JPH028754A - Soil inspection using radio wave - Google Patents
Soil inspection using radio waveInfo
- Publication number
- JPH028754A JPH028754A JP16227988A JP16227988A JPH028754A JP H028754 A JPH028754 A JP H028754A JP 16227988 A JP16227988 A JP 16227988A JP 16227988 A JP16227988 A JP 16227988A JP H028754 A JPH028754 A JP H028754A
- Authority
- JP
- Japan
- Prior art keywords
- soil
- reflected wave
- ground surface
- resistivity
- pipe body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002689 soil Substances 0.000 title claims abstract description 95
- 238000007689 inspection Methods 0.000 title 1
- 238000000034 method Methods 0.000 claims abstract description 16
- 238000005260 corrosion Methods 0.000 abstract description 17
- 230000007797 corrosion Effects 0.000 abstract description 14
- 238000012545 processing Methods 0.000 abstract description 3
- 238000005259 measurement Methods 0.000 description 17
- 238000010586 diagram Methods 0.000 description 15
- 238000011835 investigation Methods 0.000 description 8
- 238000005553 drilling Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、土壌の比抵抗を測定する電波による±M調
査方法に関するもので、例えば土中に埋設しているガス
管、水道管、下水管等の管体の防食対策に利用される。[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a ±M survey method using radio waves to measure the resistivity of soil. Used for anti-corrosion measures for pipe bodies such as water pipes.
(従来の技術〕
土中にガス管、水道管、下水管等の導電性を有する管体
を埋設している場合に、比抵抗の小さい土壌は管体との
接触抵抗が小さい、この結果、コンクリート/土壌マク
ロセルが発生している場所では、比抵抗の小さい箇所に
おいて管体から集中的に土壌に電流が流れ出し、管体に
腐食が生じる。(Prior art) When conductive pipes such as gas pipes, water pipes, and sewage pipes are buried in the soil, soil with low resistivity has low contact resistance with the pipes. In areas where concrete/soil macrocells occur, current flows intensively from the pipe into the soil at locations with low resistivity, causing corrosion in the pipe.
また比抵抗の異なる異種の土壌間にわたって埋設された
管体は、異種土壌間マクロセルによって比抵抗の小さい
箇所において管体から土壌に集中的に電流が流れ出し、
その部分で管体が集中的に腐食される。In addition, when a pipe is buried between different types of soil with different resistivities, current flows intensively from the pipe to the soil at locations with low resistivity due to macrocells between the different types of soil.
The pipe body corrodes intensively in that area.
このような管体の腐食を防止するには、管体の電流が流
れ出ず箇所の両側で絶縁継手を介在させたり、比砥!元
の小さい土壌中に埋設されている部分で管体を絶縁被覆
管に変更したり、あるいは土壌自体を入れ換えたりすれ
ばよい。To prevent such corrosion of the pipe body, insulating joints should be inserted on both sides of the pipe body where current cannot flow out. All you have to do is change the pipe body to an insulating coated pipe in the original small part buried in the soil, or replace the soil itself.
このような防食対策を施すには、まず土壌の比)l(抗
を調べる必要がある。In order to take such anti-corrosion measures, it is first necessary to investigate the soil ratio.
土壌の比抵抗は、従来は、つぎのようにして調査してい
た。地表面近くの土壌、特に地表がアスファルトやコン
クリートで舗装された道路の下の土壌の比抵抗は、舗装
面に穴をあけ、ポーリングで土をサンプリングして測定
するか、または比抵抗測定用のプローブを差し込んで測
定するようになっていた。Conventionally, the resistivity of soil has been investigated as follows. The resistivity of soil near the ground surface, especially the soil under roads paved with asphalt or concrete, can be measured by drilling holes in the paved surface and sampling the soil by polling, or by using a resistivity measurement method. Measurements were taken by inserting a probe.
このような測定方法では、比抵抗を測定するために道路
に穴をあける必要があり、測定がきわめて面倒であった
。また、穴あけの都合上、測定点の間隔がかなり大きく
なり、比抵抗分布の測定結果の精度が低かった。In this measurement method, it is necessary to drill holes in the road in order to measure the resistivity, which is extremely troublesome. Furthermore, due to the drilling process, the distance between the measurement points was quite large, and the accuracy of the measurement results of the resistivity distribution was low.
この発明は、上記の問題点に鑑でなされたもので、地表
に穴をあけることなく土壌の比抵抗をall+定するこ
とができ、また、比抵抗分布を高精度に測定することが
できる電波による上質調査方法を提供することを目的と
する。This invention was made in view of the above-mentioned problems, and it is possible to determine the resistivity of soil without making a hole in the ground surface, and it is also possible to measure the resistivity distribution with high precision using radio waves. The purpose is to provide high-quality research methods.
[課題を解決するための手段]
この発明は、電波が土壌中を通過するときに、土壌の比
抵抗の大きさによって減衰の程度が異なり、比抵抗が小
さくなるほど減衰が太き(なるということに着目してな
されたものである。[Means for Solving the Problems] This invention provides that when a radio wave passes through soil, the degree of attenuation varies depending on the specific resistance of the soil, and the smaller the specific resistance, the thicker the attenuation. This was done with a focus on
この発明の電波による土質調査方法は、土壌中に一定深
さで1.!11!設されている管体に対して地表面から
電波を発射し、前記管体からの反射波を受け、この反射
波の大きさを測定し、反射波の大きさと地表面から発射
した電波の大きさの比から減衰度を求め、この減衰度か
ら地表面と管体の間の土壌の比抵抗を求める方法である
。The soil survey method using radio waves of the present invention is based on the following method: 1. ! 11! Radio waves are emitted from the earth's surface to the installed pipe body, the reflected wave is received from the pipe body, the size of this reflected wave is measured, and the size of the reflected wave and the size of the radio wave emitted from the ground surface are calculated. This method calculates the degree of attenuation from the ratio of the height and the specific resistance of the soil between the ground surface and the pipe body from this degree of attenuation.
この発明の電波による土質調査方法は、地表面から土壌
中の管体に対して電波を発射し、管体からの反射波を受
け、この反射波の大きさを測定し、この反射波の大きさ
と地表面から発射した電波の大きさの比から減衰度を求
め、この減衰度から比抵抗を求めるため、地表面に穴を
あけることなく、1:11接的に土壌の比抵抗を求める
ことができる。この結果、管体に沿った土壌の比抵抗分
布を求め地表面における測定点の間隔も従来例のように
制限されることはなく、きわめて短い間隔毎に土壌の比
抵抗を測定することができ、比抵抗分布を高精度に求め
ることができる。また、地表面に穴をあける必要がない
ので、ポーリング費、復旧費等のコストが全く不要とな
り、調査費用を低減することができる。The soil investigation method using radio waves of this invention emits radio waves from the ground surface to a pipe in the soil, receives reflected waves from the pipe, measures the size of the reflected waves, and measures the size of the reflected waves. The degree of attenuation is determined from the ratio of the size of the radio waves emitted from the ground surface and the magnitude of the radio waves emitted from the ground surface, and the specific resistance is determined from this degree of attenuation. Therefore, the specific resistance of the soil can be directly determined in a 1:11 ratio without drilling a hole in the ground surface. I can do it. As a result, the spacing of measurement points on the ground surface for determining the soil resistivity distribution along the pipe body is not limited as in conventional methods, and the soil resistivity can be measured at extremely short intervals. , the resistivity distribution can be determined with high accuracy. Furthermore, since there is no need to drill holes in the ground surface, costs such as polling costs and restoration costs are completely eliminated, and survey costs can be reduced.
この発明の実施例を第1図ないし第8図に基づいて説明
する。この電波による土質調査方法は、電波が土壌中を
il遇するときに、土壌の比抵抗の大きさによって減衰
の程度が異なり、比抵抗が小さくなるほど減衰が大きく
なることに着目してなされたものである。Embodiments of the present invention will be described based on FIGS. 1 to 8. This soil investigation method using radio waves was developed based on the fact that when radio waves penetrate soil, the degree of attenuation varies depending on the specific resistance of the soil, and the smaller the specific resistance, the greater the attenuation. It is.
特に、地表面から一定の深さに埋設された管体に地表面
から電波を発射したときの管体による反射波は、地表面
と管体との間の土壌の比抵抗が小さくなるほど振幅が小
さくなるということと、土壌中に埋設した管体の腐食は
、土壌の比抵抗が小さい程激しいものであることとの相
関を把握することによって、土壌中の管体の腐食箇所を
非接触で探査しようとするものである。In particular, when radio waves are emitted from the ground surface to a pipe buried at a certain depth from the ground surface, the amplitude of the reflected waves from the pipe decreases as the specific resistance of the soil between the ground surface and the pipe becomes smaller. By understanding the correlation between this and the fact that the lower the specific resistance of the soil, the more severe the corrosion of pipes buried in the soil, the corrosion of pipes buried in the soil can be detected without contact. This is what we are trying to explore.
この電波による土質調査方法は、第1図に示すように、
土壌l中に一定深さで埋設されている管体2に対して地
表面3からパルス状の電波を矢印Aの方向に発射し、矢
印Bの方向の管体2からの反射波を受け、この反射波の
大きさを測定し、反射波の大きさと地表面3から発射し
た電波の大きさの比から減衰率を求め、この減衰率から
地表面3と管体2との間の土壌lの比抵抗を求める方法
である。This soil survey method using radio waves is as shown in Figure 1.
Pulsed radio waves are emitted from the ground surface 3 in the direction of arrow A to a pipe body 2 buried at a certain depth in soil l, and the reflected wave from the pipe body 2 in the direction of arrow B is received. The magnitude of this reflected wave is measured, the attenuation rate is determined from the ratio of the magnitude of the reflected wave and the magnitude of the radio wave emitted from the ground surface 3, and from this attenuation rate, the soil l between the ground surface 3 and the pipe body 2 is This is a method to find the specific resistance of
上記方法による比抵抗の測定は、管体2の管軸に沿って
管軸の直上に設定された多数の測定点上で順次行われ、
各測定点における測定結果により上jl lの比抵抗の
分布を知ることができる。そして、この比11℃抗の測
定結果により、管体2の1g食が激しいと予想される箇
所を知ることができ、この箇所に防食対策を施すことが
できる。The specific resistance measurement by the above method is performed sequentially at a number of measurement points set directly above the tube axis along the tube axis of the tube body 2,
The distribution of the specific resistance of the upper jl l can be known from the measurement results at each measurement point. Based on the measurement result of this ratio 11° C. resistance, it is possible to know the location of the tube body 2 where 1g corrosion is expected to be severe, and it is possible to take anti-corrosion measures to this location.
ここで、土壌中の電波の減衰度と比抵抗の関係について
説明する。土壌中の電波の減衰度α(d[1/ m )
は、
・・・・・・・・・fll
で与えられる。Here, the relationship between the degree of attenuation of radio waves in soil and specific resistance will be explained. Attenuation degree of radio waves in soil α (d[1/m)
is given by ......fl.
ただし、σは土壌の導電率で、一般に10−’〜10−
’s/mである。μは土壌の透磁率で、はぼ4πXl0
−’H/mである。εは土壌の誘電率で、ε=ε0・ε
3である。ε。は真空中の誘電率で、8.854XlO
−目F / mである。ε、は土壌の比誘電率で、−最
に4〜4oである。rは周波数である。However, σ is the soil conductivity, which is generally 10-' to 10-
's/m. μ is the magnetic permeability of the soil, approximately 4πXl0
-'H/m. ε is the dielectric constant of soil, ε=ε0・ε
It is 3. ε. is the dielectric constant in vacuum, 8.854XlO
- eyes F/m. ε is the dielectric constant of soil, which is -4 to 4o. r is the frequency.
第fi1式から明らかなように、土壌中の電波の減衰率
αは、土壌の導電率σに比例し、土壌の比抵抗ρは、
ρ = Ω ・ C−・・・
・旧・・(2)σ
であるため、土壌中の電波の減衰率αは土壌の比抵抗ρ
に反比例することになる。As is clear from the formula fi1, the attenuation rate α of radio waves in the soil is proportional to the conductivity σ of the soil, and the specific resistance ρ of the soil is ρ = Ω ・ C−...
・Old... (2) Since σ, the attenuation rate α of radio waves in the soil is the specific resistance ρ of the soil.
will be inversely proportional to.
土壌中の電波の減衰率αは、第(11式から明らかなよ
うに、周波数fに依存し、すなわち同じ比抵抗ρでは周
波数fが高くなるほど、大きくなる。As is clear from Equation (11), the attenuation rate α of radio waves in the soil depends on the frequency f, that is, for the same resistivity ρ, the higher the frequency f becomes, the larger it becomes.
この特性を第2図に示す。This characteristic is shown in FIG.
上記したように減衰率αは、周波数fに依存することか
ら、ひとつの測定の間は変化させないことが必要で、使
用周波数は測定の容易な0.5 G Ilz前後が望ま
しい。As described above, since the attenuation factor α depends on the frequency f, it is necessary not to change it during one measurement, and the frequency used is preferably around 0.5 G Ilz, which is easy to measure.
一方、土壌の比抵抗ρと腐食性との関係は第1表のよう
になり、比抵抗ρが小さいほど腐食が激しい。On the other hand, the relationship between the specific resistance ρ of soil and the corrosivity is as shown in Table 1, and the smaller the specific resistance ρ, the more severe the corrosion.
第 1 表
つぎに、土壌の比抵抗と土壌腐食因子(管財地電位分布
、地対地電位分布、管内電流)および管表面の腐食量分
布との相関関係の測定結果を第3図に示す。同図(A)
は土壌1の断面を示し、定深さに管体2が埋設されてい
る状態を示している。同図(B)は、同図(A)におけ
る比抵抗の分布を示し、領域C2の比抵抗がその両側の
領域C,,C3の比抵抗より小さくなっていることを示
している。同図(C)は同図(A)における管財地電位
(P/S)の分布および地対地電位(S/S)の分布を
示し、管財地電位(P/S)が領域C2で低く、その両
側の領域C,,C3で高くなっており、地対ll!!電
位(S/S)が領域C2で高く、その両側の領域C,,
C2で低くなっている。同図(D)は領域C,,C3に
おいて管内電流が矢印り、、D2の方向に流れ、この電
流が領域C2で管体2から矢印D3.D、のように土壌
lに流出していることを示している。同図(E)は管体
2の腐食量分布を示し、領域C2で腐食が発生している
ことを示す。Table 1 Next, Figure 3 shows the measurement results of the correlation between soil resistivity, soil corrosion factors (control ground potential distribution, ground-to-ground potential distribution, pipe current), and the corrosion amount distribution on the pipe surface. Same figure (A)
shows a cross section of the soil 1, and shows a state in which the pipe body 2 is buried at a fixed depth. Figure (B) shows the distribution of resistivity in Figure (A), and shows that the resistivity of region C2 is smaller than the resistivity of regions C, C3 on both sides thereof. Figure (C) shows the distribution of the ground potential (P/S) and the distribution of the ground-to-ground potential (S/S) in Figure (A), where the ground potential (P/S) is low in area C2; It is high in areas C,, C3 on both sides, and it is ll! ! The potential (S/S) is high in region C2, and the regions C,...
It is low at C2. In the same figure (D), the current in the tube flows in the direction of the arrow D2 in the region C, , C3, and this current flows from the tube body 2 in the region C2 to the direction of the arrow D3. D shows that the water is flowing into the soil. FIG. 3(E) shows the corrosion amount distribution of the tube body 2, and shows that corrosion occurs in region C2.
つぎに、電波による土質調査方法を実施するための土質
調査装置を第4図ないし第8図に基づいて説明する。こ
の土壌調査装置は、第4図に示すように、信号発生器1
1.信号処理器12.信号表示部13およびアンテナ部
14とから構成されている。アンテナ部14は地表18
を自由に移動可能な車体17に発信器15および受信器
16を内蔵してなり、発信器15より土壌19に向かっ
て電波(モノパルス)を矢印E1のように発射・し、そ
の反射波(矢印E2.E3で示す)を受信するように溝
底している。Next, a soil investigation device for implementing the soil investigation method using radio waves will be explained based on FIGS. 4 to 8. This soil survey device has a signal generator 1 as shown in FIG.
1. Signal processor 12. It is composed of a signal display section 13 and an antenna section 14. The antenna section 14 is located on the ground surface 18
A transmitter 15 and a receiver 16 are built into a freely movable vehicle body 17. Radio waves (monopulse) are emitted from the transmitter 15 toward the soil 19 as shown by arrow E1, and the reflected wave (arrow E2 and E3) are grooved to receive the signals.
この土質調査装置は、信号発生器11によってモノパル
スを作成し、このモノパルスを発信i?i15に加える
ことにより土tn19に向かってモノパルスの電波を発
射し、その反射波を受信器16で受け、これを信号処理
器12で信号処理して信号表示部!3で表示することに
なる。This soil investigation device creates a monopulse using a signal generator 11 and transmits this monopulse i? By adding it to i15, a monopulse radio wave is emitted toward Sat tn19, the reflected wave is received by the receiver 16, and the signal is processed by the signal processor 12, and the signal display section! It will be displayed in 3.
この場合、反射波には、地表面18で反射された矢印E
3で示す地表面反射波成分P、と、土壌19中の管体2
0で反射された矢印E2で示す管面反射波成分P2とが
あり、その波形は、第5図のようになる。In this case, the reflected wave includes an arrow E reflected from the ground surface 18.
The ground surface reflected wave component P shown in 3 and the pipe body 2 in the soil 19
There is a tube surface reflected wave component P2 indicated by an arrow E2 that is reflected at 0, and its waveform is as shown in FIG.
48号処理器12は、例えば管体20の直上の管体20
の管軸方向に並んだ複数の測定点における第6図(A)
、 (B)、 (C)のような反射波形から各々の
管面反射波成分のピーク値を求める信号処理を行う。信
号表示部13は、各反射波形のピーク値を横軸に、各a
ll定点の基準点からの距離を縦軸にとって第7図に示
すように測定結果を表示することになる。この結果、ピ
ーク値の分布がわかり、このピーク値の分布が即電波の
減衰率分布に対応し、さらに比抵抗分布に対応すること
になり、ピーク値の小さいところが、電波の減衰率が大
きく、土壌の比抵抗が小さいところである。The No. 48 processor 12 is, for example, a pipe 20 directly above the pipe 20.
Figure 6 (A) at multiple measurement points lined up in the tube axis direction.
, (B), and (C) are subjected to signal processing to obtain the peak value of each tube surface reflected wave component. The signal display unit 13 displays each a with the peak value of each reflected waveform on the horizontal axis.
The measurement results are displayed as shown in FIG. 7, with the distance from the fixed point to the reference point taken as the vertical axis. As a result, the distribution of peak values can be found, and this distribution of peak values corresponds to the distribution of the attenuation rate of instant radio waves, and further corresponds to the distribution of resistivity, where the peak value is small, the attenuation rate of radio waves is large, This is a place where the specific resistance of the soil is low.
そして、この部分が土壌中において管体20の腐食が激
しいであろうと予想される。It is expected that the pipe body 20 will be severely corroded in the soil in this part.
第8図は、周波数を0.5 G Ilzとしたときの実
測結果を示すものである。同図(A)のように、土壌2
1中に直径300 mmの鋳鉄管22を埋設しである場
合において、土壌21の領域F1の比抵抗が15000
Ω・備で土壌21の領域F2の比抵抗が2000Ω・備
であるときに、アンテナ部17をF1上に配置したとき
の反射波形は同図(B)のようになって管面反射波成分
P2のピーク値が大きくなっている。一方、アンテナ部
17を領域F2上に配置したときの反射波形は同図(C
)のようになって管面反射波成分P2のピーク値が小さ
くなっている。同図(D)は同図(A)におけるアンテ
ナ部17を地表面23でX方向に移動させたときの管面
反射波成分のピーク値の分布を示している。この図にお
いて、領域F1の部分の減衰率は5dBであり、領域F
2の部分の減衰率は40dBである。FIG. 8 shows the actual measurement results when the frequency was set to 0.5 G Ilz. As shown in the same figure (A), soil 2
In the case where a cast iron pipe 22 with a diameter of 300 mm is buried in soil 21, the specific resistance of area F1 of soil 21 is 15000.
When the specific resistance of the area F2 of the soil 21 is 2000Ω·Bi, the reflected waveform when the antenna part 17 is placed on F1 is as shown in the same figure (B), and the tube surface reflected wave component The peak value of P2 is large. On the other hand, the reflected waveform when the antenna section 17 is placed on the area F2 is shown in the same figure (C
), and the peak value of the tube surface reflected wave component P2 is small. FIG. 5(D) shows the distribution of the peak value of the tube surface reflected wave component when the antenna section 17 in FIG. 4(A) is moved in the X direction on the ground surface 23. In this figure, the attenuation rate in the region F1 is 5 dB, and the region F1 has a damping rate of 5 dB.
The attenuation factor of part 2 is 40 dB.
以1述べたように、土壌中に一定深さで埋設されている
管体に対して地表面から電波を発射し、管体からの反射
波を受け、この反射波の大きさを測定し、反射波の大き
さと地表面から発射した電波の大きさの比から減衰率を
求め、この減衰率から土壌の比抵抗を求めるため、地表
面に穴をあけることなく、土壌の比抵抗を求めることが
できる。As mentioned above, radio waves are emitted from the ground surface to a pipe buried at a certain depth in the soil, the waves reflected from the pipe are received, and the magnitude of this reflected wave is measured. The attenuation rate is calculated from the ratio of the size of the reflected wave and the size of the radio wave emitted from the ground surface, and the specific resistance of the soil is calculated from this attenuation rate, so the specific resistance of the soil can be calculated without drilling a hole in the ground surface. I can do it.
この結果、管体に沿った土壌の比抵抗分布を求める際に
地表面における測定点の間隔も従来例のように制限され
ることはな(、きわめて短い間隔毎に土壌の比抵抗を測
定することができ、土壌の比抵抗分布を高精度に求める
ことができる。また、地表面に穴をあける必要がないの
で、ポーリング費、復旧費等のコストが全く不要となり
、調査費用を低減できる。As a result, when determining the soil resistivity distribution along the pipe body, the spacing of measurement points on the ground surface is no longer limited as in the conventional case (the soil resistivity is measured at very short intervals). It is possible to determine the resistivity distribution of the soil with high accuracy.In addition, since there is no need to drill holes in the ground surface, costs such as polling costs and restoration costs are completely eliminated, and survey costs can be reduced.
このようにして地表面と管体との間の土壌の比抵抗を求
めることにより、コンクリート/土壌マクロセルの発生
している箇所の管体の低抵抗接地部を見つけることがで
きる。また、上記した土壌の比抵抗分布と管体の1ff
i電性を調べること(別の方法で)により埋設されてい
る管体に異種土壌間マクロセルが発生しているかどうか
を判定することができる。この結果、管体の腐食が激し
い予想される箇所を掘削せずに見つけることができ、管
体の防食を容易に行うことができる。By determining the specific resistance of the soil between the ground surface and the tube in this way, it is possible to find the low resistance grounding portion of the tube where concrete/soil macrocells are occurring. In addition, the resistivity distribution of the soil mentioned above and the 1ff of the pipe body
By examining the i-electricity (using another method), it is possible to determine whether macrocells between different types of soil have occurred in the buried pipe. As a result, locations where the pipe body is expected to be severely corroded can be found without excavating, and the pipe body can be easily protected against corrosion.
この発゛明の電波による土質調査方法によれば、地表か
ら土壌中の管体に対して電波を発射し、管体からの反射
波を受り、この反射波の大きさを測定し、この反射波の
大きさと地表面から発射した電波の大きさの比から減衰
度を求め、この減衰度から比抵抗を求めるため、地表面
に穴をあけることなく、間接的に土壌の比抵抗を求める
ことができる。この結果、管体に沿った土壌の比抵抗分
布を求める際に地表面における測定点の間隔も従来例の
ように制限されることはなく、きわめて短い間隔毎に土
壌の比抵抗を測定することができ、比抵抗分布を高精度
に求めることができる。また、地表面に穴をあける必要
がないので、ポーリング費、復旧費等のコストが全く不
要となり、調査費用を低減することができる。According to the soil investigation method using radio waves of this invention, radio waves are emitted from the ground surface to a tube in the soil, the reflected wave from the tube is received, the magnitude of this reflected wave is measured, and this The degree of attenuation is calculated from the ratio of the size of the reflected wave and the size of the radio wave emitted from the ground surface, and the specific resistance is calculated from this degree of attenuation, so the specific resistance of the soil can be calculated indirectly without drilling a hole in the ground surface. be able to. As a result, when determining the soil resistivity distribution along the pipe body, the spacing of measurement points on the ground surface is not limited as in the conventional example, and the soil resistivity can be measured at extremely short intervals. , and the resistivity distribution can be determined with high accuracy. Furthermore, since there is no need to drill holes in the ground surface, costs such as polling costs and restoration costs are completely eliminated, and survey costs can be reduced.
第1図はこの発明の詳細な説明図、第2図は電波の減衰
率と周波数の関係を示す図、第3図は土壌の比抵抗と土
壌腐食因子の関係を示す図、第4図は土質調査装置の実
施例の構成を示すブロック図、第5図は反射波の波形図
、第6間および第7図は土質調査装置の動作を説明する
ための図、第8図は実測結果を示す図である。
l・・・土壌、2・・・管体、3・・・地表面第
図
第
図
第
図
第
図
第
図
第
図
第
図Figure 1 is a detailed explanatory diagram of the present invention, Figure 2 is a diagram showing the relationship between radio wave attenuation rate and frequency, Figure 3 is a diagram showing the relationship between soil resistivity and soil corrosion factors, and Figure 4 is a diagram showing the relationship between soil resistivity and soil corrosion factors. A block diagram showing the configuration of an embodiment of the soil investigation device, FIG. 5 is a waveform diagram of reflected waves, FIGS. 6 and 7 are diagrams for explaining the operation of the soil investigation device, and FIG. 8 shows the actual measurement results. FIG. l...Soil, 2...Pipe body, 3...Ground surface diagram diagram diagram diagram diagram diagram diagram diagram
Claims (1)
から電波を発射し、前記管体からの反射波を受け、この
反射波の大きさを測定し、反射波の大きさと地表面から
発射した電波の大きさの比から減衰度を求め、この減衰
度から地表面と管体の間の土壌の比抵抗を求める電波に
よる土質調査方法。Radio waves are emitted from the ground surface to a tube buried at a certain depth in the soil, the reflected wave from the tube is received, the magnitude of this reflected wave is measured, and the magnitude of the reflected wave and the ground are calculated. A soil survey method using radio waves that determines the degree of attenuation from the ratio of the magnitudes of radio waves emitted from the surface, and from this degree of attenuation determines the resistivity of the soil between the ground surface and the pipe body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16227988A JPH028754A (en) | 1988-06-27 | 1988-06-27 | Soil inspection using radio wave |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16227988A JPH028754A (en) | 1988-06-27 | 1988-06-27 | Soil inspection using radio wave |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH028754A true JPH028754A (en) | 1990-01-12 |
Family
ID=15751454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16227988A Pending JPH028754A (en) | 1988-06-27 | 1988-06-27 | Soil inspection using radio wave |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH028754A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08122279A (en) * | 1994-10-21 | 1996-05-17 | Tobishima Corp | Underground relative permittivity measuring method, geological measuring method, and position measuring method |
JP2020079796A (en) * | 2015-01-15 | 2020-05-28 | トランステック システムズ、 インコーポレイテッド | System for measurement and monitoring of physical properties of material under test from vehicle |
CN112083252A (en) * | 2020-09-18 | 2020-12-15 | 西南交通大学 | Method for evaluating maximum economic size coefficient of horizontal layered under-soil grounding device |
-
1988
- 1988-06-27 JP JP16227988A patent/JPH028754A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08122279A (en) * | 1994-10-21 | 1996-05-17 | Tobishima Corp | Underground relative permittivity measuring method, geological measuring method, and position measuring method |
JP2020079796A (en) * | 2015-01-15 | 2020-05-28 | トランステック システムズ、 インコーポレイテッド | System for measurement and monitoring of physical properties of material under test from vehicle |
CN112083252A (en) * | 2020-09-18 | 2020-12-15 | 西南交通大学 | Method for evaluating maximum economic size coefficient of horizontal layered under-soil grounding device |
CN112083252B (en) * | 2020-09-18 | 2021-07-02 | 西南交通大学 | A method for evaluating the maximum economic size factor of grounding devices under horizontally layered soil |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Saarenketo | Using ground-penetrating radar and dielectric probe measurements in pavement density quality control | |
US5798644A (en) | Method and apparatus for locating buried conveyances using locating & confirmation signals with an array of sensors | |
US5686828A (en) | Method for locating the joints and fracture points of underground jointed metallic pipes and cast-iron-gas-main-pipeline joint locator system | |
US3990003A (en) | Pulsed loop antenna-conduit electromagnetic radiator test technique for electromagnetic shielding flaw detection in buried conduits and shielded conductors | |
EP0741291B1 (en) | A measurement device | |
KR100365140B1 (en) | Detection apparatus for the survey of buried structures by used gpr system | |
KR100399984B1 (en) | Electromagnetic Underground Detecting Method and The Same System | |
JPH028754A (en) | Soil inspection using radio wave | |
JP4044303B2 (en) | Corrosion protection coating damage detection method for buried metal pipes using two kinds of frequency signals | |
Wensink et al. | MEASURED UNDERWATER NEAR‐FIELD E‐PATTERNS OF A PULSED, HORIZONTAL DIPOLE ANTENNA IN AIR: COMPARISON WITH THE THEORY OF THE CONTINUOUS WAVE, INFINITESIMAL ELECTRIC DIPOLE1 | |
KR100365141B1 (en) | Detection techniques method for the survey of buried structures by used gpr system | |
US3261200A (en) | Pipeline leak detection method | |
Cheung | Non-destructive tests for determining the lengths of installed steel soil nails | |
Charlton et al. | Efficient detection of mains water leaks using ground-penetrating radar (GPR) | |
KR200188711Y1 (en) | Antenna structure of detection apparatus for the survey of buried structures by used gpr system | |
Cataldo et al. | An electromagnetic-based method for pinpointing leaks in buried pipes: a practical validation | |
Kanemitsu et al. | Estimation of buried pipe depth in an artificial soil tank using ground-penetrating radar and moisture sensor | |
Bachiri et al. | Ground penetrating radar data acquisition to detect imbalances and underground pipes | |
KR200194862Y1 (en) | Uniformity detection apparatus for the survey of buried structures by used gpr system | |
Mazida et al. | Investigation of Metal Contact by Utilizing Combination of Current Attenuation Survey (CAS) and Ground Penetrating Radar (GPR) Methods on Congested Urban Gas Pipeline | |
KR200194860Y1 (en) | Receive pre-amplifier of detection apparatus for the survey of buried structures by used gpr system | |
KR200194864Y1 (en) | Signal management device of detection apparatus for the survey of buried structures having receive signal saved device by used gpr system | |
KR200194861Y1 (en) | Receive signal analysis device of detection apparatus for the survey of buried structures by used gpr system | |
Mazida¹ et al. | Check for updates Investigation of Metal Contact by Utilizing Combination of Current Attenuation Survey (CAS) and Ground Penetrating Radar (GPR) | |
JP3451348B2 (en) | Method for detecting paint film damage on buried coated steel pipe |