[go: up one dir, main page]

JPH0799862A - Deepwater and surface water temperature control system for marine organism production - Google Patents

Deepwater and surface water temperature control system for marine organism production

Info

Publication number
JPH0799862A
JPH0799862A JP5246774A JP24677493A JPH0799862A JP H0799862 A JPH0799862 A JP H0799862A JP 5246774 A JP5246774 A JP 5246774A JP 24677493 A JP24677493 A JP 24677493A JP H0799862 A JPH0799862 A JP H0799862A
Authority
JP
Japan
Prior art keywords
water
temperature
deep
heat exchanger
surface water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5246774A
Other languages
Japanese (ja)
Other versions
JP3282152B2 (en
Inventor
Toshimitsu Nakajima
敏光 中島
Takayoshi Toyoda
孝義 豊田
Hitoo Morino
仁夫 森野
Kazuhiro Hagiwara
運弘 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Japan Atomic Energy Agency
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Japan Atomic Energy Research Institute
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Japan Atomic Energy Research Institute, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP24677493A priority Critical patent/JP3282152B2/en
Publication of JPH0799862A publication Critical patent/JPH0799862A/en
Application granted granted Critical
Publication of JP3282152B2 publication Critical patent/JP3282152B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/60Fishing; Aquaculture; Aquafarming

Landscapes

  • Farming Of Fish And Shellfish (AREA)

Abstract

(57)【要約】 【目的】深層水の清浄性を維持して深層水の加熱を行う
とともに、深層水の加熱、及び表層水の冷却に要するエ
ネルギー消費量を大幅に低減する。 【構成】分流型三方弁9を介して給水される海洋深層
水、及び深層水の水温よりも高温の表層水を送水される
熱交換器10と、熱交換器出口側の表層水水温を検出す
る温度検出手段11からの検出値に基づいて三方弁9の
弁開度を制御し、熱交換器10への深層水の送水流量を
制御する温度調節手段12と、熱交換器10からの予熱
深層水を送水される凝縮器14、及び表層水の一部を分
岐して送水される蒸発器15を備えるヒートポンプ13
と、凝縮器出口側の深層水の水温を検出する温度検出手
段18からの検出信号に基づいてヒートポンプ13を起
動制御する起動手段16とを備える。
(57) [Abstract] [Purpose] To maintain the cleanliness of deep water and to heat deep water, and to significantly reduce the energy consumption required for heating deep water and cooling surface water. [Structure] A deep sea water supplied through a diversion type three-way valve 9 and a heat exchanger 10 for supplying surface water having a temperature higher than the temperature of the deep water, and the surface water temperature on the outlet side of the heat exchanger are detected. Temperature control means 12 for controlling the valve opening of the three-way valve 9 on the basis of the detection value from the temperature detection means 11 for controlling the flow rate of the deep layer water to the heat exchanger 10, and preheating from the heat exchanger 10. A heat pump 13 including a condenser 14 for supplying deep water and an evaporator 15 for branching and supplying a part of surface water.
And a starting means 16 for starting and controlling the heat pump 13 on the basis of a detection signal from a temperature detecting means 18 for detecting the water temperature of the deep water on the condenser outlet side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、海洋生物を生産するた
めの海洋深層水の加熱、及び表層水を冷却する水温制御
システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water temperature control system for heating deep-sea water for producing marine organisms and cooling surface water.

【0002】[0002]

【従来の技術】最近、海洋に生息する魚介類等の海洋水
産資源の栽培漁業に関する研究や、実験が盛んになって
いる。これに付随して行われる水産養殖、種苗生産等の
栽培漁業における事業的生産規模での研究、実験では、
大量の海水を使用した飼育水槽による人工的生産方法が
採用される傾向にある。
2. Description of the Related Art Recently, research and experiments relating to cultivation and fisheries of marine and marine resources such as seafood that live in the ocean have become popular. Along with this, research and experiments on a commercial production scale in aquaculture, seedling production, and other cultivation and fisheries,
An artificial production method using a breeding aquarium that uses a large amount of seawater tends to be adopted.

【0003】ところで、魚類等の海洋生物の人工的生産
施設では、海洋表層水のみを取水して飼育する際に水温
の季節変化による温度変動を解消するため、表層水を冬
季にはボイラーにより加熱し、夏期には冷凍機により冷
却して所定の水温に維持している。
By the way, in an artificial production facility for marine organisms such as fish, the surface water is heated by a boiler in winter in order to eliminate temperature fluctuations due to seasonal changes in the water temperature when only the sea surface water is taken and raised. However, in the summer, it is cooled by a refrigerator and maintained at a predetermined water temperature.

【0004】他方、取水した海洋深層水は清浄で、無機
栄養分に富むとともに、一年中を通じて安定した低水温
性を有するため、これを寒帯性や、深海性の魚類の飼
育、及び海藻の生育用の生産水として使用する場合に
は、夏期には表層水と混合してこれら魚類等の生育に適
合する水温に加熱するようにしている。
On the other hand, the deep sea water taken in is clean, rich in inorganic nutrients, and has a stable low water temperature throughout the year. Therefore, it is used for the breeding of boreal and deep-sea fish and the growth of seaweed. When used as production water for water, it is mixed with surface water in the summer and heated to a water temperature suitable for growth of these fish and the like.

【0005】[0005]

【発明が解決しようとする課題】表層水のみを用いて海
洋生物を生産する場合には、使用する水量が大量である
ため、ボイラーや、冷凍機による水温制御方式では、そ
のエネルギー費用は膨大なものとなる上、特に、冷却に
要するエネルギー費用が大であるため、現実では冷却は
行われておらず、従って、夏期の水温上昇による飼育生
物の斃死が大きな問題となっている。このため、エネル
ギー費用が低廉で、経済性に優れた水温制御方式の開発
が要望されていた。
In the case of producing marine organisms using only surface water, the amount of water used is large, so the energy cost of the water temperature control system using a boiler or refrigerator is enormous. In addition, since the energy cost required for cooling is particularly large, cooling is not actually performed, and thus death of captive organisms due to a rise in water temperature in the summer is a serious problem. For this reason, there has been a demand for the development of a water temperature control system which is low in energy cost and excellent in economic efficiency.

【0006】また、深層水の水温制御は深層水と表層水
との混合調整方式であるため、深層水と表層水との混合
率が季節により変化し、これにより、深層水の清浄性が
損なわれる他、深層水が含有する栄養分も希釈されると
いう問題があるため、水質等を問題とする実験研究や、
藻類の生産では、深層水単独での利用が必須の要件とな
っており、このため、深層水と表層水とを混合しない深
層水の水温制御方法が要求されていた。また、冷凍機に
よる冷却が考えられるが、上述したエネルギー費用が大
となる同様の問題を孕んでいる。
Further, since the control of the water temperature of the deep water is a method of adjusting the mixing of the deep water and the surface water, the mixing ratio of the deep water and the surface water changes depending on the season, which impairs the cleanliness of the deep water. In addition, there is a problem that nutrients contained in deep water are also diluted, so experimental research and
In the production of algae, the use of deep water alone is an essential requirement, and therefore a method for controlling the temperature of deep water that does not mix deep water and surface water has been required. Further, cooling by a refrigerator is conceivable, but it has the same problem that the energy cost is large.

【0007】本発明は、上述した課題に鑑みてなされた
もので、その目的とするところは、取水した深層水を、
深層水自体が有する清浄性を何ら損なわず、かつ、その
水質に変化を与えずに加熱するとともに、深層水の加
熱、及び表層水の冷却に要するエネルギー消費量を大幅
に低減し得る海洋生物生産用の海洋深層水、及び表層水
の水温制御システムを提供するにある。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to collect deep water taken from
Marine organism production that can heat the deep water itself without impairing its cleanliness and change its water quality, and can significantly reduce the energy consumption required for heating deep water and cooling surface water. Providing a deep-sea water and surface water temperature control system for water.

【0008】さらに、本発明は、熱交換器とヒートポン
プの蒸発器とから排出される冷却された表層水を、海洋
生物生産用の海洋水として用いることを目的とする。
A further object of the present invention is to use the cooled surface water discharged from the heat exchanger and the evaporator of the heat pump as marine water for the production of marine organisms.

【0009】[0009]

【課題を解決するための手段】本発明は、分流型三方弁
を介して給水される海洋深層水、及び深層水の水温より
も高温の表層水を送水される熱交換器と、熱交換器出口
側の表層水の水温を検出する温度検出手段からの検出値
に基づいて三方弁の弁開度を制御し、熱交換器への深層
水の送水流量を制御する温度調節手段と、熱交換器から
予熱された深層水を送水される凝縮器、及び表層水の一
部を分岐して送水される蒸発器を備えるヒートポンプ
と、凝縮器出口側の深層水の水温を検出する温度検出手
段からの検出信号に基づいてヒートポンプを起動制御す
る起動手段とを備えるよう構成したものである。
DISCLOSURE OF THE INVENTION The present invention is directed to a deep sea water supplied through a diversion type three-way valve and a heat exchanger to which surface water having a temperature higher than the temperature of the deep sea water is sent, and a heat exchanger. Temperature control means that controls the valve opening of the three-way valve based on the detection value from the temperature detection means that detects the surface water temperature of the outlet side, and controls the flow rate of deep water to the heat exchanger, and heat exchange From the heat pump equipped with a condenser that feeds preheated deep water from the vessel, and an evaporator that branches and feeds part of the surface water, and from the temperature detection means that detects the water temperature of the deep water on the condenser outlet side. And a starting means for controlling the start of the heat pump on the basis of the detection signal.

【0010】また、本発明は、熱交換器とヒートポンプ
の蒸発器とから排出される冷却された表層水を、海洋生
物生産用の海洋水として用いるよう構成したものであ
る。
Further, according to the present invention, the cooled surface water discharged from the heat exchanger and the evaporator of the heat pump is used as marine water for producing marine organisms.

【0011】[0011]

【作用】取水した深層水と表層水とを熱交換器に送水
し、表層水の有する熱を深層水に与えて熱交換を行う。
そして、熱交換器出口側の表層水水温を検出し、これを
温度調節手段に入力して三方弁の弁開度を制御し、深層
水の熱交換器への送水流量を制御し、表層水の水温を所
定温度に冷却する。
[Function] The deep water thus taken and the surface water are sent to the heat exchanger, and the heat of the surface water is given to the deep water for heat exchange.
Then, the surface water temperature on the outlet side of the heat exchanger is detected, and this is input to the temperature adjusting means to control the valve opening of the three-way valve to control the flow rate of the water supplied to the heat exchanger of the deep water, The water temperature of is cooled to a predetermined temperature.

【0012】また、表層水から熱を与えられて熱交換器
から送出される予熱深層水をヒートポンプの凝縮器に送
水する。そして、凝縮器出口側の深層水水温を検出し、
その検出温度に基づいて起動手段によりヒートポンプを
起動制御し、これにより凝縮器で深層水を加熱する。さ
らに、取水された表層水の一部を分岐させてヒートポン
プの蒸発器に給水して冷却する。
Further, the preheated deep layer water which is supplied with heat from the surface layer water and is delivered from the heat exchanger is delivered to the condenser of the heat pump. Then, the temperature of the deep water on the outlet side of the condenser is detected,
The activation means controls activation of the heat pump based on the detected temperature, whereby the deep water is heated by the condenser. Furthermore, a part of the surface water thus taken in is branched and supplied to the evaporator of the heat pump for cooling.

【0013】[0013]

【実施例】以下に本発明の詳細を、添付した図面に示す
実施例に基づいて説明する。図1は、本発明の水温制御
システムの一実施例のブロック図を示すものであって、
取水した低温の海洋深層水は、給水管1を介し、熱交換
器10への給水管2と、熱交換器10からヒートポンプ
13の凝縮器14への給水管4に分流させる分流管3と
に接続されるとともに、後述する温度調節器12からの
制御信号により弁開度を制御し、熱交換器10への深層
水送水流量を制御する分流型三方弁9に給水される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below based on the embodiments shown in the accompanying drawings. FIG. 1 is a block diagram showing an embodiment of a water temperature control system of the present invention,
The low-temperature deep sea water that has been taken in is supplied via a water supply pipe 1 to a water supply pipe 2 to a heat exchanger 10 and a diversion pipe 3 that diverts the water from the heat exchanger 10 to a condenser 14 of a heat pump 13. While being connected, the valve opening degree is controlled by a control signal from a temperature controller 12 described later, and water is supplied to a diversion type three-way valve 9 that controls the flow rate of deep water supplied to the heat exchanger 10.

【0014】他方、深層水よりも高温の表層水は給水管
5を介して公知の、例えば、プレート型熱交換器10に
給水され、ここで表層水の熱を図示しないプレートを介
して深層水に熱を伝熱し、これにより表層水は冷却され
る。熱交換器10の表層水出口側の管には、熱交換後の
表層水の水温を検出する温度センサ11が設けられてい
る。温度センサ11の検出信号を信号伝送線12Aを介
して入力される温度調節器12は、温度検出信号の値に
基づいて平衡をとり、その平衡信号を制御信号として制
御信号伝送線12Bを介して三方弁9の励磁コイル9A
に入力し、その弁開度を制御して給水される深層水の一
部を分流管3を介して凝縮器への給水管4に分流させ、
熱交換器10への深層水の送水流量を制御して所定の表
層水水温になるように制御する公知の比例動作型電子式
温度調節器である。
On the other hand, surface water having a temperature higher than that of the deep water is supplied to a known plate heat exchanger 10, for example, through a water supply pipe 5, where heat of the surface water is transferred to a deep water through a plate (not shown). The heat is transferred to the surface water, which cools the surface water. A temperature sensor 11 that detects the water temperature of the surface water after heat exchange is provided on the surface water outlet side pipe of the heat exchanger 10. The temperature controller 12 to which the detection signal of the temperature sensor 11 is input via the signal transmission line 12A is balanced based on the value of the temperature detection signal, and the balanced signal is used as a control signal via the control signal transmission line 12B. Excitation coil 9A of the three-way valve 9
To a part of the deep water to be supplied by controlling the valve opening degree, and divert it to the water supply pipe 4 to the condenser via the diversion pipe 3.
This is a well-known proportional operation type electronic temperature controller that controls the flow rate of the deep layer water supplied to the heat exchanger 10 so that the surface water temperature becomes a predetermined temperature.

【0015】圧縮器17、凝縮器14、及び蒸発器15
を具備するヒートポンプ13の凝縮器14には、熱交換
器10からの予熱された深層水を給水する給水管4が接
続され、蒸発器15には、表層水給水管5の上流側に設
けた表層水分岐管6が接続されている。そして、凝縮器
14の出口側には、ヒートポンプ13の運転中は、高温
の気化冷媒との熱交換によりさらに加熱された深層水を
給水管7を介し、深層水を一時的に貯溜して図示しない
水槽に向けて安定的に給水するバッファー・タンク8が
接続されている。バッファー・タンク8には、深層水の
水温を検出する温度センサ18が設けられ、その検出温
度は信号伝送線16Aを介し、公知のサーモスタットタ
イプの2位置型温度調節器16に入力される。この温度
調節器16は、入力された検出信号が所定の値になる
と、図示しないバイメタルの加熱変位によりスイッチを
閉止させ、これによりヒートポンプ13を起動させる起
動手段として作用するものである。また、蒸発器15の
出口側からは、分岐管6から給水される表層水が液化冷
媒との熱交換により冷却された表層水を図示しない水槽
に向けて吐出される。なお、図中符号T、及びFはモニ
タ用の温度計、流量計を示す。
Compressor 17, condenser 14, and evaporator 15
A water supply pipe 4 for supplying preheated deep layer water from the heat exchanger 10 is connected to the condenser 14 of the heat pump 13 including the heat pump 13, and the evaporator 15 is provided on the upstream side of the surface water supply pipe 5. The surface water branch pipe 6 is connected. Then, on the outlet side of the condenser 14, during operation of the heat pump 13, deep water further heated by heat exchange with the high-temperature vaporized refrigerant is temporarily stored through the water supply pipe 7 and illustrated. A buffer tank 8 for stable water supply to a water tank that is not connected is connected. The buffer tank 8 is provided with a temperature sensor 18 for detecting the water temperature of the deep sea water, and the detected temperature is input to a well-known thermostat type two-position type temperature controller 16 via a signal transmission line 16A. When the input detection signal reaches a predetermined value, the temperature controller 16 closes a switch by heating displacement of a bimetal (not shown), thereby operating as a starting means for starting the heat pump 13. Further, from the outlet side of the evaporator 15, the surface water supplied from the branch pipe 6 is discharged toward the water tank (not shown) by cooling the surface water cooled by heat exchange with the liquefied refrigerant. In addition, reference symbols T and F in the figure indicate a thermometer and a flow meter for monitoring.

【0016】このように構成された本発明の水温制御シ
ステムの作用を、図2に示す表層水のみを冷却する運転
モード1を実行するフローチャート、図3に示す深層水
の加熱、及び表層水の冷却を行う運転モード2のフロー
チャートを参照しながら説明する。
The operation of the water temperature control system of the present invention having the above-described structure is performed by the flowchart for executing the operation mode 1 for cooling only the surface water shown in FIG. 2, the heating of the deep water shown in FIG. 3, and the surface water. This will be described with reference to the flow chart of the operation mode 2 for cooling.

【0017】図2の運転モード1において、取水した表
層水を管5を介して熱交換器10に送水し、表層水の水
温よりも低温の深層水を管1、及び三方弁9を介して熱
交換器10に送水する(ステップS1)。熱交換器10
では、深層水に熱を与えて表層水を冷却し、その出口側
水温は温度センサ11により検出され、その検出信号は
信号伝送線12Aを介して温度調節器12に入力され、
水温の高低を判別し(ステップS2)、水温が高ければ
三方弁9から分流管3への分流量を減じるようにその弁
開度を制御して熱交換器10への送水流量を増加させ
(ステップS3)、水温が低ければ、分流管3への分流
量を増加させて熱交換器10への送水流量を減少させる
ように弁開度を制御し(ステップS4)、所定水温に冷
却された表層水を図示しない水槽に給水する(ステップ
S5)。そして、熱交換器10において表層水の水温に
より予熱された深層水は、停止中のヒートポンプ13の
凝縮器14を介してバッファー・タンク8に貯溜され、
排水として外部に吐出される(ステップS6)。なお、
バッファー・タンク8から排出される予熱深層水を、生
産用水として用い得ることは言う迄もない。
In the operation mode 1 of FIG. 2, the surface water taken in is sent to the heat exchanger 10 through the pipe 5, and the deep water having a temperature lower than the temperature of the surface water is passed through the pipe 1 and the three-way valve 9. Water is sent to the heat exchanger 10 (step S1). Heat exchanger 10
Then, heat is applied to the deep layer water to cool the surface layer water, the outlet side water temperature is detected by the temperature sensor 11, and the detection signal is input to the temperature controller 12 via the signal transmission line 12A.
Whether the water temperature is high or low is discriminated (step S2), and if the water temperature is high, the valve opening degree is controlled so as to reduce the partial flow rate from the three-way valve 9 to the flow dividing pipe 3 to increase the flow rate of water supplied to the heat exchanger 10 ( If the water temperature is low in step S3), the valve opening degree is controlled so as to increase the partial flow rate to the diversion pipe 3 and decrease the water flow rate to the heat exchanger 10 (step S4), and the water is cooled to a predetermined water temperature. Surface water is supplied to a water tank (not shown) (step S5). Then, the deep water preheated by the water temperature of the surface water in the heat exchanger 10 is stored in the buffer tank 8 via the condenser 14 of the stopped heat pump 13,
It is discharged to the outside as waste water (step S6). In addition,
It goes without saying that the preheated deep sea water discharged from the buffer tank 8 can be used as production water.

【0018】次に、図3の運転モード2において、取水
された表層水は管5を介して熱交換器10に送水される
とともに、分岐管6を介してヒートポンプ13の蒸発器
15に送水され、また、深層水は管1、及び三方弁9を
介して熱交換器10に送水される。そして、熱交換器1
0の表層水出口側の水温を検出した温度センサ11の検
出信号は温度調節器12に入力され、三方弁9の弁開度
を制御して熱交換器10への送水流量を制御し、所定水
温に冷却された表層水を吐出するとともに、熱交換器1
0から予熱された深層水を凝縮器14に送水する。これ
らのステップは、上述した運転モード1で行うステップ
S1乃至S6と同一であるので、その詳細な説明は省略
する。
Next, in the operation mode 2 of FIG. 3, the surface water taken in is sent to the heat exchanger 10 via the pipe 5 and to the evaporator 15 of the heat pump 13 via the branch pipe 6. Further, the deep layer water is sent to the heat exchanger 10 via the pipe 1 and the three-way valve 9. And the heat exchanger 1
The detection signal of the temperature sensor 11 which has detected the water temperature on the surface water outlet side of 0 is input to the temperature controller 12, and the valve opening of the three-way valve 9 is controlled to control the flow rate of water to be sent to the heat exchanger 10, Discharge surface water cooled to the water temperature and heat exchanger 1
The deep water preheated from 0 is sent to the condenser 14. These steps are the same as steps S1 to S6 performed in the operation mode 1 described above, and thus detailed description thereof will be omitted.

【0019】熱交換器10にて表層水の熱を与えられた
予熱深層水は管4を介し、さらに、停止中のヒートポン
プ13の凝縮器14を経てバッファー・タンク8に貯溜
され、その水温を検出した温度センサ18からの温度検
出信号は信号伝送線16Aを介して2位置型温度調節器
16に入力される。そして、温度センサ18からの検出
信号の値が設定値以下であれば(ステップS7)、温度
調節器16から出力される起動信号により圧縮機17が
駆動され、これによりヒートポンプ13は運転を開始す
る(ステップS8)。凝縮器14では、気化した冷媒と
の熱交換により給水された予熱深層水をさらに加熱し
(ステップS9)、この加熱深層水を管7を介してバッ
ファー・タンク8に貯溜し、ここから図示しない深層水
用の水槽に給水する。また、分岐管6を介して給水され
る表層水はヒートポンプ13の蒸発器15に送水され、
液化冷媒の気化熱により冷却された表層水は排水として
外部に吐出される(ステップS10)。なお、上述した
蒸発器15から吐出される冷却表層水を生産用水として
用い得ることは言う迄もない。
The preheated deep-water supplied with the heat of the surface water in the heat exchanger 10 is stored in the buffer tank 8 through the pipe 4 and the condenser 14 of the heat pump 13 which is stopped, and the water temperature thereof is kept. The detected temperature detection signal from the temperature sensor 18 is input to the two-position temperature controller 16 via the signal transmission line 16A. If the value of the detection signal from the temperature sensor 18 is less than or equal to the set value (step S7), the compressor 17 is driven by the start signal output from the temperature controller 16, and the heat pump 13 starts operating. (Step S8). In the condenser 14, the preheated deep-water supplied by heat exchange with the vaporized refrigerant is further heated (step S9), and the heated deep-water is stored in the buffer tank 8 through the pipe 7 and is not shown here. Water is supplied to the aquarium for deep water. The surface water supplied through the branch pipe 6 is sent to the evaporator 15 of the heat pump 13,
The surface water cooled by the heat of vaporization of the liquefied refrigerant is discharged to the outside as waste water (step S10). Needless to say, the cooling surface water discharged from the evaporator 15 described above can be used as production water.

【0020】そして、本実施例の水温制御システムによ
れば、表層水は年間を通じて水温が変動するものである
から、表層水、及び深層水を海洋生物生産用水として利
用するに際し、熱交換器10から送水される冷却された
表層水、及び予熱された深層水の有する水温レベルで十
分な期間には、運転モード1により熱交換器10から送
水される表層水、及び深層水を用い、また、熱交換器1
0からの冷却表層水、及び予熱深層水の水温レベルで不
十分な期間には、自動的に運転モード2に切換えてヒー
トポンプ13を駆動し、蒸発器15から排出される冷却
表層水、及び凝縮器から排出される加熱深層水を利用す
ることが出来る。
According to the water temperature control system of this embodiment, since the surface water temperature changes throughout the year, the heat exchanger 10 is used when the surface water and deep water are used as water for producing marine organisms. The surface water and the deep water supplied from the heat exchanger 10 in the operation mode 1 are used for a sufficient period of time at the water temperature level of the cooled surface water sent from the preheated deep water and the preheated deep water. Heat exchanger 1
When the cooling surface water from 0 and the preheating deep water have insufficient water temperature levels, the operation mode 2 is automatically switched to drive the heat pump 13 to cool the cooling surface water discharged from the evaporator 15 and the condensed water. The heated deep water discharged from the vessel can be used.

【0021】従って、取水される表層水の季節的な水温
変動、ならびに深層水、表層水の設定水温に応じ、熱交
換器、ヒートポンプを選択的に使用し、あるいは、両者
を併用する等して、エネルギー消費量を極力少なくし、
設定された水温レベルを有する表層水、深層水が得られ
るように水温制御が行える。
Therefore, the heat exchanger and the heat pump are selectively used, or both of them are used in combination, depending on the seasonal fluctuation of the surface water of the surface water to be taken and the set water temperatures of the deep water and the surface water. , Reduce energy consumption as much as possible,
The water temperature can be controlled so that surface water and deep water having the set water temperature level can be obtained.

【0022】図4(A)は、海洋生物の生産工程におい
て、図示しない海洋生物生産用の水槽に給水される深層
水、及び表層水の水温レベルが、例えば、共に15℃、
18℃、23℃の温度レベルを必要とする場合に、高知
県海洋深層水研究所にて計測した表層水と、深層水との
年間水温変動記録結果を考慮して作成した本発明による
水温制御システムの運転方法の表を示すもので、図中点
線はヒートポンプの駆動を、実線は熱交換器の使用を示
す。
FIG. 4A shows that in the production process of marine organisms, the water temperature levels of deep water and surface water supplied to a tank for marine organism production (not shown) are both 15 ° C.,
When a temperature level of 18 ° C or 23 ° C is required, the water temperature control according to the present invention is made in consideration of the annual water temperature fluctuation record result of the surface water measured by the Kochi Deep Sea Water Research Institute and the deep water. It shows a table of the operating method of the system, in which the dotted line shows the driving of the heat pump and the solid line shows the use of the heat exchanger.

【0023】この表によれば、深層水、及び表層水が共
に15℃の温度レベルを必要とする場合には、年間を通
じて熱交換器のみの使用で十分であることが示されてい
る。また、深層水、及び表層水が共に18℃の温度レベ
ルを必要とする場合には、深層水については6月から1
1月迄、表層水については4月半ばから12月迄は熱交
換器を使用し、また、ヒートポンプは、深層水に対して
は1月乃至5月、及び12月の期間に駆動し、表層水に
対しては1月から4月半ば迄の期間に駆動する。さら
に、深層水、及び表層水が共に23℃の温度レベルを必
要とする場合には、深層水については8月から9月半ば
迄、表層水については7月から10月迄は共に熱交換器
を使用し、また、ヒートポンプは、深層水に対しては1
月から7月迄、及び9月半ばから12月迄の期間に駆動
し、表層水に対しては1月から6月迄、及び11月、1
2月の期間に駆動する。このことから、本実施例の水温
制御システムによれば、熱交換器単独で、また、熱交換
器と、ヒートポンプとの併用により深層水の加熱、表層
水の冷却が適宜に行えることが分かる。
The table shows that the use of the heat exchanger alone is sufficient throughout the year when both the deep water and the surface water require a temperature level of 15 ° C. In addition, when both deep water and surface water require a temperature level of 18 ° C.
Heat exchangers are used from January to mid-April to December for surface water, and heat pumps are driven from January to May and December for deep water, For water, drive from January to mid-April. Further, when both deep water and surface water require a temperature level of 23 ° C, both deep water from August to mid-September and surface water from July to October both heat exchangers. And the heat pump is 1 for deep water.
Drives from the months to July, and from mid-September to December, for surface water from January to June, and November, 1
Drive during the February period. From this, it is understood that according to the water temperature control system of the present embodiment, the deep water and the surface water can be appropriately heated by the heat exchanger alone or by using the heat exchanger and the heat pump together.

【0024】図4(B)は、図4(A)に示す温度レベ
ル条件の下で水温制御を行うと仮定した場合、水温制御
に要する本実施例システムと、ボイラーによる加熱、及
び冷凍機による冷却を行う従来システムとの単位水量当
たりの加熱、もしくは冷却に要するエネルギー消費量の
比較グラフを示すもので、斜線部分は従来システムによ
るエネルギー消費量を、黒地部分は本実施例システムに
よるエネルギー消費量を示す。このグラフから、1月は
両システムのエネルギー消費量は同じであるが、2月乃
至7月、及び10月乃至12月の本実施例によるエネル
ギー消費量は従来技術によるものに比し遥かに少量であ
り、しかも、8月、9月にはその差が顕著に現れている
ことがわかる。このことから、本実施例による水温制御
システムのエネルギー消費量は、従来システムのそれに
比しほぼ2分の1以下になると予測される。
FIG. 4B shows the system of this embodiment required for water temperature control, heating by a boiler, and a refrigerator, assuming that water temperature control is performed under the temperature level conditions shown in FIG. 4A. A graph showing a comparison of energy consumption required for heating or cooling per unit amount of water with a conventional system for cooling is shown. The shaded area indicates the energy consumption by the conventional system, and the black background area indicates the energy consumption by the system of this embodiment. Indicates. From this graph, the energy consumption of both systems is the same in January, but the energy consumption of this embodiment in February to July and October to December is much smaller than that of the prior art. Moreover, it can be seen that the difference is remarkable in August and September. From this, it is predicted that the energy consumption of the water temperature control system according to the present embodiment will be approximately one half or less that of the conventional system.

【0025】[0025]

【発明の効果】以上述べたように本発明によれば、熱交
換器に深層水と、深層水よりも高温の表層水とを送水
し、熱交換後の表層水の出口側水温を検出し、この検出
値に基づいて三方弁からの熱交換器への深層水送水流量
を制御して所定の水温になるように冷却した表層水を排
出する一方、表層水の一部を分岐してヒートポンプの蒸
発器に送水するとともに、熱交換後の予熱された深層水
をヒートポンプの凝縮器に送水し、凝縮器出口側の深層
水水温を検出し、その検出値に応じてヒートポンプを起
動し、凝縮器から加熱された深層水を、また、蒸発器か
ら冷却された表層水を得るよう構成してあるので、冷却
された表層水は勿論のこと、加熱された深層水を各別に
生産用水として得ることが出来る。しかも、熱交換器
や、凝縮器に深層水を送水して加熱する方式であるた
め、深層水自体の有する清浄性を何ら損なうこともなけ
れば、その水質に変化を与えることなく深層水を得るこ
とが出来る。
As described above, according to the present invention, the deep water and the surface water having a temperature higher than that of the deep water are sent to the heat exchanger, and the outlet side water temperature after the heat exchange is detected. Based on this detection value, the flow rate of deep water from the three-way valve to the heat exchanger is controlled to discharge the surface water that has been cooled to a predetermined water temperature, while part of the surface water is branched and the heat pump In addition to sending water to the evaporator, the preheated deep water after heat exchange is sent to the condenser of the heat pump, the temperature of the deep water on the outlet side of the condenser is detected, and the heat pump is started according to the detected value to condense. Since it is configured to obtain the deep water heated from the vessel and the surface water cooled from the evaporator, not only the cooled surface water but also the heated deep water is obtained as production water separately. You can Moreover, since it is a method of sending deep water to a heat exchanger or a condenser to heat it, it does not impair the cleanliness of the deep water itself, and obtains deep water without changing the water quality. You can

【0026】さらに、表層水の水温の季節的変化、なら
びに表層水、深層水の設定温度に応じ、何ら駆動エネル
ギーを必要としない熱交換器のみを運転する運転モード
に切換えたり、また、熱交換器、及びヒートポンプの選
択的運転や、併用運転による運転モードに切換えたりし
て、設定された水温レベルを有する表層水、深層水を得
ることが出来るため、冷却、加熱に要するエネルギー消
費量を大幅に低減することが可能となる。
Further, depending on the seasonal change of the surface water temperature and the set temperature of the surface water and the deep water, the operation mode is switched to the operation mode in which only the heat exchanger that does not require any driving energy is operated, or the heat exchange is performed. It is possible to obtain surface water and deep water with the set water temperature level by selectively operating the heat exchanger and the heat pump, or switching to the operation mode by the combined operation, so the energy consumption required for cooling and heating is greatly reduced. Can be reduced to.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の水温制御システムの一実施例のブロ
ック図である。
FIG. 1 is a block diagram of an embodiment of a water temperature control system of the present invention.

【図2】 上記実施例を運転モード1にして表層水のみ
を冷却するフローチャートである。
FIG. 2 is a flowchart for cooling only surface water in the operation mode 1 of the above embodiment.

【図3】 上記実施例を運転モード2にして表層水を冷
却し、深層水を加熱するフローチャートである。
FIG. 3 is a flowchart in which the surface water is cooled and the deep water is heated by setting the operation mode 2 in the above embodiment.

【図4】 図4(A)は年間を通じて熱交換器、及びヒ
ートポンプの駆動により深層水の加熱と、表層水の冷却
とを行う運転方法を示す表、図4(B)は図4(A)に
示す温度レベル条件の下で、本実施例、及び従来システ
ムにより表層水の冷却、深層水の加熱に要する年間を通
じてのエネルギー消費量の比較を示すグラフである。
FIG. 4 (A) is a table showing an operating method for heating deep water and cooling surface water by driving a heat exchanger and a heat pump throughout the year, and FIG. 4 (B) is shown in FIG. 7 is a graph showing a comparison of energy consumption throughout the year required for cooling surface water and heating deep water under the temperature level condition shown in FIG.

【符号の説明】[Explanation of symbols]

1 深層水給水管、2 熱交換器への深層水給水管、3
分流管、4 深層水を熱交換器からヒートポンプの凝
縮器に給水する管、5 表層水給水管、6 ヒートポン
プの蒸発器への表層水給水管、9 励磁コイル9Aを備
える分流型三方弁、10 熱交換器、11 表層水出口
側水温を検出する温度センサ、12 三方弁の弁開度を
制御する温度調節器、13 ヒートポンプ、14 凝縮
器、15蒸発器、16 ヒートポンプを起動制御する温
度調節器、17 圧縮機、8バッファー・タンク、18
加熱された深層水の水温を検出する温度センサ。
1 Deep water supply pipe, 2 Deep water supply pipe to heat exchanger, 3
Flow dividing pipe, 4 Pipes for supplying deep water from heat exchanger to condenser of heat pump, 5 Surface water feeding pipe, 6 Surface water feeding pipe for evaporator of heat pump, 9 Dividing type three-way valve equipped with exciting coil 9A, 10 Heat exchanger, 11 Temperature sensor for detecting water temperature on surface water outlet side, 12 Temperature controller for controlling valve opening of three-way valve, 13 Heat pump, 14 Condenser, 15 Evaporator, 16 Temperature controller for starting and controlling heat pump , 17 compressor, 8 buffer tank, 18
A temperature sensor that detects the temperature of heated deep water.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森野 仁夫 東京都港区芝浦一丁目2番3号 清水建設 株式会社内 (72)発明者 萩原 運弘 東京都港区芝浦一丁目2番3号 清水建設 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hitoshi Morino 1-3-2 Shibaura, Minato-ku, Tokyo Shimizu Construction Co., Ltd. Construction Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 分流型三方弁を介して給水される海洋深
層水、及び該深層水の水温よりも高温の表層水を送水さ
れる熱交換器と、熱交換器出口側の表層水の水温を検出
する温度検出手段からの検出値に基づいて上記三方弁の
弁開度を制御し、熱交換器への深層水の送水流量を制御
する温度調節手段と、熱交換器から予熱された深層水を
送水される凝縮器、及び表層水の一部を分岐して送水さ
れる蒸発器を備えるヒートポンプと、上記凝縮器出口側
の深層水の水温を検出する温度検出手段からの検出信号
に基づいて上記ヒートポンプを起動制御する起動手段と
を備えることを特徴とする海洋生物生産用の海洋深層
水、及び表層水の水温制御システム。
1. A deep sea water supplied through a diversion type three-way valve, a heat exchanger to which surface water having a temperature higher than the water temperature of the deep water is sent, and a water temperature of the surface water on the outlet side of the heat exchanger. Temperature control means for controlling the valve opening of the three-way valve based on the detected value from the temperature detection means for detecting the temperature control means for controlling the flow rate of the deep layer water to the heat exchanger, and the deep layer preheated from the heat exchanger. Based on a detection signal from a heat pump including a condenser to which water is fed, and an evaporator to which a portion of surface water is branched to be fed, and a temperature detection means for detecting the water temperature of the deep water on the outlet side of the condenser. And a starting means for starting and controlling the heat pump. A system for controlling the temperature of deep sea water for producing marine organisms, and surface water.
【請求項2】 上記熱交換器と上記ヒートポンプの蒸発
器とから排出される冷却された表層水を、海洋生物生産
用の海洋水として用いることを特徴とする「請求項1」
記載の海洋生物生産用の海洋深層水、及び表層水の水温
制御システム。
2. The cooled surface water discharged from the heat exchanger and the evaporator of the heat pump is used as marine water for marine organism production.
The deep-sea water and surface water temperature control system for production of marine organisms described.
JP24677493A 1993-10-01 1993-10-01 Water temperature control system for deep sea water and surface water for marine life production Expired - Fee Related JP3282152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24677493A JP3282152B2 (en) 1993-10-01 1993-10-01 Water temperature control system for deep sea water and surface water for marine life production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24677493A JP3282152B2 (en) 1993-10-01 1993-10-01 Water temperature control system for deep sea water and surface water for marine life production

Publications (2)

Publication Number Publication Date
JPH0799862A true JPH0799862A (en) 1995-04-18
JP3282152B2 JP3282152B2 (en) 2002-05-13

Family

ID=17153467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24677493A Expired - Fee Related JP3282152B2 (en) 1993-10-01 1993-10-01 Water temperature control system for deep sea water and surface water for marine life production

Country Status (1)

Country Link
JP (1) JP3282152B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100310916B1 (en) * 1999-10-06 2001-10-18 김수현 Ammoniagas removal system of nursery
US7313280B2 (en) 2003-03-14 2007-12-25 Seiko Epson Corporation Image processing device, image processing method, and image processing program
US7471343B2 (en) 2003-03-14 2008-12-30 Seiko Epson Corporation Image processing device, image processing method, and image processing program
JP2010207121A (en) * 2009-03-09 2010-09-24 Toshiyuki Takatsu Method and device for controlling temperature of fry-producing water
US7832657B2 (en) 2005-02-18 2010-11-16 Kabushiki Kaisha Isekogyo Apparatus for lowering water temperature of sea surface
KR101291142B1 (en) * 2011-03-25 2013-08-01 삼성중공업 주식회사 Apparatus for recovering waste heat

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100310916B1 (en) * 1999-10-06 2001-10-18 김수현 Ammoniagas removal system of nursery
US7313280B2 (en) 2003-03-14 2007-12-25 Seiko Epson Corporation Image processing device, image processing method, and image processing program
US7471343B2 (en) 2003-03-14 2008-12-30 Seiko Epson Corporation Image processing device, image processing method, and image processing program
US7832657B2 (en) 2005-02-18 2010-11-16 Kabushiki Kaisha Isekogyo Apparatus for lowering water temperature of sea surface
JP2010207121A (en) * 2009-03-09 2010-09-24 Toshiyuki Takatsu Method and device for controlling temperature of fry-producing water
KR101291142B1 (en) * 2011-03-25 2013-08-01 삼성중공업 주식회사 Apparatus for recovering waste heat

Also Published As

Publication number Publication date
JP3282152B2 (en) 2002-05-13

Similar Documents

Publication Publication Date Title
JPWO2006103815A1 (en) Water heater
JP4513110B2 (en) Farm water control method and apparatus for pelagic fishing boat
JP2014046910A (en) Main cooling system of diesel engine
JPH0799862A (en) Deepwater and surface water temperature control system for marine organism production
JP2019007692A (en) Storage water heater
US5967085A (en) Sea water well-driven heat exchange system coupled to an agricultural system and aquaculture preserve
KR101215457B1 (en) Multipurpose heat-pump system for a fish farm
SE454207B (en) DEVICE FOR HEATING OR COOLING COMBINED WITH WATER HEATING INCLUDING A HEAT PUMP AND A CONNECTED HOT WATER CIRCUIT
CN208653058U (en) A milk buffalo dairy product cooling device
JPH08152193A (en) Hot water supplying device
US20240125484A1 (en) System for producing heat for domestic hot water or central heating
EP3412991B1 (en) Heat exchange system and scale suppression method for heat exchange system
CN112443984B (en) Water heater and go out water control system, water supply system thereof
RU2650306C1 (en) Method for regulating milk temperature using a low-potential energy source of ground
JP2007198671A (en) Water heater
RU218283U1 (en) Device for thermization of milk during milking
JP2002235968A (en) Air conditioner
JPS5919257B2 (en) How to control the flow rate of a water cooler/heater pump
SU717514A1 (en) Method of cooling-water temperature regulating for ship cooling system
JPH0814607A (en) Chilled water circulating method and system for cooler
WO2015060169A1 (en) Power generation plant
JPH07293948A (en) Cooler
RU26367U1 (en) INSTALLATION FOR INCUBATION OF CAVIAR AND GROWING YOUNG FISH
KR100424452B1 (en) Water supplying system in a cistern type nursery
WO2004071183A1 (en) Thermal controlled aquaculture tanks for fish production

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees