JPH08112591A - How to treat foam scum - Google Patents
How to treat foam scumInfo
- Publication number
- JPH08112591A JPH08112591A JP6331847A JP33184794A JPH08112591A JP H08112591 A JPH08112591 A JP H08112591A JP 6331847 A JP6331847 A JP 6331847A JP 33184794 A JP33184794 A JP 33184794A JP H08112591 A JPH08112591 A JP H08112591A
- Authority
- JP
- Japan
- Prior art keywords
- scum
- water
- defoaming
- lysozyme
- actinomycetes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000006260 foam Substances 0.000 title claims description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 58
- 102000016943 Muramidase Human genes 0.000 claims abstract description 29
- 108010014251 Muramidase Proteins 0.000 claims abstract description 29
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 claims abstract description 29
- 241000186361 Actinobacteria <class> Species 0.000 claims abstract description 19
- 102000004157 Hydrolases Human genes 0.000 claims abstract description 15
- 108090000604 Hydrolases Proteins 0.000 claims abstract description 15
- 239000010802 sludge Substances 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims description 39
- 102000004190 Enzymes Human genes 0.000 claims description 21
- 108090000790 Enzymes Proteins 0.000 claims description 21
- 229940088598 enzyme Drugs 0.000 claims description 20
- 239000010865 sewage Substances 0.000 claims description 19
- 244000005700 microbiome Species 0.000 claims description 13
- 210000002421 cell wall Anatomy 0.000 claims description 12
- 230000003301 hydrolyzing effect Effects 0.000 claims description 9
- 241000192125 Firmicutes Species 0.000 claims description 7
- 230000003100 immobilizing effect Effects 0.000 claims description 6
- 229960000274 lysozyme Drugs 0.000 abstract description 30
- 239000004325 lysozyme Substances 0.000 abstract description 30
- 235000010335 lysozyme Nutrition 0.000 abstract description 28
- 238000004659 sterilization and disinfection Methods 0.000 abstract description 7
- 230000001954 sterilising effect Effects 0.000 abstract description 2
- 238000005273 aeration Methods 0.000 description 14
- 241000894006 Bacteria Species 0.000 description 11
- 239000004372 Polyvinyl alcohol Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 229920002451 polyvinyl alcohol Polymers 0.000 description 9
- 239000000126 substance Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000004090 dissolution Methods 0.000 description 5
- 239000008188 pellet Substances 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 108010059892 Cellulase Proteins 0.000 description 2
- 108010093096 Immobilized Enzymes Proteins 0.000 description 2
- MNLRQHMNZILYPY-MDMHTWEWSA-N N-acetyl-alpha-D-muramic acid Chemical group OC(=O)[C@@H](C)O[C@H]1[C@H](O)[C@@H](CO)O[C@H](O)[C@@H]1NC(C)=O MNLRQHMNZILYPY-MDMHTWEWSA-N 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 102000004142 Trypsin Human genes 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 238000010876 biochemical test Methods 0.000 description 2
- 229940106157 cellulase Drugs 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 239000002158 endotoxin Substances 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 229920006008 lipopolysaccharide Polymers 0.000 description 2
- 239000003094 microcapsule Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 230000011514 reflex Effects 0.000 description 2
- 238000005185 salting out Methods 0.000 description 2
- 238000007127 saponification reaction Methods 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- QCVGEOXPDFCNHA-UHFFFAOYSA-N 5,5-dimethyl-2,4-dioxo-1,3-oxazolidine-3-carboxamide Chemical compound CC1(C)OC(=O)N(C(N)=O)C1=O QCVGEOXPDFCNHA-UHFFFAOYSA-N 0.000 description 1
- 235000011293 Brassica napus Nutrition 0.000 description 1
- 240000007124 Brassica oleracea Species 0.000 description 1
- 235000003899 Brassica oleracea var acephala Nutrition 0.000 description 1
- 235000011301 Brassica oleracea var capitata Nutrition 0.000 description 1
- 235000001169 Brassica oleracea var oleracea Nutrition 0.000 description 1
- 240000008100 Brassica rapa Species 0.000 description 1
- 235000000540 Brassica rapa subsp rapa Nutrition 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 238000003794 Gram staining Methods 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241000187654 Nocardia Species 0.000 description 1
- 108010013639 Peptidoglycan Proteins 0.000 description 1
- 241000316848 Rhodococcus <scale insect> Species 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000003254 anti-foaming effect Effects 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 239000011942 biocatalyst Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000000249 desinfective effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 102000038379 digestive enzymes Human genes 0.000 description 1
- 108091007734 digestive enzymes Proteins 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 235000014103 egg white Nutrition 0.000 description 1
- 210000000969 egg white Anatomy 0.000 description 1
- 230000008029 eradication Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000002101 lytic effect Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229940051921 muramidase Drugs 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 235000011837 pasties Nutrition 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 108090000765 processed proteins & peptides Chemical group 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 150000004044 tetrasaccharides Chemical class 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Activated Sludge Processes (AREA)
- Removal Of Floating Material (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は下水処理において、特に
放線菌由来の発泡スカムの分解に好適な加水分解酵素を
直接消泡水に添加して、若しくはこの酵素を固定化処理
して水処理活性汚泥微生物中へ投入・混合して発泡スカ
ムを確実に処理する方法に関するものである。BACKGROUND OF THE INVENTION The present invention relates to a sewage treatment, in which a hydrolase suitable for decomposing foamed scum derived from actinomycetes is added directly to defoaming water, or the enzyme is immobilized for water treatment. The present invention relates to a method for surely treating foamed scum by introducing and mixing it into activated sludge microorganisms.
【0002】[0002]
【従来の技術】下水処理において、処理槽の水面に多量
のスカムが浮遊し、この浮遊スカムにて景観が損なわれ
たり、風に吹き飛ばされたりして公害の起因ともなった
り、処理水質や見栄えを悪化する等重大な問題である。
このため、水面に浮遊するスカムを除去する方法として
図4に示すように消泡水をこの浮遊スカム上方より噴射
して物理的に破砕し、消泡除去しているか、もしくは、
最終沈澱池においてスカムスキマーで除去され、スカム
返流水として原水槽や最始沈澱池に戻されていた。2. Description of the Related Art In sewage treatment, a large amount of scum floats on the water surface of a treatment tank, and the floating scum damages the landscape and is blown away by the wind to cause pollution. It is a serious problem such as deterioration.
Therefore, as a method of removing the scum floating on the water surface, as shown in FIG. 4, defoaming water is sprayed from above the floating scum to physically break it to remove the defoaming, or
It was removed by scum skimmer in the final settling tank and returned to the raw water tank and the first settling tank as scum return water.
【0003】[0003]
【発明が解決しようとする課題】しかし、発泡性のスカ
ムは原因微生物の放線菌により形成され、通常は曝気槽
において発泡し、曝気槽や沈殿槽においてスカムとして
浮遊する。このため、消泡水により物理的な消泡では再
度の曝気によりスカムが再び発生するものとなり、完全
にスカムを除去することができない。また、完全に除去
しきれなかった残留した放線菌が下水処理系内を循環す
るだけで、根本的な解決策とは成り得なかった。この他
に殺菌剤利用方法もあるが、水を処理する有用菌をも同
時に死滅させる恐れがあった。However, effervescent scum is formed by actinomycetes, which is the causative microorganism, and usually foams in the aeration tank and floats as scum in the aeration tank or the precipitation tank. Therefore, in the physical defoaming by the defoaming water, the scum is generated again by the aeration again, and the scum cannot be completely removed. Moreover, residual actinomycetes that could not be completely removed simply circulate in the sewage treatment system and could not be a fundamental solution. In addition to this, there is a method of using a bactericide, but there is a risk that useful bacteria for treating water are also killed at the same time.
【0004】本発明は浮遊スカムを物理的に破砕する消
泡水に直接加水分解酵素を添加するか、固定化したリゾ
チームを用いることによりスカムを物理的に消泡すると
共に、この加水分解酵素にて放線菌を溶菌或いは選択的
に殺菌して再度の曝気によってもスカムが発生しないよ
うにすることを目的とする。According to the present invention, hydrolyzing enzyme is added directly to antifoaming water for physically crushing floating scum, or immobilized lysozyme is used to physically defoam scum, and The purpose is to lyse or selectively sterilize actinomycetes so that scum does not occur even if aeration is performed again.
【0005】[0005]
【課題を解決するための手段】本発明は上記目的を達成
するためになしたもので、下水処理において水面に浮遊
する浮遊スカムに対し、これを物理的に消泡させる消泡
水に放線菌を溶菌する加水分解酵素を添加して行い、ま
たグラム陽性菌の細胞壁を加水分解するリゾチームを固
定化し、水処理活性汚泥微生物中へ投入・混合して、発
泡スカムを抑制することを要旨とする。Means for Solving the Problems The present invention has been made in order to achieve the above-mentioned object, and in straywater treatment, floating scum floating on the water surface is physically defoamed. The essence is to suppress foaming scum by adding a hydrolytic enzyme that lyses lysozyme, immobilize lysozyme that hydrolyzes the cell wall of Gram-positive bacteria, and add and mix it into water-treated activated sludge microorganisms. .
【0006】[0006]
【作用】下水を曝気による好気撹拌して処理する際、水
面に多量の発泡性スカムが浮遊するが、この発泡スカム
はRhodococcus属、Nocardia属等の放線菌が原因で生じ
るものである。この浮遊する発泡スカムの解決を図るた
めに、放線菌を選択的に殺菌するリゾチームの生理作用
を利用する。これは発泡スカムを物理的に破砕して消泡
する消泡水に発泡スカムの性状に適した濃度となるよう
に加水分解酵素(リゾチーム)を添加し、これにより物
理的に消泡されなかったスカムも加水分解酵素の作用で
スカム中の放線菌が溶菌されるので、この下水を再度曝
気してもスカムが再発することもなく下水処理を効率的
に行えるものとなる。さらにこのリゾチームを下水処理
施設へ投入しても流入下水で希釈され、処理水として系
外へ流れ出てしまわないように、このリゾチームを処理
施設系内における封じ込めを目的として、固定化を図
り、リゾチームの粒径を大きくしてスクリーンなどの手
段により流出を防止し曝気槽への封じ込めを行う。これ
により有用な活性汚泥微生物への影響を最小限にとど
め、かつ放線菌を選択的に長期にわたって殺菌できるた
め、水処理へ悪影響を及ぼすことなく発泡スカムを抑制
できるものとなる。A large amount of effervescent scum floats on the water surface when sewage is aerobically agitated and treated. This effervescent scum is caused by actinomycetes such as Rhodococcus and Nocardia. In order to solve this floating foam scum, the physiological action of lysozyme, which selectively kills actinomycetes, is utilized. This is because the hydrolytic enzyme (lysozyme) was added to the defoaming water that physically crushes the foam scum to defoam it so that the foam scum was not physically defoamed. Since actinomycetes in scum are also lysed by the action of hydrolase in scum, even if this sewage is aerated again, scum does not recur and sewage treatment can be performed efficiently. Furthermore, even if this lysozyme is put into a sewage treatment facility, it will be diluted with the inflowing sewage and will not flow out of the system as treated water, so this lysozyme will be immobilized for the purpose of containing it in the treatment facility system. The particle size is increased to prevent outflow by means such as a screen and contain it in the aeration tank. This minimizes the effect on useful activated sludge microorganisms and can selectively sterilize actinomycetes over a long period of time, so that foaming scum can be suppressed without adversely affecting water treatment.
【0007】[0007]
【実施例】以下本発明の発泡スカムの処理方法について
説明する。酵素は生体触媒として知られ、その作用を繰
り返し利用できるため微量で高い活性を示し、選択的に
基質を分解し、その効果は一定量反応すると止まる作用
がある。一方細菌は細胞壁の構造の違いによりグラム染
色で陽性菌と陰性菌に大別される。水処理の中心である
フロック性の活性汚泥は、大部分がグラム陰性菌であ
り、放線菌はグラム陽性菌である。本発明はこのグラム
陽性菌を選択的に分解する酵素の特質を利用して下水中
のスカム処理を、より効果的に行うようになすもので、
浮遊するスカムを物理的に破砕除去する消泡水に下水の
性状に適した濃度になるよう加水分解酵素を直接もしく
は固定化して添加する。EXAMPLE A method for treating foam scum according to the present invention will be described below. An enzyme is known as a biocatalyst, and since it can repeatedly use its action, it exhibits a high activity even in a trace amount, selectively decomposes a substrate, and its effect stops after a certain amount of reaction. On the other hand, bacteria are roughly classified into positive bacteria and negative bacteria by Gram staining depending on the difference in cell wall structure. Most of floc activated sludge, which is the center of water treatment, is Gram-negative bacteria and actinomycetes is Gram-positive bacteria. The present invention utilizes the characteristic of the enzyme that selectively decomposes this Gram-positive bacterium to perform scum treatment in sewage more effectively,
Hydrolyzing enzyme is added directly or immobilized to defoaming water that physically breaks and removes floating scum so that the concentration becomes suitable for the properties of sewage.
【0008】この加水分解酵素としては、リゾチーム、
トリプシン、セルラーゼ等がある。このトリプシン、セ
ルラーゼは消化酵素として知られ、細菌を消化分解す
る。活性汚泥に対して活動的に働く。リゾチームは生化
学試験用として工業的に用いられるもので高価であるた
め、水処理への適用は固定化酵素として水処理系内へと
どめておくことが効果的である。また、生菌に直接作用
させると細胞壁による抗浸透作用を失い、溶菌を引き起
こす。この作用を利用して日本酒の火落ち菌殺菌、食品
中のグラム陽性菌の除菌や医薬品に利用されている。従
ってリゾチームは活性汚泥に対して活動的に働き、悪影
響を与えることはなく、かつこのリゾチーム等加水分解
酵素の添加量は濃度0.01〜1000mg/l,ph6
〜8の範囲内で下水の性状に適した濃度になるよう調整
することが望ましい。As this hydrolase, lysozyme,
Examples include trypsin and cellulase. This trypsin and cellulase are known as digestive enzymes and digest and decompose bacteria. Work actively against activated sludge. Since lysozyme is industrially used for biochemical tests and is expensive, it is effective to apply it to water treatment as an immobilized enzyme in the water treatment system. In addition, when directly acting on live bacteria, the anti-osmotic effect of the cell wall is lost, causing lysis. Utilizing this effect, it is used for sterilization of sake burn-off bacteria, eradication of Gram-positive bacteria in foods, and pharmaceuticals. Therefore, lysozyme acts actively on the activated sludge and has no adverse effect, and the amount of hydrolyzing enzyme such as lysozyme added is 0.01 to 1000 mg / l, ph6.
It is desirable to adjust the concentration within the range of to 8 so that the concentration is suitable for the property of sewage.
【0009】リゾチーム(N−アセチルムラミドグリカ
ノヒドロラーゼ:通称ムラミダーゼ)は分子量14037.12
9のアミノ酸からなる加水分解酵素で、動物の各種組
織、分泌液、卵白等に広く分布し、キャベツやカブ等一
部の植物にも含まれることが知られており、工業的には
卵白より製造される。このリゾチームはグラム陽性菌や
大腸菌、サルモネラ菌など一部のグラム陰性菌の細胞壁
を特異的に分解する性質を有している。この特異的作用
は上記微生物の細胞壁構成物質に起因する。つまり細胞
壁の主要構成部分はN−アセチル−D−グリコサミン,
N−アセチルムラミン酸及びペプチド鎖の集合体でムレ
インと呼ばれる複合多糖類の一種で強固な膜を形成して
おり、リゾチームはこれらのN−アセチル−D−グリコ
サミン,N−アセチルムラミン酸のβ1→4結合を加水
分解する酵素であり、細胞壁を二糖類と四糖類まで分解
する。Lysozyme (N-acetylmuramidoglycanohydrolase: commonly known as muramidase) has a molecular weight of 14037.12.
It is a hydrolase consisting of 9 amino acids.It is widely distributed in various animal tissues, secretions, egg white, etc., and is known to be contained in some plants such as cabbage and turnip. Manufactured. This lysozyme has the property of specifically degrading the cell wall of some Gram-negative bacteria such as Gram-positive bacteria, Escherichia coli, and Salmonella. This specific action is due to the cell wall constituents of the above microorganisms. In other words, the main component of the cell wall is N-acetyl-D-glycosamine,
An aggregate of N-acetylmuramic acid and a peptide chain forms a strong film as a kind of complex polysaccharide called murein, and lysozyme is one of these N-acetyl-D-glycosamine and N-acetylmuramic acid. It is an enzyme that hydrolyzes the β1 → 4 bond and decomposes the cell wall into disaccharides and tetrasaccharides.
【0010】リゾチームは図5(1)に示すようにリポ
多糖の存在しないグラム陽性菌(放線菌)の細胞壁を加
水分解するが、活性汚泥微生物は図5(2)に示すよう
にグラム陰性菌で、細胞壁表面にリポ多糖が存在するた
め、リゾチームの分子によっても細胞壁が溶解すること
はない。As shown in FIG. 5 (1), lysozyme hydrolyzes the cell wall of Gram-positive bacteria (actinomycetes) in the absence of lipopolysaccharide, while activated sludge microorganisms show Gram-negative bacteria as shown in FIG. 5 (2). Since the lipopolysaccharide is present on the cell wall surface, the cell wall is not dissolved even by the lysozyme molecule.
【0011】次に本発明の発泡スカムの除去方法を、標
準活性汚泥法に適用した実施例の図1に基づき説明す
る。図1において1は予め前工程で除塵機等にて固形物
を除去した下水を曝気して好気性処理を行う曝気槽で、
この曝気槽1内の上方で、この曝気槽内で発生し浮遊す
るスカム層に対し、所要圧で消泡水を水面に向かって噴
射する消泡ノズル2を配設すると共に、この曝気処理さ
れた下水を曝気槽から次の処理工程へ送るように曝気槽
1には最終沈殿池3が接続配設される。Next, the method for removing foam scum according to the present invention will be described with reference to FIG. 1 showing an embodiment applied to the standard activated sludge method. In FIG. 1, reference numeral 1 is an aeration tank for aerobically treating the sewage from which solids have been removed by a dust remover or the like in the previous step.
Above the inside of the aeration tank 1, a defoaming nozzle 2 for injecting defoaming water toward the water surface at a required pressure is provided for the scum layer generated and floating in the aeration tank, and the aeration process is performed. A final settling tank 3 is connected to the aeration tank 1 so as to send the sewage from the aeration tank to the next treatment step.
【0012】この最終沈殿池3にも所要圧で消泡水を水
面に向かって噴射する消泡ノズル4が配設されると共
に、この各消泡ノズル2,4にはリゾチーム等の加水分
解酵素を溶解する薬品溶解槽5に配管6を介して接続さ
れ、この配管6に加圧送水用のポンプ7が接続され、加
水分解酵素が適度の濃度で添加された消泡水がノズルへ
供給されるようになっている。この消泡水は上水を直接
利用することもできるが、節水のため最終沈殿池より排
水される処理水を消毒槽8内にて消毒した後利用するこ
ともできる。The final settling tank 3 is also provided with a defoaming nozzle 4 for injecting defoaming water toward the water surface at a required pressure, and each of the defoaming nozzles 2 and 4 has a hydrolytic enzyme such as lysozyme. Is connected via a pipe 6 to a chemical dissolution tank 5 for dissolving water, a pump 7 for pressurized water supply is connected to this pipe 6, and defoaming water to which a hydrolase is added at an appropriate concentration is supplied to a nozzle. It has become so. This defoaming water can be used directly as tap water, but can also be used after disinfecting the treated water discharged from the final settling tank in the disinfection tank 8 to save water.
【0013】このように消毒槽で滅菌処理された処理水
を薬品溶解槽で加水分解酵素と混合して曝気槽1,最終
沈殿池3でノズル噴射して浮遊スカム(放線菌)を破砕
と溶菌との併用作用にて完全に除去するものである。The treated water thus sterilized in the disinfection tank is mixed with the hydrolase in the chemical dissolution tank, and nozzles are sprayed in the aeration tank 1 and the final settling tank 3 to crush and lyse floating scum (actinomycetes). It is completely removed by the combined action with.
【0014】また、図2は本発明の発泡スカムの除去方
法をオキシデーションディッチ法に適用した実施例を示
す。循環水路を有するディッチ10に下水を流入させる
と共に、このディッチ10内を循環する下水にスカムが
発生し、浮遊する。このスカムを破砕するため、ディッ
チ10の1又は2箇所に消泡ノズル14を配設し、この
消泡ノズル14にポンプ16を配管15を介して接続す
る。ディッチ10には最終沈殿池11を接続し、この最
終沈殿池11にもポンプ16に接続される消泡ノズル1
7を設ける。ポンプ16は消毒槽13を経て処理水の一
部が流入され、加水分解酵素を溶解する薬品溶解槽12
より給水するようになす。FIG. 2 shows an embodiment in which the method for removing foam scum according to the present invention is applied to the oxidation ditch method. Sewage is caused to flow into the ditch 10 having a circulation water channel, and scum is generated in the sewage circulating in the ditch 10 to float. In order to crush this scum, a defoaming nozzle 14 is provided at one or two places of the ditch 10, and a pump 16 is connected to this defoaming nozzle 14 via a pipe 15. A defoaming nozzle 1 is connected to the ditch 10 and a final settling tank 11 is connected to the pump 16 as well.
7 is provided. The pump 16 has a chemical dissolution tank 12 into which a part of the treated water flows in through the disinfection tank 13 and dissolves the hydrolase.
Make sure to supply more water.
【0015】このような消泡ノズルより加水分解酵素を
適度の濃度に添加した消泡水を水面に向かって噴射する
とこのノズル水圧にて浮遊しているスカムは物理的に破
砕される。しかしこのノズル水だけでは完全にスカムが
消泡されず、下流に流下して再び曝気すると一部残った
放線菌が増殖されてスカムが発生するものとなる。この
ノズル水に加水分解酵素が添加されているため、破砕さ
れなかったスカムはこの加水分解酵素にてその放線菌が
溶菌され、図3に示すように完全に消泡されるものとな
る。When defoaming water containing a hydrolyzing enzyme added at an appropriate concentration is sprayed from such a defoaming nozzle toward the water surface, the scum floating at the nozzle water pressure is physically crushed. However, the scum is not completely defoamed only with this nozzle water, and when flowing down downstream and aerating again, some residual actinomycetes grow and scum occurs. Since the hydrolase is added to the nozzle water, the scum that has not been crushed lyses the actinomycetes by the hydrolase and is completely defoamed as shown in FIG.
【0016】[0016]
【化学式1】 [Chemical formula 1]
【0017】生化学試験用として工業的に用いられる高
価なリゾチームは、水処理への適用においては固定化酵
素として水処理系内へとどめておくことが効果的であ
る。この酵素や微生物の固定化方法としては、図に示す
ように担体結合法、架橋法、包括法の3つの方法に大別
され、そして担体結合法としてさらに物理的吸着法、イ
オン結合法、共有結合法に分類でき、また包括法として
は格子型とマイクロカプセル型とに分けられる。その目
的は (1)酵素や微生物を高濃度で利用し、それぞれのもつ
生理反応を高める。 (2)生理反応の安定性を図る。 (3)生育速度の遅い微生物や高価な酵素を反応槽へ封
じ込める。等がある。Expensive lysozyme, which is industrially used for biochemical tests, is effectively kept in the water treatment system as an immobilized enzyme in the application to water treatment. As shown in the figure, the methods for immobilizing enzymes and microorganisms are roughly classified into three methods: carrier binding method, cross-linking method and encapsulation method. Further, as the carrier binding method, physical adsorption method, ionic binding method, covalent method It can be classified as a binding method, and is classified into a lattice type and a microcapsule type as a comprehensive method. Its purpose is (1) Utilizing high concentrations of enzymes and microorganisms to enhance the physiological reaction of each. (2) To stabilize the physiological reaction. (3) Contain microorganisms with a slow growth rate and expensive enzymes in the reaction tank. Etc.
【0018】酵素の固定化に際しては、高温、強酸、強
アルカリの条件下では酵素が変性して失活し、有機溶
媒、濃厚塩類によっても非常に緩和な条件で行うことが
望ましい。The immobilization of the enzyme is preferably carried out under conditions of high temperature, strong acid and strong alkali, in which the enzyme is denatured and inactivated, and which is very mild even with an organic solvent and concentrated salts.
【0019】包括固定法を一例として、ポリビニルアル
コール(PVA)を用いた方法について以下説明する。
PVAは工業的にはポリ酢酸ビニルからアルカリを加え
て(ケン化)製造され、分子構造は化学式2に示す如く
であり、重合度とケン化度が大きいほど粘度が高くなり
溶解度が低下する性質がある。A method using polyvinyl alcohol (PVA) will be described below by taking the comprehensive fixing method as an example.
PVA is industrially manufactured by adding (saponifying) alkali from polyvinyl acetate, and its molecular structure is as shown in Chemical Formula 2. The higher the degree of polymerization and the degree of saponification, the higher the viscosity and the lower the solubility. There is.
【0020】[0020]
【化学式2】 [Chemical formula 2]
【0021】固定化剤としては重合度1000〜400
0、ケン化度98%以上の完全ケン化のものが適してい
るが、部分ケン化でも87〜98%のものが使用される
ことがある。The fixing agent has a degree of polymerization of 1000 to 400.
0, a completely saponified product having a saponification degree of 98% or more is suitable, but a partially saponified product having 87 to 98% may be used.
【0022】固定化手順としては、まずPVA水溶液を
作る。PVAは常温では溶けにくく、加熱しながら十分
に撹拌を行い、20%水溶液とする。次にPVA水溶液
冷却後、重量比として同量の割合でリゾチームと混合す
る。この段階ではPVAは糊状で、流動性を示す。さら
にこのPVA−リゾチームの混合物を10%硫酸ナトリ
ウム液中に添加する。水溶液の高分子や蛋白質は、塩類
の溶液中では溶質を析出させる現象があり、塩析と呼ば
れている。PVAはこの塩析により再度固化して常温で
は水に溶けにくい元の状態に戻る。この時リゾチームは
PVAに包括固定化される。As the immobilization procedure, first, an aqueous PVA solution is prepared. PVA does not readily dissolve at room temperature, and is sufficiently stirred while being heated to form a 20% aqueous solution. Next, after cooling the PVA aqueous solution, it is mixed with lysozyme at the same weight ratio. At this stage, PVA is pasty and shows fluidity. Further, this PVA-lysozyme mixture is added to a 10% sodium sulfate solution. A polymer or protein in an aqueous solution has a phenomenon of precipitating a solute in a salt solution, which is called salting out. PVA is solidified again by this salting out and returns to the original state in which it is hardly dissolved in water at room temperature. At this time, lysozyme is comprehensively immobilized on PVA.
【0023】包括固定化リゾチームのペレットの大きさ
は目的に応じた大きさに成形するもので、水処理系内に
ペレットをとどめておく手法として、曝気槽の流出口に
スクリーンを設置する場合は、その目幅より大きくする
必要がある。The size of the pellets of entrapping immobilization lysozyme is formed according to the purpose. As a method for keeping the pellets in the water treatment system, when a screen is installed at the outlet of the aeration tank, , It must be larger than the eye width.
【0024】成形方法はPVA−リゾチーム混合物を硫
酸ナトリウム水溶液中に添加する際、水滴状に添加し、
その大きさを調整することによりペレットの大きさを任
意の大きさにするか、またはPVA−リゾチーム混合物
を一度に添加して凝固物を細断して成形することもでき
る。The molding method is as follows. When the PVA-lysozyme mixture is added to the sodium sulfate aqueous solution, it is added in the form of water drops.
The size of the pellet can be adjusted to an arbitrary size by adjusting the size, or the PVA-lysozyme mixture can be added all at once and the solidified product can be shredded and molded.
【0025】成形化された固定化ペレットは、大きさが
大きくなるほど酵素の活性が低くなるが、これはペレッ
ト内部に水が浸透しにくくなるためであり、酵素の活性
度、スクリーンの大きさにより3〜7mm程度に成形す
ることが望ましい。In the molded immobilizing pellets, the larger the size, the lower the enzyme activity becomes, but this is because it becomes difficult for water to permeate the inside of the pellets, and it depends on the activity of the enzyme and the size of the screen. It is desirable to mold it to about 3 to 7 mm.
【0026】[0026]
【発明の効果】本発明の発泡スカムの処理方法は、下水
処理において水面に浮遊する浮遊スカムに対し、これを
物理的に消泡させる消泡水に放線菌を溶菌する加水分解
酵素を添加して行うため、これにより消泡水の噴射圧に
て物理的に消泡されなかったスカムも加水分解酵素の作
用でスカム中の放線菌が溶菌されるので、この下水を再
度曝気して再処理してもスカムが再発することもなく下
水処理を効率的に行える等の利点がある。また、本発明
の発泡スカムの処理方法は、グラム陽性菌の細胞壁を加
水分解するリゾチームを固定化し、水処理活性汚泥微生
物中へ投入・混合するようになしているため、有用な活
性汚泥微生物への影響を最小限にとどめ、かつ放線菌を
選択的に長期にわたって殺菌できるため、水処理へ悪影
響を及ぼすことなく発泡スカムを抑制できる利点があ
る。EFFECT OF THE INVENTION The method for treating foam scum of the present invention comprises adding a hydrolase that lyses actinomycetes to defoaming water that physically defoams the floating scum that floats on the water surface during sewage treatment. As a result, the actinomycetes in the scum are lysed by the action of the hydrolase even in the scum that was not physically defoamed by the spray pressure of the defoaming water, so this sewage is aerated again and retreated. Even so, there is an advantage that the sewage treatment can be efficiently performed without the recurrence of scum. In addition, the method for treating foam scum of the present invention is a method of immobilizing lysozyme that hydrolyzes the cell wall of Gram-positive bacteria, and introducing and mixing it in water-treated activated sludge microorganisms, so that it becomes a useful activated sludge microorganism. Since the effect of the above can be minimized and actinomycetes can be selectively sterilized for a long period of time, there is an advantage that the foam scum can be suppressed without adversely affecting the water treatment.
【図1】本発明の発泡スカムの除去方法を標準活性汚泥
法に適用した実施例の説明図である。FIG. 1 is an explanatory view of an example in which the method for removing foam scum of the present invention is applied to a standard activated sludge method.
【図2】オキシデーションディッチ法に適用した実施例
の説明図である。FIG. 2 is an explanatory diagram of an example applied to the oxidation ditch method.
【図3】本発明によるスカムの消泡を示す説明図であ
る。FIG. 3 is an explanatory diagram showing defoaming of scum according to the present invention.
【図4】従来の消泡水によるスカムの消泡を示す説明図
である。FIG. 4 is an explanatory diagram showing defoaming of scum by conventional defoaming water.
【図5】本発明による溶菌作用の説明図である。FIG. 5 is an explanatory view of the lytic action according to the present invention.
【図6】リゾチームの一次構造図である。FIG. 6 is a primary structural diagram of lysozyme.
【図7】本発明のリゾチームの固定化を格子型の包括法
にて行う実施例の説明図である。FIG. 7 is an explanatory diagram of an example in which immobilization of lysozyme of the present invention is performed by a lattice type comprehensive method.
【図8】同マイクロカプセル型の包括法にて行う実施例
の説明図である。FIG. 8 is an explanatory diagram of an example performed by the same microcapsule type encapsulation method.
【図9】本発明のリゾチームの固定化を坦体結合法にて
行う説明図である。FIG. 9 is an explanatory diagram of immobilizing lysozyme of the present invention by a carrier binding method.
【図10】本発明のリゾチームの固定化を架橋法にて行
う説明図である。FIG. 10 is an explanatory view of immobilizing lysozyme of the present invention by a crosslinking method.
1 曝気槽 2 消泡ノズル 3 最終沈殿池 4 消泡ノズル 5 薬品溶解槽 6 配管 7 ポンプ 8 消毒槽 10 ディッチ 11 最終沈殿池 12 薬品溶解槽 13 消毒槽 14 消泡ノズル 15 配管 16 ポンプ 17 消泡ノズル 1 Aeration tank 2 Defoaming nozzle 3 Final sedimentation tank 4 Defoaming nozzle 5 Chemical dissolution tank 6 Piping 7 Pump 8 Disinfection tank 10 Ditch 11 Final sedimentation tank 12 Chemical dissolution tank 13 Disinfection tank 14 Defoaming nozzle 15 Piping 16 Pump 17 Defoaming tank nozzle
Claims (3)
カム(水処理活性汚泥微生物中)に対し、これを物理的
に消泡させる消泡水に放線菌を溶菌する加水分解酵素を
添加して行うことを特徴とする発泡スカムの処理方法。1. A method in which a hydrolytic enzyme that lyses actinomycetes is added to defoaming water that physically defoams floating scum (in water-treated activated sludge microorganisms) that floats on the water surface during sewage treatment. A method for treating foam scum, which is characterized by the following.
水分解酵素を固定化し、水処理活性汚泥微生物中へ投入
・混合して、発泡スカムを抑制することを特徴とする発
泡スカムの処理方法。2. A method for treating foam scum, which comprises immobilizing a hydrolase that hydrolyzes the cell wall of Gram-positive bacteria, and introducing and mixing the enzyme into water-treated activated sludge microorganisms to suppress foam scum.
記載の発泡スカムの処理方法。3. The hydrolyzing enzyme lysozyme.
The method for treating foamed scum described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33184794A JP3634424B2 (en) | 1994-08-23 | 1994-12-09 | Processing method of foam scum |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6-221036 | 1994-08-23 | ||
JP22103694 | 1994-08-23 | ||
JP33184794A JP3634424B2 (en) | 1994-08-23 | 1994-12-09 | Processing method of foam scum |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08112591A true JPH08112591A (en) | 1996-05-07 |
JP3634424B2 JP3634424B2 (en) | 2005-03-30 |
Family
ID=26524046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33184794A Expired - Fee Related JP3634424B2 (en) | 1994-08-23 | 1994-12-09 | Processing method of foam scum |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3634424B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001259679A (en) * | 2000-03-22 | 2001-09-25 | Kurita Water Ind Ltd | Biological treatment method |
KR100967639B1 (en) * | 2008-03-26 | 2010-07-07 | 지에스건설 주식회사 | Surplus Sludge Reduction Method Using Thermomonas spp. |
-
1994
- 1994-12-09 JP JP33184794A patent/JP3634424B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001259679A (en) * | 2000-03-22 | 2001-09-25 | Kurita Water Ind Ltd | Biological treatment method |
KR100967639B1 (en) * | 2008-03-26 | 2010-07-07 | 지에스건설 주식회사 | Surplus Sludge Reduction Method Using Thermomonas spp. |
Also Published As
Publication number | Publication date |
---|---|
JP3634424B2 (en) | 2005-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5480537A (en) | Apparatus for waste water treatment using calcium carbonate mineral and microorganisms in combination | |
CN105039300A (en) | Preparation method of heterogeneous bacteria embedding particles | |
JP2007021431A (en) | Sludge treatment method | |
JP3326500B2 (en) | Processing equipment for processing objects containing microorganisms | |
JP3634424B2 (en) | Processing method of foam scum | |
Bandhyopadhyay et al. | Solid matrix characterization of immobilized Pseudomonas putida MTCC 1194 used for phenol degradation | |
JPS63116800A (en) | Treatment of sludge and waste water or the like | |
JP3793937B2 (en) | Silicon wafer polishing wastewater treatment method | |
JPH11147801A (en) | Bactericide for active sludge, sterilization of active sludge by using the same and treatment of organic waste water | |
KR100845195B1 (en) | Treatment of Slaughter Wastewater Using a Continuous Batch Bioreactor | |
CN108314274B (en) | A kind of circulation cleaning sewage water treatment method reducing sludge quantity | |
JP3900796B2 (en) | Method and apparatus for treating organic wastewater | |
JP3472246B2 (en) | Excess sludge treatment method | |
JP3958409B2 (en) | Activation method of activated sludge | |
KR20220074171A (en) | Manufacturing method of capsule type removing agent of green tides and capsule type removing agent of green tides manufactured by the method | |
JPS6344035B2 (en) | ||
JP2007209889A (en) | Surplus sludge treatment method | |
JP2004033808A (en) | Wastewater treatment method using microorganisms | |
KR100478044B1 (en) | Decomposition device of organic waste | |
KR880000583B1 (en) | Method for preparing activated sludge nutrient composition for wastewater treatment | |
JP3354432B2 (en) | Method for decolorizing wastewater and treating hardly decomposable substances using hydrogen peroxide | |
JPH0330897A (en) | Waste water treatment apparatus | |
JP3506264B2 (en) | Water treatment agent | |
JP3142256B2 (en) | Wastewater treatment device and wastewater treatment method | |
KR100403865B1 (en) | A purgation methods for the swimming pool water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041130 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041224 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090107 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100107 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |