物が有ったときの相互相関波形は
図10のようになる。図の例では、障害物が無い場合の
相互相関波形は、絶対値が大きい相関ピークP1・P2
に続いて、絶対値の小さい相関ピークP3が生じた後は
相関ピークが生じていないのに対し、障害物が有ったと
きの相互相関波形は、P3の後も相関ピークP4・P5
・P7・P8が出現している。Therefore, in the present embodiment, as the waveform of the reference signal, a waveform close to a natural attenuation waveform is set as shown in FIG. 6, and the reference signal and the target signal actually received by the receiving antenna 4 are set. The correlation function is calculated by the computer 11. 7 is a received waveform when there is no obstacle, FIG. 8 is a received waveform when there is an obstacle, and when cross-correlation processing is performed with the reference waveform of FIG. 6, the cross-correlation waveform when there is no obstacle Is as shown in FIG. 9, and the cross-correlation waveform when there is an obstacle is as shown in FIG. In the example of the figure, the cross-correlation waveforms when there is no obstacle are correlation peaks P1 and P2 with large absolute values.
Then, the correlation peak does not occur after the correlation peak P3 having a small absolute value occurs, whereas the cross-correlation waveform when there is an obstacle shows the correlation peaks P4 and P5 after P3.
・ P7 and P8 have appeared.
【0031】そこで、本実施例では、障害物が無い場合
にも生ずる相関ピークP1・P2・P3は除外し、P3
よりも時間的に後の相関ピークP4・P5・P7・P8
についてその絶対値が最大の相関ピーク(図ではP7)
を抽出し、その時の時間Tと先に求めた比誘電率εγと
から障害物までの距離Lを次の(9)式から求める。そ
して、このような処理を実時間で繰り返しながらシール
ド掘進機1を掘進させる。Therefore, in this embodiment, the correlation peaks P1, P2, and P3 that occur even when there is no obstacle are excluded, and P3 is excluded.
Correlation peaks P4, P5, P7, P8 that are later in time than
Correlation peak of which absolute value is maximum (P7 in the figure)
Is extracted, and the distance L to the obstacle is obtained from the time T at that time and the previously obtained relative permittivity εγ from the following equation (9). Then, the shield machine 1 is excavated by repeating such processing in real time.
【0032】 L=(c/√εγ)×T ・・・・・(9) 但し、cは光の速度である。L = (c / √εγ) × T (9) where c is the speed of light.
【0033】最後に、本発明による地質測定方法によっ
て地質の種別を測定する例について説明する。Finally, an example of measuring the type of geology by the geological measurement method according to the present invention will be described.
【0034】上記のように受信した受信信号の中から自
然減衰波形を抽出し、これを周知の過渡現象解析手法で
解析して減衰率αを求め、この減衰率αから上記(6)
に従い比抵抗ρ(又は導電率σ)を算出する。一方、比
誘電率εγは上記のように既に求まっているので、この
比誘電率εγと比抵抗ρ(又は導電率σ)の両方から地
質の種別を特定することができる。A natural attenuation waveform is extracted from the received signal received as described above, and this is analyzed by a well-known transient phenomenon analysis method to obtain an attenuation rate α. From this attenuation rate α, the above (6)
Then, the specific resistance ρ (or conductivity σ) is calculated in accordance with. On the other hand, since the relative permittivity εγ has already been obtained as described above, the type of geology can be specified from both the relative permittivity εγ and the specific resistance ρ (or the conductivity σ).
【0035】その特定を行うに当たり、本実施例では、
比誘電率と比抵抗(又は導電率)とをパラメータとして
地質を区別したデータベースを予め構築しておく。図1
3はこれを表モデルにして示し(コンピュータ11では
テーブルデータの形式をとる)、比誘電率εγと比抵抗
ρ(又は導電率σ)との両方が論理マトリックスとして
与えられると、該当する一つの地質種別が抽出される。
図14はその論理マトリックスによる抽出手法の概念図
で、X軸方向に比抵抗ρ(又は導電率σ)、Y軸方向に
比誘電率εγをとったX−Y座標系を想定し、X値とし
て比抵抗ρ(又は導電率σ)を与え、Y値として比誘電
率εγを与えてその両方がそれぞれ一致又は近似する地
質種別を抽出する。In identifying this, in this embodiment,
A database in which the geology is distinguished is previously constructed by using the specific permittivity and the specific resistance (or conductivity) as parameters. FIG.
3 shows this as a table model (in the form of table data in the computer 11), and when both the relative permittivity εγ and the specific resistance ρ (or the conductivity σ) are given as a logical matrix, one corresponding Geological type is extracted.
FIG. 14 is a conceptual diagram of the extraction method based on the logical matrix. Assuming an XY coordinate system in which the specific resistance ρ (or conductivity σ) is taken in the X axis direction and the relative dielectric constant εγ is taken in the Y axis direction, the X value is assumed. The specific resistance ρ (or the conductivity σ) is given as, and the relative permittivity εγ is given as the Y value, and the geological types in which the both match or approximate are extracted.
【0036】図15は上述した処理の全体の流れを示
す。先ずステップS1で初期設定としてデータベースか
ら各種の初期データを入力するとともに、探査開始時点
の探査信号(自然減衰波形)を参照データとして入力
し、初期の比誘電率(伝播速度)、地質を一次測定す
る。次のステップS2で、受信信号をA/D変換して参
照データと論理的判定及び相互相関判定の処理を行い、
自然減衰波形と認定できたときは、ステップS3で表面
波成分により比誘電率を測定するとともに、伝播速度も
算出する。そして、次のステップS4で自然減衰波形に
ついて減衰率を算出するとともに、それから得られた比
抵抗(又は導電率)とステップS3で得た比誘電率とを
パラメータとしてデータベースから上記のように該当す
る地質種別を抽出する。FIG. 15 shows the overall flow of the above processing. First, in step S1, various kinds of initial data are input from the database as initial settings, and an exploration signal (natural decay waveform) at the time of exploration start is input as reference data, and initial relative permittivity (propagation velocity) and geology are primarily measured. To do. In the next step S2, the received signal is A / D converted and subjected to processing of reference data, logical judgment and cross-correlation judgment,
When it is determined that the waveform is a natural decay waveform, the relative permittivity is measured by the surface wave component and the propagation velocity is calculated in step S3. Then, in the next step S4, the attenuation rate is calculated for the natural attenuation waveform, and the specific resistance (or conductivity) obtained therefrom and the relative permittivity obtained in step S3 are used as parameters to correspond from the database as described above. Extract geological classification.
【0037】一方、障害物からの反射波形と認定したと
きは、ステップS5で前述のとおり障害物の位置(距
離)を演算測定する。そして、このステップS5、又は
ステップS4の後にステップS6で測定結果を表示出力
するとともに、データを更新し、繰り返し探査モードに
なっていればステップS2に戻って次の探査信号につい
て同じ処理を繰り返す。On the other hand, when the reflected waveform from the obstacle is recognized, the position (distance) of the obstacle is calculated and measured in step S5 as described above. Then, after step S5 or step S4, the measurement result is displayed and output in step S6, the data is updated, and if it is in the repeated search mode, the process returns to step S2 and the same process is repeated for the next search signal.
【0038】なお、本発明は、シールド工法におけるよ
うなトンネル内からの測定に限らず、地表からの測定に
も適用できることは勿論である。It is needless to say that the present invention can be applied not only to the measurement from inside the tunnel as in the shield construction method but also to the measurement from the ground surface.
【0039】[0039]
【発明の効果】本発明の比誘電率測定方法によれば次の
ような効果がある。 送信波と地中を伝播した反射波等とが合成し干渉し
た表面反射波の周波数変化を捉えることによって比誘電
率を求めるので、比誘電率を精度良く測定できる。 送信アンテナと受信アンテナとを一体化した電磁波
レーダで送受信するので、送信アンテナと受信アンテナ
とを離した従来例のように、その配置によって測定精度
の低下を招くことはなく、またシールド工法に適用した
場合、従来例のようにカッタ面板の大幅な改造を要する
ことはなく、費用が割安になるとともに、小形化でき
る。According to the method for measuring the relative permittivity of the present invention, the following effects are obtained. Since the relative permittivity is obtained by capturing the frequency change of the surface reflected wave that is caused by the interference of the transmitted wave and the reflected wave propagating in the ground, the relative permittivity can be accurately measured. Since transmission and reception are performed by an electromagnetic wave radar that integrates a transmitting antenna and a receiving antenna, the arrangement does not cause a decrease in measurement accuracy as in the conventional example in which the transmitting antenna and the receiving antenna are separated, and is applied to the shield construction method. In such a case, unlike the conventional example, the cutter face plate does not need to be largely modified, the cost is low and the size can be reduced.
【0040】また、本発明の地質測定方法によれば、障
害物反射等が無いときの自然減衰波形から減衰率を求
め、この減衰率から比抵抗又はその逆数の導電率を算出
し、この算出した比抵抗又は導電率と比誘電率とをパラ
メータとしてデータベースから該当する地質種別を抽出
するので、正確な地質判別ができる。Further, according to the geological measurement method of the present invention, the attenuation rate is obtained from the natural attenuation waveform when there is no obstacle reflection, etc., and the specific resistance or the reciprocal of the electrical conductivity is calculated from this attenuation rate. Since the relevant geological type is extracted from the database using the specific resistance or conductivity and the relative permittivity as parameters, accurate geological determination can be performed.
【0041】更に、本発明の位置測定方法によれば、受
信した対象信号波形と障害物反射等が無いときの自然減
衰波形との相互相関関数の電圧ピーク点を求め、そのピ
ーク点の時間と、上記のように測定した比誘電率から求
まる電磁波の伝播速度とから反射対象物等の位置を演算
するので、精度の高い測定を行える。Further, according to the position measuring method of the present invention, the voltage peak point of the cross-correlation function between the received target signal waveform and the natural attenuation waveform when there is no obstacle reflection or the like is obtained, and the time of the peak point is calculated. Since the position of the reflection target or the like is calculated from the propagation velocity of the electromagnetic wave obtained from the relative permittivity measured as described above, highly accurate measurement can be performed.
【図1】本発明をシールド工法に適用した実施例の説明
図である。FIG. 1 is an explanatory view of an embodiment in which the present invention is applied to a shield construction method.
【図2】本発明の方法を実施するシステムのブロック図
である。FIG. 2 is a block diagram of a system for implementing the method of the present invention.
【図3】送信波に対する反射波の減衰を示す波形図であ
る。FIG. 3 is a waveform diagram showing attenuation of a reflected wave with respect to a transmitted wave.
【図4】地中の比誘電率の違いにより反射波の周波数が
シフトすることを示す波形図である。FIG. 4 is a waveform diagram showing that the frequency of a reflected wave shifts due to a difference in relative permittivity in the ground.
【図5】比誘電率と周波数の関係を示す特性グラフであ
る。FIG. 5 is a characteristic graph showing the relationship between relative permittivity and frequency.
【図6】相互相関するための基準信号の波形図である。FIG. 6 is a waveform diagram of a reference signal for cross-correlation.
【図7】障害物が無い場合の受信波形図である。FIG. 7 is a received waveform diagram when there is no obstacle.
【図8】障害物が有ったときの受信波形図である。FIG. 8 is a received waveform diagram when an obstacle is present.
【図9】障害物が無い場合の相互相関波形図である。FIG. 9 is a cross-correlation waveform diagram when there is no obstacle.
【図10】障害物が有ったときの相互相関波形図であ
る。FIG. 10 is a cross-correlation waveform diagram when an obstacle is present.
【図11】地質の違いで比抵抗が異なることにより自然
減衰波形の減衰特性が変化することを示す図である。FIG. 11 is a diagram showing that the attenuation characteristic of the natural attenuation waveform changes due to the difference in specific resistance due to the difference in geology.
【図12】減衰率と比抵抗の関係を示す特性グラフであ
る。FIG. 12 is a characteristic graph showing a relationship between an attenuation rate and a specific resistance.
【図13】比誘電率と導電率とをパラメータとして地質
を区別したデータベースを表モデルにして示す図であ
る。FIG. 13 is a diagram showing, as a table model, a database in which geology is distinguished by using relative permittivity and conductivity as parameters.
【図14】図13のデータベースから該当する地質種別
を抽出する手法を解説する概念図である。14 is a conceptual diagram illustrating a method of extracting a corresponding geological type from the database of FIG.
【図15】同上の抽出処理を示すフローチャートであ
る。FIG. 15 is a flowchart showing an extraction process of the above.
1 シールド掘進機 2 カッタ面板 3 送信アンテナ 4 受信アンテナ 5 電磁波レーダ 6 レーダ保護箱 7 地山 8 電磁波 9 送受信処理回路 10 A/D変換器 11 コンピュータ 12 送信信号出力ユニット 13 表示出力装置 14 地山表面 15A 地山表面からの反射波 15B 地中に浸透したその内部からの反射波 16 表面波領域 1 shield machine 2 cutter face plate 3 transmitting antenna 4 receiving antenna 5 electromagnetic wave radar 6 radar protection box 7 ground 8 electromagnetic wave 9 transmission / reception processing circuit 10 A / D converter 11 computer 12 transmission signal output unit 13 display output device 14 ground surface 15A Reflected wave from the ground surface 15B Reflected wave from the inside that penetrated into the ground 16 Surface wave region
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01V 3/12 B 9406−2G (72)発明者 藤原 正弘 兵庫県明石市魚住町住吉1丁目4番地6 株式会社コス内Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location G01V 3/12 B 9406-2G (72) Inventor Masahiro Fujiwara 1-4, 6 Sumiyoshi, Uozumi-cho, Akashi-shi, Hyogo Stock Company Kos
Claims (5)
を地中に送信し、その反射波を受信アンテナで受信して
第1周期の減衰周期から周波数fを弁別し、この周波数
fを、周波数f0に対するシフト量Δfの変化から予め
求めた比誘電率との相関を示す周波数・比誘電率特性デ
ータと照合することにより、対応する比誘電率を得るこ
とを特徴とする地中の比誘電率測定方法。1. An electromagnetic wave having a constant frequency f0 is transmitted to the ground from a transmitting antenna, the reflected wave is received by a receiving antenna, and the frequency f is discriminated from the attenuation period of the first period. Measurement of the relative permittivity in the ground characterized by obtaining the corresponding relative permittivity by comparing with the frequency / relative permittivity characteristic data showing the correlation with the relative permittivity previously obtained from the change of the shift amount Δf with respect to Method.
を地中に送信し、その反射波を受信アンテナで受信して
第1周期の減衰周期から周波数fを弁別し、この周波数
fを次の関係式(1)に適用して比誘電率εγを求める
ことを特徴とする地中の比誘電率測定方法。 εγ=a×b1/f ・・・・・(1) 但し、aは第1の比誘電率回帰係数、bは第2の比誘電
率回帰係数である。2. An electromagnetic wave having a constant frequency f0 is transmitted to the ground from a transmitting antenna, the reflected wave is received by a receiving antenna, and the frequency f is discriminated from the attenuation period of the first period. A method for measuring the relative permittivity in the ground, characterized by applying the formula (1) to obtain the relative permittivity εγ. εγ = a × b 1 / f (1) where a is the first relative permittivity regression coefficient and b is the second relative permittivity regression coefficient.
た電磁波レーダで送受信することを特徴とする請求項1
又は2に記載の地中の比誘電率測定方法。3. An electromagnetic wave radar in which a transmitting antenna and a receiving antenna are integrated for transmission and reception.
Or the method for measuring the relative dielectric constant in the ground according to 2.
ら減衰率を求め、この減衰率から比抵抗又はその逆数の
導電率を算出し、この算出した比抵抗又は導電率と請求
項1又は2或いは3の方法により測定した比誘電率と
を、導電率又は比抵抗と比誘電率とをパラメータとして
地質区分して予め構築されているデータベースの各パラ
メータ値と照合し、このデータベース中から該当する地
質を抽出することを特徴とする地質測定方法。4. The attenuation factor is obtained from a natural attenuation waveform when there is no obstacle reflection, etc., the resistivity or the conductivity of its reciprocal is calculated from this attenuation factor, and the calculated resistivity or conductivity is used. Or, the relative permittivity measured by the method of 2 or 3 is compared with each parameter value of a database that is pre-constructed by geologically classifying the electrical conductivity or the specific resistance and the relative permittivity as parameters, and from this database, A geological measurement method characterized by extracting relevant geology.
いときの自然減衰波形との相互相関関数の電圧ピーク点
を求め、そのピーク点の時間Tと、請求項1又は2或い
は3の方法により測定した比誘電率から求まる電磁波の
伝播速度νとから反射対象物等の位置を演算することを
特徴とする地中の位置測定方法。5. The voltage peak point of the cross-correlation function between the received target signal waveform and the natural attenuation waveform when there is no obstacle reflection or the like is determined, and the time T at that peak point and the time T of the peak point are defined. A method for measuring the position in the ground, which comprises calculating the position of a reflection target or the like from the propagation velocity ν of an electromagnetic wave obtained from the relative dielectric constant measured by the method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28151894A JP3309242B2 (en) | 1994-10-21 | 1994-10-21 | Underground dielectric constant measuring method, geological measuring method and position measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28151894A JP3309242B2 (en) | 1994-10-21 | 1994-10-21 | Underground dielectric constant measuring method, geological measuring method and position measuring method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08122279A true JPH08122279A (en) | 1996-05-17 |
JP3309242B2 JP3309242B2 (en) | 2002-07-29 |
Family
ID=17640302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28151894A Expired - Fee Related JP3309242B2 (en) | 1994-10-21 | 1994-10-21 | Underground dielectric constant measuring method, geological measuring method and position measuring method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3309242B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11211676A (en) * | 1998-01-28 | 1999-08-06 | Kosu:Kk | Electromagnetic-wave investigation apparatus |
JP2000346956A (en) * | 1999-06-03 | 2000-12-15 | Taisei Corp | Exploration method in front of tunnel face |
JP2003207463A (en) * | 2001-11-12 | 2003-07-25 | Shogo Tanaka | Nondestructive inspection method for concrete structure and structure other than the same |
JP2004500550A (en) * | 1999-09-08 | 2004-01-08 | ウィッテン テクノロジーズ,インコーポレイテッド | Underground transmission radar array and timing circuit |
JP2007047165A (en) * | 2005-08-09 | 2007-02-22 | Hilti Ag | Wall exploration equipment |
CN109683023A (en) * | 2018-12-26 | 2019-04-26 | 重庆交通大学 | It is compacted the thickness of bituminous surface at scene and the measurement method of dielectric constant |
JP2019174401A (en) * | 2018-03-29 | 2019-10-10 | 三菱重工業株式会社 | Buried object exploration device and buried object exploration method |
CN110967773A (en) * | 2019-12-23 | 2020-04-07 | 中国煤炭地质总局地球物理勘探研究院 | Method and device for calculating water-rich property in coal seam and electronic equipment |
CN113703058A (en) * | 2021-09-02 | 2021-11-26 | 天津市勘察设计院集团有限公司 | Method for detecting underground obstacle by utilizing apparent conductivity and relative dielectric constant |
CN115406910A (en) * | 2022-07-15 | 2022-11-29 | 电子科技大学 | An in-situ detection device and detection method for the surface wave attenuation rate of a wave-absorbing material |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56124039A (en) * | 1980-03-06 | 1981-09-29 | Shimada Phys & Chem Ind Co Ltd | Dielectric sensor |
JPH028754A (en) * | 1988-06-27 | 1990-01-12 | Osaka Gas Co Ltd | Soil inspection using radio wave |
JPH04131792U (en) * | 1991-05-24 | 1992-12-04 | 戸田建設株式会社 | Face detection radar device for shield tunneling machine |
JPH0525994B2 (en) * | 1987-12-24 | 1993-04-14 | Toda Construction |
-
1994
- 1994-10-21 JP JP28151894A patent/JP3309242B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56124039A (en) * | 1980-03-06 | 1981-09-29 | Shimada Phys & Chem Ind Co Ltd | Dielectric sensor |
JPH0525994B2 (en) * | 1987-12-24 | 1993-04-14 | Toda Construction | |
JPH028754A (en) * | 1988-06-27 | 1990-01-12 | Osaka Gas Co Ltd | Soil inspection using radio wave |
JPH04131792U (en) * | 1991-05-24 | 1992-12-04 | 戸田建設株式会社 | Face detection radar device for shield tunneling machine |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11211676A (en) * | 1998-01-28 | 1999-08-06 | Kosu:Kk | Electromagnetic-wave investigation apparatus |
JP2000346956A (en) * | 1999-06-03 | 2000-12-15 | Taisei Corp | Exploration method in front of tunnel face |
JP2004500550A (en) * | 1999-09-08 | 2004-01-08 | ウィッテン テクノロジーズ,インコーポレイテッド | Underground transmission radar array and timing circuit |
JP2003207463A (en) * | 2001-11-12 | 2003-07-25 | Shogo Tanaka | Nondestructive inspection method for concrete structure and structure other than the same |
JP2007047165A (en) * | 2005-08-09 | 2007-02-22 | Hilti Ag | Wall exploration equipment |
JP2019174401A (en) * | 2018-03-29 | 2019-10-10 | 三菱重工業株式会社 | Buried object exploration device and buried object exploration method |
CN109683023A (en) * | 2018-12-26 | 2019-04-26 | 重庆交通大学 | It is compacted the thickness of bituminous surface at scene and the measurement method of dielectric constant |
CN110967773A (en) * | 2019-12-23 | 2020-04-07 | 中国煤炭地质总局地球物理勘探研究院 | Method and device for calculating water-rich property in coal seam and electronic equipment |
CN110967773B (en) * | 2019-12-23 | 2022-01-21 | 中国煤炭地质总局地球物理勘探研究院 | Method and device for calculating water-rich property in coal seam and electronic equipment |
CN113703058A (en) * | 2021-09-02 | 2021-11-26 | 天津市勘察设计院集团有限公司 | Method for detecting underground obstacle by utilizing apparent conductivity and relative dielectric constant |
CN115406910A (en) * | 2022-07-15 | 2022-11-29 | 电子科技大学 | An in-situ detection device and detection method for the surface wave attenuation rate of a wave-absorbing material |
Also Published As
Publication number | Publication date |
---|---|
JP3309242B2 (en) | 2002-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Benedetto et al. | An overview of ground-penetrating radar signal processing techniques for road inspections | |
Olsson et al. | Borehole radar applied to the characterization of hydraulically conductive fracture zones in crystalline rock 1 | |
US7034740B2 (en) | Method and apparatus for identifying buried objects using ground penetrating radar | |
Vilanova et al. | Developing a geologically based VS 30 site‐condition model for Portugal: Methodology and assessment of the performance of proxies | |
US5862100A (en) | Method and system for detecting hydrocarbon reservoirs using statistical normalization of amplitude-versus-offset indicators based upon seismic signals | |
US20100296367A1 (en) | Method of imaging a target area of the subsoil from walkaway type data | |
EP4089446A1 (en) | A method for seismic frequency resonance exploration technology | |
Liu et al. | Numerical modeling for karst cavity sonar detection beneath bored cast in situ pile using 3D staggered grid finite difference method | |
JPH08122279A (en) | Underground relative permittivity measuring method, geological measuring method, and position measuring method | |
Farrugia et al. | Noninvasive techniques for site characterization of Alberta seismic stations based on shear‐wave velocity | |
Colombero et al. | Imaging near-surface sharp lateral variations with surface-wave methods—Part 1: Detection and location | |
Leckebusch et al. | Investigating the true resolution and three‐dimensional capabilities of ground‐penetrating radar data in archaeological surveys: measurements in a sand box | |
Hayashi et al. | Statistical estimation of soil parameters in from cross-plots of S-wave velocity and resistivity obtained by integrated geophysical method | |
Griffin et al. | Ground penetrating radar | |
US7663971B2 (en) | Resonance scattering seismic method | |
Sibbit | Quantifying porosity and estimating permeability from well logs in fractured basement reservoirs | |
Powers et al. | GPRMODV2; one-dimensional full waveform forward modeling of dispersive ground penetrating radar data, version 2.0 | |
Stephan et al. | Adding realistic noise models to synthetic ground‐penetrating radar data | |
Iqbal et al. | A convolutional neural network for creating near-surface 2D velocity images from GPR antenna measurements | |
Singh et al. | Extent of Thin Surfacial Fracture Detection Using Geophysical Survey: A Case Study of Parwan Gravity Dam, Jhalawar, Rajasthan, India | |
Tsogtbaatar et al. | Characterisation of geological thin layer by borehole radar | |
CN113109871B (en) | A method for identifying the types of subsurface heterogenous bodies based on surface spectral disturbance features | |
Wright et al. | The very early time electromagnetic (VETEM) system: First field test results | |
Strack et al. | Integrated electromagnetic and seismic methods for petroleum exploration | |
Keller | Principles of time-domain electromagnetic (TDEM) sounding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080524 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080524 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080524 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080524 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090524 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100524 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100524 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110524 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |