[go: up one dir, main page]

JPH0810207B2 - Biosensor - Google Patents

Biosensor

Info

Publication number
JPH0810207B2
JPH0810207B2 JP1288645A JP28864589A JPH0810207B2 JP H0810207 B2 JPH0810207 B2 JP H0810207B2 JP 1288645 A JP1288645 A JP 1288645A JP 28864589 A JP28864589 A JP 28864589A JP H0810207 B2 JPH0810207 B2 JP H0810207B2
Authority
JP
Japan
Prior art keywords
enzyme
electrode
immobilized membrane
membrane
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1288645A
Other languages
Japanese (ja)
Other versions
JPH03150458A (en
Inventor
汀 安藤
隆史 加藤
健 光岡
淳一 徳本
秀保 青木
常利 大蔵
朱 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP1288645A priority Critical patent/JPH0810207B2/en
Publication of JPH03150458A publication Critical patent/JPH03150458A/en
Publication of JPH0810207B2 publication Critical patent/JPH0810207B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は化学・食品工業,医療,環境計測などの分野
で利用されるバイオセンサ,特に高応答性の要望される
酵素センサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a biosensor used in the fields of chemical / food industry, medical care, environmental measurement, and the like, and particularly to an enzyme sensor which is required to have high responsiveness.

[従来技術及び課題] 近年,酵素センサが注目されており,例えば疎水性の
多孔質無機担体や高分子担体に酵素を固定化してなる酵
素固定化膜と電極等のトランスデューサとを組合せ,酵
素固定化膜中の試料液通過時において酵素反応によって
生ずる化学物質等の変化をトランスデューサによって電
気信号に変換して特定基質濃度を計測するようにした酵
素センサが開発されている。
[Prior Art and Problems] In recent years, enzyme sensors have been attracting attention. For example, an enzyme immobilization membrane formed by immobilizing an enzyme on a hydrophobic porous inorganic carrier or a polymer carrier and a transducer such as an electrode are combined to immobilize the enzyme. An enzyme sensor has been developed in which changes in chemical substances and the like caused by an enzymatic reaction when passing through a sample solution in a chemical film are converted into electric signals by a transducer to measure a specific substrate concentration.

しかし,酵素固定化膜は試料液拡散の障害物であり,
特に使用酵素が低活性である場合のように,膜を厚くし
て酵素固定化量を増やすと,著しい応答性の遅れを生ず
る。
However, the enzyme-immobilized membrane is an obstacle to the diffusion of the sample solution,
In particular, when the enzyme used is low in activity and the membrane is thickened to increase the amount of enzyme immobilized, a remarkable delay in responsiveness occurs.

そのため,酵素固定化膜を極力薄くすることが検討さ
れている。
Therefore, making the enzyme-immobilized membrane as thin as possible has been studied.

しかし,酵素固定化膜を薄くすると,酵素固定化量が
減り,出力信号が小さくなるため,低濃度試料に対する
感度が悪くなったり,センサ小型化に支障をきたす。
又,酵素固定化膜の強度低下にもつながる。
However, if the enzyme immobilization membrane is made thin, the amount of enzyme immobilization decreases and the output signal becomes small, so the sensitivity to low-concentration samples deteriorates and the miniaturization of the sensor is hindered.
In addition, the strength of the enzyme-immobilized membrane is reduced.

[課題の解決手段及び作用] そこで,本発明はかかる課題を下記手段によって解決
した。
[Means for Solving the Problem and Action] Therefore, the present invention has solved the problem by the following means.

(1)酵素固定化膜の両面に備えられ,試料液を酵素固
定化膜を通じて電気浸透させる電極と, 酵素固定化膜における酵素反応の物質変化を電気信号
に変換する電極と, を有することを特徴とするバイオセンサ。
(1) To have electrodes provided on both sides of the enzyme-immobilized membrane for electropermeating a sample solution through the enzyme-immobilized membrane, and an electrode for converting a substance change of an enzyme reaction in the enzyme-immobilized membrane into an electric signal. Characteristic biosensor.

(2)酵素固定化膜の前面側に位置する非固定化膜の両
面に備えられ,試料液を非固定化膜を通じて電気浸透さ
せる電極と, 酵素固定化膜における酵素反応の物質変化を電気信号
に変換する電極と, を有することを特徴とするバイオセンサ。
(2) Electrodes that are provided on both sides of the non-immobilized membrane located on the front side of the enzyme-immobilized membrane and allow the sample solution to electropermeate through the non-immobilized membrane, and an electrical signal indicating the substance change of the enzyme reaction in the enzyme-immobilized membrane. A biosensor, comprising: an electrode that converts into.

(3)酵素固定化膜の両面に備えられ,試料液を酵素固
定化膜を通じて電気浸透させると共に,酵素固定化膜に
おける酵素反応の物質変化を電気信号に変換する電極,
を有することを特徴とするバイオセンサ。
(3) Electrodes that are provided on both sides of the enzyme-immobilized membrane and that allow the sample solution to electropermeate through the enzyme-immobilized membrane and also convert the substance change of the enzyme reaction in the enzyme-immobilized membrane into an electric signal,
A biosensor comprising:

一般に,酵素固定化膜又は非固定化膜(固相)は,そ
れを通過する試料液(液相)に対して正又は負に帯電し
ており,特にこの帯電は界面動電位(ζ電位)として測
定される。そのため,第1図に示すような電極型酵素セ
ンサを例にとって云えば,このζ電位が−(マイナス)
の場合において,同図に示すように電気浸透発生用電極
5によって直流電圧を印加すると,電気浸透によって,
試料液は酵素固定化膜4中を拡散して計測用電極2の方
(破線矢印方向)へ速やかに移送される。
Generally, the enzyme-immobilized membrane or non-immobilized membrane (solid phase) is charged positively or negatively with respect to the sample solution (liquid phase) passing through it, and this charge is especially the electrokinetic potential (ζ potential). Is measured as Therefore, taking the electrode type enzyme sensor as shown in FIG. 1 as an example, this ζ potential is-(minus).
In this case, when a DC voltage is applied by the electrode 5 for electroosmosis generation as shown in FIG.
The sample liquid diffuses in the enzyme-immobilized membrane 4 and is quickly transferred to the measurement electrode 2 (in the direction of the broken arrow).

特に,トランスデューサとして計測用電極を採用して
なる電極型酵素センサにおいて本発明は好ましく適用で
き,応答性に優れ,しかも高精度の分析が可能となる。
In particular, the present invention can be preferably applied to an electrode-type enzyme sensor that employs a measurement electrode as a transducer, has excellent responsiveness, and enables highly accurate analysis.

酵素固定化膜又は非固定化膜(「酵素固定化膜等」と
もいう)を構成する多孔質担体としては,試料液との関
係で帯電し易いものを使用するとよい。この帯電性は,
試料液からのイオンの吸着,担体自身の電離等に依存す
る。従って,その見地から測定すべき試料液に応じて,
種々の無機質,有機質材料から最適なものを適宜選択し
て使用することが好ましい。無機質担体としては,アル
ミナ,マグネシア,チタニア,ジルコニアなどの酸化物
セラミックス;及びリン酸塩(アパタイト,リン酸カル
シウム等),ペロブスカイト,チタン酸塩(チタン酸バ
リウム),アルミン酸塩(ムライト,スピネル),珪酸
塩(ジルコン等)などの複酸化物セラミックス;並びに
シリカ,硼珪酸などのガラス;及びβ−スポデューメ
ン,コーディエライトなどの結晶化ガラス;などが挙げ
られる。他方,窒化物セラミックス,炭化物セラミック
スは試料液イオンの吸着,セラミックス自身の電離が不
充分であり,好ましくない。有機質担体としてはポリエ
チレン,ポリスチレン,ポリウレタン等の高分子材料が
挙げられる。特に,これらの材料から成る多孔質担体を
用いて実際に酵素固定化膜として使用したとき,試料液
との間で生じるζ電位の絶対値が少なくとも5mV,特に20
mV以上になるような材料が好ましい。ζ電位が高い程よ
り大きな電気浸透力が得られ,応答性の向上に有利とな
る。又,多孔質担体について,気孔率60%,平均気孔径
0.3,厚み0.5mm程度のものが好ましい。
As the porous carrier constituting the enzyme-immobilized membrane or the non-immobilized membrane (also referred to as “enzyme-immobilized membrane or the like”), it is preferable to use a porous carrier that is easily charged due to the relationship with the sample solution. This chargeability is
It depends on the adsorption of ions from the sample solution and the ionization of the carrier itself. Therefore, depending on the sample liquid to be measured from that point of view,
It is preferable to select and use the most suitable material from various inorganic and organic materials. As inorganic carriers, oxide ceramics such as alumina, magnesia, titania, zirconia; phosphates (apatite, calcium phosphate, etc.), perovskites, titanates (barium titanate), aluminates (mullite, spinel), silicic acid Double oxide ceramics such as salts (zircon); glass such as silica and borosilicate; and crystallized glass such as β-spodumene and cordierite. On the other hand, nitride ceramics and carbide ceramics are not preferable because the adsorption of sample liquid ions and the ionization of the ceramics themselves are insufficient. Examples of the organic carrier include polymeric materials such as polyethylene, polystyrene and polyurethane. In particular, when the porous carrier made of these materials is actually used as an enzyme-immobilized membrane, the absolute value of ζ potential generated between the sample solution and the sample solution is at least 5 mV, especially 20 mV.
A material of mV or more is preferable. The higher the ζ potential is, the greater electroosmotic force is obtained, which is advantageous for improving the responsiveness. Also, regarding the porous carrier, the porosity is 60% and the average pore size is
A thickness of about 0.3 and a thickness of about 0.5 mm is preferable.

電気浸透発生用電極は,酵素固定化膜等の両面に直接
結合させて備えるとよい。材料としては通常の電極材料
である貴金属,高融点金属,金属酸化物等を広く使用で
き,特に化学的安定性,耐食性に優れた貴金属(Au,Pt
等)が好ましい。又,その多孔度については,移送方向
の断面における全面積に対して40〜70%程度電極材料を
存在させるような状態にするとよい。この電極は,導電
材料を印刷,めっき,スパッタリング,蒸着等によって
酵素固定化膜等に被着することにより,又別途網目状に
成形された電極によって酵素固定化膜を挟持することに
より備えるとよい。
The electrode for electroosmosis generation may be directly attached to both sides of the enzyme-immobilized membrane or the like. As the material, there can be widely used ordinary electrode materials such as precious metals, refractory metals, metal oxides, etc., especially precious metals (Au, Pt) with excellent chemical stability and corrosion resistance.
Etc.) are preferred. Regarding the porosity, it is preferable that the electrode material is present in an amount of 40 to 70% with respect to the total area in the cross section in the transfer direction. This electrode may be provided by applying a conductive material to the enzyme immobilization film or the like by printing, plating, sputtering, vapor deposition or the like, or by sandwiching the enzyme immobilization film with a separate mesh-shaped electrode. .

酵素固定化膜の一側ないしは両側には,測定誤差をも
たらす有害物質(例えば血液中のグルコース測定におけ
るアルコルビン酸や尿酸;エタノール測定における他の
アルコール,酸,アルデヒド)が計測用電極などに付着
するのを防止するために,選択透過膜を存在させること
が好ましい。その選択透過膜はセルロースアセテート,
テフロン,アルミナゲル等からなり,厚さ0.1〜10μm,
気孔率30〜70%程度にするとよい。
On one or both sides of the enzyme-immobilized membrane, harmful substances that cause measurement errors (eg, ascorbic acid and uric acid in blood glucose measurement; other alcohols, acids, and aldehydes in ethanol measurement) adhere to the measurement electrodes. In order to prevent this, it is preferable to have a permselective membrane. The permselective membrane is cellulose acetate,
Made of Teflon, Alumina gel, etc., thickness 0.1 ~ 10μm,
Porosity should be around 30-70%.

尚,各要素(酵素固定化膜,選択膜,電極など)は密
着していることが好ましい。もっとも,各要素間におい
て若干の隙間の存在は差支えない。
In addition, it is preferable that each element (enzyme-immobilized membrane, selective membrane, electrode, etc.) is in close contact. However, there may be some gaps between the elements.

[実施例] 以下,エタノールセンサを例にとって説明する。[Example] An ethanol sensor will be described below as an example.

(1)酵素の固定化 予め,アルミナ純度99.9%,気孔率36%,平均気孔径
0.27μm,嵩密度2.6g/cm3,サイズ3φ×0.5tmmである多
孔質アルミナ(担体)を用意する。
(1) Immobilization of enzyme In advance, alumina purity 99.9%, porosity 36%, average pore diameter
0.27 [mu] m, a bulk density of 2.6 g / cm 3, to prepare a porous alumina (carrier) in size 3 φ × 0.5 t mm.

このアルミナ多孔体に,次の手順(イ)〜(ホ)で固
定化処理を施す。
The alumina porous body is subjected to immobilization treatment by the following steps (a) to (e).

(イ) γ−アミノプロピルトリエトキシシラン10g及
びトルエン90gからなる溶液に上記多孔体を室温で15時
間浸す。
(A) The porous body is immersed in a solution containing 10 g of γ-aminopropyltriethoxysilane and 90 g of toluene at room temperature for 15 hours.

(ロ) トルエン100mlで5分,エタノール100mlで5
分,純水100mlで10分洗浄する。
(B) 5 minutes with 100 ml of toluene, 5 minutes with 100 ml of ethanol
And wash with 100 ml of pure water for 10 minutes.

(ハ) 1時間自然乾燥した後,グルタルアルデヒド2.
5g及びリン酸塩緩衝液97.5gからなる溶液に2時間室温
で浸す。
(C) Glutaraldehyde after air-drying for 1 hour 2.
Immerse in a solution consisting of 5 g and 97.5 g of phosphate buffer for 2 hours at room temperature.

(ニ) アルコールオキシダーゼ(市販品)0.5g及びリ
ン酸塩緩衝液100mlからなる溶液に1時間室温で浸す。
(D) Immerse in a solution consisting of 0.5 g of alcohol oxidase (commercially available product) and 100 ml of phosphate buffer at room temperature for 1 hour.

(ホ) リン酸塩緩衝液で2時間室温でゆすぐ。(E) Rinse with phosphate buffer for 2 hours at room temperature.

これで酵素固定化膜が得られた。 Thus, the enzyme-immobilized membrane was obtained.

(2)センサ素子の作成 第2,図に示すように,アルミナ磁器基板(サイズ10×
10×0.6tmm)1の上に計測用電極としての白金電極2を
蒸着する。その上に順次,選択透過膜としての酢酸セル
ロース膜(厚さ2μm)3,電極浸透発生用電極としての
金メッシュ(存在部:非存在部≒3:7)5,酵素固定化膜
4,金メッシュ5を重ね,最後に接着剤を用いて,液排出
口6aを有するカバー6をかぶせシールする。これでセン
サ素子が組み上った(第3図,第4図)。
(2) Fabrication of sensor element As shown in Fig. 2 and Fig. 2, alumina porcelain substrate (size 10 x
A platinum electrode 2 as a measuring electrode is vapor-deposited on a 10 × 0.6 t mm) 1. Cellulose acetate membrane (thickness 2 μm) 3 as selective permeation membrane 3, gold mesh (existing portion: non-existing portion ≒ 3: 7) 5 as electrode for electrode permeation generation, enzyme immobilized membrane
4, Gold mesh 5 is overlaid, and finally an adhesive is used to cover and seal the cover 6 having the liquid discharge port 6a. The sensor element is now assembled (Figs. 3 and 4).

(3)測定 白金電極2の端子a,bにはエレクトロメータを接続
し,金メッシュ電極5の端子c,dには直流電圧を印加し
て,種々のエタノール濃度の試験液を0.1ml滴下し,応
答時間及び電流値(アンペロメトリー信号変換方式)を
測定した。
(3) Measurement An electrometer was connected to the terminals a and b of the platinum electrode 2, a DC voltage was applied to the terminals c and d of the gold mesh electrode 5, and 0.1 ml of test solutions of various ethanol concentrations were dropped. , Response time and current value (amperometry signal conversion method) were measured.

試験液: リン酸塩緩衝液(pH7.0)(試薬) エチルアルコール(試薬) その結果を第1表及び第5図に示す。Test solution: Phosphate buffer solution (pH 7.0) (reagent) Ethyl alcohol (reagent) The results are shown in Table 1 and FIG.

第1表及び第5図から明らかなように,僅かな直流電
圧(2V程度)を電気浸透発生用電極に印加するだけで,
応答時間が大幅に短縮され,かつ計測電流値も大きので
低濃度試料に対しても高感度を維持できた。特に、酵素
固定化膜を厚く(0.5mm)した場合に,電圧を印加しな
いもの(印加電圧0V)に比して著しい応答性の向上が確
認された。又,本実施例のように酵素固定化膜(電気浸
透発生用電極)と計測用電極との間に選択透過膜を介在
させた場合であっても,充分な応答性を維持できること
も併せて確認できた。尚,測定条件にもよるが,通常の
センサの場合計測電流値が1μA未満になると正確な測
定が困難となる。
As is clear from Table 1 and FIG. 5, it is possible to apply a slight DC voltage (about 2 V) to the electrode for electroosmosis generation.
The response time was greatly shortened and the measured current value was large, so high sensitivity could be maintained even for low-concentration samples. In particular, when the enzyme-immobilized membrane was made thick (0.5 mm), it was confirmed that the response was remarkably improved as compared with the case where no voltage was applied (applied voltage 0 V). In addition, even when a selective permeation membrane is interposed between the enzyme-immobilized membrane (electrode for electroosmosis generation) and the measurement electrode as in the present embodiment, sufficient responsiveness can be maintained. It could be confirmed. Although it depends on the measurement conditions, in the case of an ordinary sensor, if the measured current value is less than 1 μA, accurate measurement becomes difficult.

第6図は酵素固定化膜4の前面側に別にシリカ質非固
定化膜(酵素を固定化していない多孔質担体)7を設
け,該非固定化膜7の両面に電気浸透用電極5を備えた
実施例である。尚,8は液排出孔である。
FIG. 6 shows that a non-immobilized siliceous membrane (a porous carrier on which no enzyme is immobilized) 7 is separately provided on the front side of the enzyme-immobilized membrane 4, and the electroosmotic electrodes 5 are provided on both sides of the non-immobilized membrane 7. This is an example. In addition, 8 is a liquid discharge hole.

前記例では,酵素固定化膜4における酵素反応によっ
て生ずる電極活物質(過酸化水素)を電気浸透発生用電
極5によっても僅かながら電極反応(酸化分解)により
電流値に変換してしまい,測定誤差をもたらすおそれが
ある。しかし,本実施例にあっては,前記例に比して若
干の応答性の遅れはあるものの,電気浸透発生用電極5
による電気浸透力を利用して試料液の酵素固定化膜4の
通過(従って計測用電極2への移送も確実に行ない得
る。しかも,酵素反応によって生じた電極活物質を計測
用電極2によって正確に電流値に変換でき,より高精度
の測定が可能である。
In the above example, the electrode active material (hydrogen peroxide) generated by the enzyme reaction in the enzyme-immobilized membrane 4 is converted into a current value by the electrode reaction (oxidative decomposition) by the electrode 5 for electroosmosis generation, which causes a measurement error. May result in However, in this embodiment, although there is a slight delay in response as compared with the above-mentioned example, the electrode 5 for electroosmosis generation is used.
The sample liquid can pass through the enzyme-immobilized membrane 4 (and thus can be reliably transferred to the measurement electrode 2) by utilizing the electroosmotic force of the electrode. Moreover, the electrode active material generated by the enzyme reaction can be accurately measured by the measurement electrode 2. It can be converted into a current value, and more accurate measurement is possible.

第7図は一の電極(一対)5が電気浸透発生用電極と
計測用電極を兼ねた実施例である。又,一対の電極5の
間には,酵素固定化膜4とともに選択透過膜3を介在さ
せている。
FIG. 7 shows an embodiment in which one electrode (pair) 5 serves both as an electroosmosis generating electrode and a measuring electrode. Further, a selective permeation membrane 3 is interposed between the pair of electrodes 5 together with the enzyme immobilization membrane 4.

本実施例にあっては一の電極5によって,電気浸透力
を効率良く利用して酵素反応によって生じた電極活性物
質の電極反応をも行なわせしめるため,最も応答性に優
れ,しかも構造を簡素化できる。
In the present embodiment, one electrode 5 is used to efficiently utilize the electroosmotic force to cause the electrode reaction of the electrode active substance generated by the enzymatic reaction, so that it is the most responsive and has a simplified structure. it can.

各実施例のセンサ素子は,試料液中に挿入して測定を
行なうバッチシステム,又通液型のセル中に装置して試
料液を注入することにより測定を行なうフローシステ
ム,更にはバッチフローシステムのいずれにも適用可能
である。
The sensor element of each embodiment is inserted into a sample solution for measurement, a flow system for measuring by injecting the sample solution into a through-type cell, and further a batch flow system. It is applicable to any of.

本発明は上記実施例に限定されるものではない。例え
ば電気浸透発生用電極は,その作用を発揮し得る限り,
その形状,厚み,大きさ等は何等問わない。又,エタノ
ールセンサに限らず,他のアルコールセンサ,更には糖
センサ(グルコース,マルトース等の測定),脂質セン
サ(コレステロール等の測定)にも本発明のバイオセン
サは適用され得る。又,多孔質担体への酵素の固定化法
として,共有結合法,架橋化法,包括法等種々のものを
使用できることも勿論である。
The present invention is not limited to the above embodiment. For example, the electrode for electroosmosis generation, as long as it can exert its action,
The shape, thickness, size, etc. are not critical. Further, the biosensor of the present invention can be applied not only to the ethanol sensor but also to other alcohol sensors, further sugar sensors (measurement of glucose, maltose, etc.), lipid sensors (measurement of cholesterol, etc.). Also, it goes without saying that various methods such as a covalent bond method, a cross-linking method, and an encapsulation method can be used as the method for immobilizing the enzyme on the porous carrier.

更に,固定化膜を利用する他の種々のバイオセンサ,
例えば免疫センサ,微生物センサ,においセンサ,鮮度
センサ等へ本発明を適用可能であることも自明であろ
う。
In addition, various other biosensors that use immobilized membranes,
It will be obvious that the present invention can be applied to, for example, an immunosensor, a microorganism sensor, an odor sensor, a freshness sensor and the like.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の作用を説明するためのバイオセンサ素
子の一例を示す断面図, 第2〜4図は本発明(請求項1)に係るバイオセンサ素
子の実施例を示す図であって,第2図はセンサ素子をそ
の構成要素(酵素固定化膜など)毎に示した平面図,第
3図はセンサ素子の斜視図,及び第4図は第3図のIV−
IV断面図, 第5図は厚さ0.5mmの酵素固定化膜を用い,印加電圧が0
V,10Vであるときの試験結果であって,エタノール濃度
と計測電流との関係を示したもの, 第6図は本発明(請求項2)に係るバイオセンサ素子の
実施例を示す断面図,そして 第7図は本発明(請求項3)に係るバイオセンサ素子の
実施例を示す断面図, を夫々表わす。 A……バイオセンサ素子 2……Pt(計測用)電極 3……酢酸セルロース(選択透過膜) 4……アルコールオキシダーゼ(酵素)固定化膜 5……Auメッシュ(電気浸透発生用)電極 7……非固定化膜
FIG. 1 is a sectional view showing an example of a biosensor element for explaining the operation of the present invention, and FIGS. 2 to 4 are views showing an embodiment of the biosensor element according to the present invention (claim 1). 2 is a plan view showing the sensor element for each constituent element (enzyme-immobilized membrane etc.), FIG. 3 is a perspective view of the sensor element, and FIG. 4 is IV- of FIG.
IV cross section, Fig. 5 shows the applied voltage is 0 with the enzyme immobilization membrane of 0.5mm thickness.
FIG. 6 is a test result at V and 10 V, showing the relationship between ethanol concentration and measured current. FIG. 6 is a cross-sectional view showing an embodiment of the biosensor element according to the present invention (claim 2), FIG. 7 is a sectional view showing an embodiment of the biosensor element according to the present invention (claim 3), respectively. A ... Biosensor element 2 ... Pt (for measurement) electrode 3 ... Cellulose acetate (selective permeation membrane) 4 ... Alcohol oxidase (enzyme) immobilization membrane 5 ... Au mesh (for electroosmosis generation) electrode 7 ... … Non-immobilized membrane

フロントページの続き (72)発明者 徳本 淳一 愛知県名古屋市瑞穂区高辻町14番18号 日 本特殊陶業株式会社内 (72)発明者 青木 秀保 愛知県名古屋市瑞穂区高辻町14番18号 日 本特殊陶業株式会社内 (72)発明者 大蔵 常利 愛知県名古屋市瑞穂区高辻町14番18号 日 本特殊陶業株式会社内 (72)発明者 黒川 朱 愛知県名古屋市瑞穂区高辻町14番18号 日 本特殊陶業株式会社内Front page continuation (72) Inventor Junichi Tokumoto 14-18 Takatsuji-cho, Mizuho-ku, Nagoya, Aichi Nihon Special Ceramics Co., Ltd. (72) Hideho Aoki 14-18 Takatsuji-cho, Mizuho-ku, Aichi Inside the Special Ceramics Co., Ltd. (72) Inventor Okura Tsuneto 14-18 Takatsuji-cho, Mizuho-ku, Nagoya, Aichi Japan Nihon Special Ceramics Co., Ltd. (72) Inventor Kurokawa 14-14 Takatsuji-cho, Mizuho-ku, Nagoya, Aichi No. 18 Nihon Special Ceramics Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】酵素固定化膜の両面に備えられ,試料液を
酵素固定化膜を通じて電気浸透させる電極と, 酵素固定化膜における酵素反応の物質変化を電気信号に
変換する電極と, を有することを特徴とするバイオセンサ。
1. An electrode, which is provided on both sides of an enzyme-immobilized membrane, for electropermeabilizing a sample solution through the enzyme-immobilized membrane, and an electrode for converting a substance change of an enzyme reaction in the enzyme-immobilized membrane into an electric signal. A biosensor characterized in that
【請求項2】酵素固定化膜の前面側に位置する非固定化
膜の両面に備えられ,試料液を非固定化膜を通じて電気
浸透させる電極と, 酵素固定化膜における酵素反応の物質変化を電気信号に
変換する電極と, を有することを特徴とするバイオセンサ。
2. An electrode provided on both sides of a non-immobilized membrane located on the front side of the enzyme-immobilized membrane for electropermeabilizing a sample solution through the non-immobilized membrane, and a substance change of an enzyme reaction in the enzyme-immobilized membrane. A biosensor, comprising: an electrode for converting into an electric signal;
【請求項3】酵素固定化膜の両面に備えられ,試料液を
酵素固定化膜を通じて電気浸透させると共に,酵素固定
化膜における酵素反応の物質変化を電気信号に変換する
電極,を有することを特徴とするバイオセンサ。
3. An electrode, which is provided on both sides of an enzyme-immobilized membrane, for electropermeating a sample solution through the enzyme-immobilized membrane and converting a substance change of an enzyme reaction in the enzyme-immobilized membrane into an electric signal. Characteristic biosensor.
JP1288645A 1989-11-08 1989-11-08 Biosensor Expired - Fee Related JPH0810207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1288645A JPH0810207B2 (en) 1989-11-08 1989-11-08 Biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1288645A JPH0810207B2 (en) 1989-11-08 1989-11-08 Biosensor

Publications (2)

Publication Number Publication Date
JPH03150458A JPH03150458A (en) 1991-06-26
JPH0810207B2 true JPH0810207B2 (en) 1996-01-31

Family

ID=17732845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1288645A Expired - Fee Related JPH0810207B2 (en) 1989-11-08 1989-11-08 Biosensor

Country Status (1)

Country Link
JP (1) JPH0810207B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2678087B2 (en) * 1990-10-16 1997-11-17 松下電器産業株式会社 Biosensor
SE9903617D0 (en) * 1999-10-05 1999-10-05 Se Interengineering Ab Device and method for determining the status of a product
CN1929784B (en) * 2004-03-06 2010-09-29 霍夫曼-拉罗奇有限公司 Body Fluid Sampling Equipment
CN116439697A (en) * 2023-03-24 2023-07-18 顺源康(深圳)科技有限公司 Glucose monitoring probe and monitoring method

Also Published As

Publication number Publication date
JPH03150458A (en) 1991-06-26

Similar Documents

Publication Publication Date Title
EP0333860A1 (en) Enzymatic sensor
Mann-Buxbaum et al. New microminiaturized glucose sensors using covalent immobilization techniques
EP0251915A2 (en) Enzyme sensor
EP0080601A1 (en) Enzyme electrode membrane, method of making same and polarographic cell structure
JPH04340453A (en) Biosensor and separation and quantification method using the same
Hintsche et al. Microbiosensors using electrodes made in Si-technology
JPS6212847A (en) Membrane through which liquid and solute can be permeated, manufacture thereof and utilization thereof
JPS6239900B2 (en)
EP0304494B1 (en) Immobilization of biofunctional material, element prepared therefrom and measurement using the same
JP3393361B2 (en) Biosensor
JP3913289B2 (en) Glucose biosensor
JPH0810207B2 (en) Biosensor
JPH04343065A (en) Biosensor
Rahman et al. Selective choline biosensors based on choline oxidase co-immobilized into self-assembled monolayers on micro-chips at low potential
Zhu et al. An overview of Si-based biosensors
JP3477511B2 (en) Biosensor using gold platinum electrode
EP0308514B1 (en) Method of fabrication of a biomicroelectrode
JPH02129541A (en) Disposable type enzyme electrode
JPH0345336B2 (en)
JP2640544B2 (en) Enzyme-immobilized membrane
JP3483930B2 (en) Biosensor
JPS5967452A (en) Biosensor
JPH0479413B2 (en)
ANZAI et al. Fabrication of potentiometric enzyme sensors based on a pH-sensitive polymer-coated Ag electrode
JPS58216947A (en) Enzyme electrode for measuring sucrose concentration

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees