[go: up one dir, main page]

JPH0799644B2 - Anisotropically conductive material for electrical connection - Google Patents

Anisotropically conductive material for electrical connection

Info

Publication number
JPH0799644B2
JPH0799644B2 JP4280233A JP28023392A JPH0799644B2 JP H0799644 B2 JPH0799644 B2 JP H0799644B2 JP 4280233 A JP4280233 A JP 4280233A JP 28023392 A JP28023392 A JP 28023392A JP H0799644 B2 JPH0799644 B2 JP H0799644B2
Authority
JP
Japan
Prior art keywords
conductive material
conductive
anisotropic conductive
particles
electrical connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4280233A
Other languages
Japanese (ja)
Other versions
JPH0660712A (en
Inventor
裕紀 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP60217598A priority Critical patent/JPH0618082B2/en
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP4280233A priority patent/JPH0799644B2/en
Publication of JPH0660712A publication Critical patent/JPH0660712A/en
Publication of JPH0799644B2 publication Critical patent/JPH0799644B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29499Shape or distribution of the fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、導電性材料の微粒子を
電気絶縁性材料の被覆物質で被覆し所謂マイクロカプセ
ル化し、任意の分解能が得られるようにした電気接続用
異方導電材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anisotropically conductive material for electrical connection in which fine particles of a conductive material are coated with a coating material of an electrically insulating material to form so-called microcapsules so that arbitrary resolution can be obtained.

【0002】[0002]

【従来の技術】従来の電気接続用異方導電材料として、
例えば、図4(a)に示すような、金属や低融点ハンダ
等の導電性微粒子1を絶縁性材料2からなる分散媒中に
分散させ、フィルム状に形成したものがある。同図のよ
うに、所定のパターンによる電極4が貼着された2枚の
基板5を相互に接続する場合、上述の異方導電材料を電
極4を内側にした基板5によって挟持し、この状態で全
体を加圧ならびに加熱すると、絶縁性フィルムが溶融し
て対向する電極4間から押し出され、電極4間は導電性
微粒子1で電気的に接続されるとともに基板5相互は押
し出された絶縁性フィルム2によって接続され、図4
(b)に示すように2枚の基板が異方性導電材料によっ
て接続される。
2. Description of the Related Art As a conventional anisotropic conductive material for electrical connection,
For example, as shown in FIG. 4A, there is one in which conductive fine particles 1 such as metal or low melting point solder are dispersed in a dispersion medium made of an insulating material 2 to form a film. As shown in the figure, when the two substrates 5 to which the electrodes 4 having a predetermined pattern are adhered are connected to each other, the anisotropic conductive material described above is sandwiched between the substrates 5 having the electrodes 4 inside, When the whole is pressed and heated by, the insulating film is melted and extruded from between the opposing electrodes 4, and the electrodes 4 are electrically connected by the conductive fine particles 1 and the substrates 5 are extruded together. Connected by film 2, FIG.
As shown in (b), the two substrates are connected by the anisotropic conductive material.

【0003】しかし、従来の異方導電材料にあっては、
数μmオーダー以下の粒径の均一な導電粒子をフィルム
中に均一に分散することが困難であるため、IC実装等
を目的とした高分解能(10本/mm以上)の多接点電極の
接続に用いることができなかった(因みに、従来技術に
おいては5本/mm(ラインスペース=100μm)が限
界となっている)。例えば、20本/mmの分解能を得よ
うとすれば、電極ピッチは25μmとなる。このため、
数μmオーダー以下の粒径の均一な導電粒子を均一にフ
ィルム中に分散する必要があるが、従来技術によれば、
図5の図示aの如くの擬集、図示bの如く大径粒子の混
入による隣接電極間の短絡、及び図示cの如く粒子が介
在しないことによる絶縁状態の発生等の問題を生じ、十
分な信頼性を得ることができなかった。また、従来の異
方導電フィルムは、シート状あるいはテープ状のため、
(切断)→(仮付け)→(仮接着)→(セパレータ剥
離)→(回路位置合せ)→(本接着)の如き複雑な工程
を必要とするため、接続の長時間化、歩留りの低下等を
招き、ひいてはコストアップを招く不具合がある。
However, in the conventional anisotropic conductive material,
Since it is difficult to uniformly disperse uniform conductive particles with a particle size on the order of several μm or less in the film, it is suitable for connecting high-resolution (10 / mm or more) multi-contact electrodes for the purpose of IC mounting. It could not be used (by the way, the limit is 5 lines / mm (line space = 100 μm) in the prior art). For example, to obtain a resolution of 20 lines / mm, the electrode pitch is 25 μm. For this reason,
Although it is necessary to uniformly disperse uniform conductive particles having a particle size of several μm order or less in the film, according to the conventional technique,
As shown in FIG. 5A, there are problems such as pseudo collection as shown in FIG. 5, short circuit between adjacent electrodes due to mixing of large-sized particles as shown in FIG. 5B, and occurrence of an insulating state due to no particles as shown in FIG. I couldn't get credibility. In addition, since the conventional anisotropic conductive film is a sheet or tape,
Since complicated processes such as (cutting) → (temporary attachment) → (temporary adhesion) → (separator peeling) → (circuit alignment) → (main adhesion) are required, the connection will take longer and the yield will decrease. However, there is a problem that this leads to an increase in cost.

【0004】さらに、異方導電材料として、原出願の出
願後に公開された特開昭62−40183号公報に示さ
れるような、導電性粒子を接着剤に不溶な樹脂で被覆し
たものが提案されている。この異方導電材料は、エポキ
シ樹脂とアミノエチルピペラジンとからなる配合系樹脂
に半田金属粒子を混合して硬化させ、その後粉砕機で粉
砕して粒子とし、接着剤中に分散させ、連結シートを構
成し、この連結シートを電極上に重ねるように乗せ、圧
着力により被覆を破壊して、電気的接続を確保してい
る。尚、異方導電材料に関するものとして、「電子技
術」1984年、第26巻第7号、第117頁に記載の
内容、「日経エレクトロニクス」1984年7月16日
号、第102頁に記載の内容等がある。
Further, as an anisotropic conductive material, there has been proposed one in which conductive particles are coated with a resin insoluble in an adhesive, as disclosed in Japanese Patent Application Laid-Open No. 62-40183, which was published after the application of the original application. ing. This anisotropic conductive material is prepared by mixing solder metal particles with a compounding resin consisting of epoxy resin and aminoethylpiperazine and curing it, then crushing it with a crusher into particles, dispersing them in an adhesive, and connecting sheets. Then, the connection sheet is placed so as to overlap the electrodes, and the coating is broken by the pressure bonding force to secure the electrical connection. As for the anisotropic conductive material, the contents described in “Electronic Technology”, 1984, Vol. 26, No. 7, page 117, and “Nikkei Electronics”, July 16, 1984, page 102 are described. There are contents etc.

【0005】[0005]

発明が解決しようとする課題】本発明は上記に鑑みて
なされたものであり、高分解能を得られるようにするた
め、導電性材料の微粒子を電気絶縁性高分子材料からな
る殻の中に包み込んでマイクロカプセル化し、これらを
対象面上に密着配設して膜化し、或いはフィルム状に加
工するようにした電気接続用異方導電材料を提供するも
のである。
[SUMMARY OF THE INVENTION The present invention has been made in view of the above, in order to obtain high resolution, fine particles of conductive material in the shell of electrically insulating polymeric material The present invention provides an anisotropic conductive material for electrical connection, which is wrapped to form microcapsules, which are closely arranged on a target surface to form a film, or processed into a film.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems] 上記課題を解決するためTo solve the above problems
に、本発明は、電気接続用異方導電材料として、導電性In the present invention, as an anisotropic conductive material for electrical connection,
粒子の表面を、圧力の作用によって膜厚を減じてこの導The surface of the particles is reduced in thickness by the action of pressure,
電性粒子に導通部を形成しうる電気絶縁性物質で被覆しThe electrically conductive particles are coated with an electrically insulating substance that can form a conducting portion.
た異方導電性粒子を用いた。Anisotropically conductive particles were used.

【0007】[0007]

【作用】[Action] 導電性粒子を被覆する電気絶縁性物質として、As an electrically insulating substance that coats the conductive particles,
導電性粒子の表面を圧力の作用Effect of pressure on the surface of conductive particles によって膜厚を減じてこReduce the film thickness by
の導電性粒子に導通部を形成しうる電気絶縁性物質で被The conductive particles are covered with an electrically insulating substance that can form a conducting part.
覆した異方導電性粒子を用いたので、熱を加えなくてもSince covered anisotropic conductive particles are used, it is possible to
加圧することによって膜圧を減じて導電性粒子に導通部By applying pressure, the membrane pressure is reduced and the conductive particles become conductive.
を形成することができる。Can be formed.

【0008】[0008]

【実施例】以下、本発明による電気接続用異方導電材料
を詳細に説明する。図1は本発明の一実施例を示し、図
4と同一の引用数字で示したので、重複する説明は省略
するが、本実施例は、導電性材料の微粒子を電気絶縁性
の物質によって被覆殻の中に包み込んでマイクロカプセ
ル化した異方導電マイクロカプセル10を、電極4が設
けられた基板5上へスクリーン印刷或いは吹き付けする
ことによって、異方導電マイクロカプセル層を形成し、
対向する他の電極が設けられた他方の基板を整合させた
後加圧して電極相互間を接続する異方導電材料とするも
のである。
The anisotropic conductive material for electrical connection according to the present invention will be described in detail below. FIG. 1 shows an embodiment of the present invention and is shown with the same reference numerals as FIG. 4, so duplicate description is omitted, but in this embodiment, fine particles of a conductive material are coated with an electrically insulating substance. An anisotropic conductive microcapsule layer is formed by screen-printing or spraying the anisotropic conductive microcapsule 10 encapsulated in a shell and microcapsulated on a substrate 5 provided with an electrode 4.
The other substrate provided with other electrodes facing each other is aligned and then pressed to form an anisotropic conductive material for connecting the electrodes.

【0009】ここで、異方導電マイクロカプセル10は
図2に示すように、芯物質11と、該芯物質11を被覆
する単層または多重の皮膜物質12より構成される。芯
物質11としては、金、白金、銀、銅、鉄、ニッケル、
アルミニウム、クロム等の金属及び金属化合物(IT
O、ハンダ等)、導電性カーボン等の導電性無機物及び
無機化合物、有機金属化合物等の導電性有機化合物等を
用いることができる。また、皮膜物質12としては、電
気絶縁性の高分子材料であるフェノール樹脂、ユリヤ樹
脂、メラミン樹脂、アリル樹脂、フラン樹脂、ポリエス
テル、エポキシ樹脂、シリコーン樹脂、ポリイミド樹
脂、ポリウレタン、テフロン樹脂等の熱硬化性高分子、
ポリエチレン、ポリプロピレン、ポリブチレン、ポリメ
タクリル酸メチル、ポリスチレン、アクリロニトリル−
スチレン樹脂、スチレン−ブタジン樹脂、アクリロニ
トリル−スチレン−ブタジン樹脂、ビニル樹脂、ポリ
アミド樹脂、ポリエステル樹脂、ポリカーボネート、ポ
リアセタール、アイオノマー樹脂、ポリエーテルスルオ
ン、ポリ(フェニルオキシド)、ポリ(プェニレンスフ
ァイド)、ポルスルホン、ポリウレタン、フッ化樹脂
(PTFE、PCTFE、ポリフッ化ビニリデン)等の
熱可塑性高分子、繊維素系樹脂(エチルセルロース、酢
酸セルロース、プロピオン酸セルロース、プロピオン酸
セルロース、硝酸セルロース等)の有機−無機化合物を
用いることができる。
Here, as shown in FIG. 2, the anisotropic conductive microcapsule 10 is composed of a core substance 11 and a single-layer or multi-layer coating substance 12 covering the core substance 11. As the core substance 11, gold, platinum, silver, copper, iron, nickel,
Metals and metal compounds such as aluminum and chromium (IT
O, solder, etc.), conductive inorganic substances such as conductive carbon and inorganic compounds, and conductive organic compounds such as organic metal compounds can be used. In addition, as the coating substance 12, heat of an electrically insulating polymer material such as phenol resin, urea resin, melamine resin, allyl resin, furan resin, polyester, epoxy resin, silicone resin, polyimide resin, polyurethane, or Teflon resin is used. Curable polymer,
Polyethylene, polypropylene, polybutylene, polymethylmethacrylate, polystyrene, acrylonitrile-
Styrene resins, styrene - butadiene et down resin, acrylonitrile - styrene - butadiene et emissions resins, vinyl resins, polyamide resins, polyester resins, polycarbonate, polyacetal, ionomer resins, polyether sulfone-one, poly (phenyl oxide), poly (Pueni Lensfide), porsulfone, polyurethane, thermoplastic resin such as fluororesin (PTFE, PCTFE, polyvinylidene fluoride), fibrin resin (ethyl cellulose, cellulose acetate, cellulose propionate, cellulose propionate, cellulose nitrate, etc.) Organic-inorganic compounds can be used.

【0010】このような皮膜物質12で芯物質11を包
み込みマイクロカプセル化するに際しては、化学的製法
(例えば、界面重合法、in situ重合法、液中硬
化被覆法など)あるいは物理的・機械的製法(例えば、
スプレードライング法、気中懸濁被覆法、真空蒸着被覆
法、静電的合体法、融解分散冷却法、無機質カプセル化
法など)、あるいは物理化学的製法(例えば、コアセル
ベーション法、界面沈澱法など)によって行なわれる。
尚、マイクロカプセルに関する文献として、近藤保、小
石真純著「マイクロカプセル」三共出版刊等多数があ
る。
In encapsulating the core substance 11 with the coating substance 12 to form microcapsules, a chemical production method (for example, an interfacial polymerization method, an in situ polymerization method, a liquid hardening coating method, etc.) or a physical / mechanical method is used. Manufacturing method (for example,
Spray drying method, air suspension coating method, vacuum deposition coating method, electrostatic coalescence method, melting dispersion cooling method, inorganic encapsulation method, etc., or physicochemical manufacturing method (eg, coacervation method, interfacial precipitation method) Etc.).
Note that there are many publications on microcapsules, such as Tamotsu Kondo and Masumi Koishi, "Microcapsules" published by Sankyo Publishing.

【0011】芯物質11を包み込みマイクロカプセル化
する皮膜物質12は、絶縁性物質として機能するのみな
らず、加圧によって芯物質11の表面に被覆した膜厚を
減じて基板5に形成されている電極4間を接着する機能
を有している。皮膜物質12は多重にすることによっ
て、絶縁用、接着用、すべり用(異方導電マイクロカプ
セル間のすべりを適度に調整することにより、下部基板
に塗布した際に単一層が形成し易くなる)等に機能を分
割し、信頼性を向上させることができる。
The coating substance 12 which encloses the core substance 11 and encapsulates it in microcapsule not only functions as an insulating substance, but is formed on the substrate 5 by reducing the film thickness coated on the surface of the core substance 11 by pressurization. It has a function of adhering between the electrodes 4. Multiple layers of the coating substance 12 for insulation, adhesion, and slipping (by adjusting the slippage between anisotropic conductive microcapsules appropriately, a single layer can be easily formed when applied to the lower substrate). It is possible to improve reliability by dividing the function into, for example.

【0012】次に、異方導電材料の形成を基板の接続を
例にして、第1図(a)、(b)により説明する。前述
の製法によって調整された図2の如き異方導電マイクロ
カプセル10を粒径5±0.2μm、膜厚0.8±0.
05μm(20本/mmの分解能の要求から割出された
値)に作成し、これをスクリーン印刷あるいはスプレー
等によって下部電極基板5の所定部分に塗布(図1
(a)に示す)する。ついで上部電極基板5(或いはフ
レキシブルコネクタ、IC電極パット等)を目合せした
のち、これらを加圧によって2枚の基板間の電極を図1
(b)のように接続する。
Next, formation of the anisotropically conductive material will be described with reference to FIGS. 1 (a) and 1 (b), taking substrate connection as an example. The anisotropic conductive microcapsules 10 as shown in FIG.
05 μm (value calculated from the requirement of 20 lines / mm resolution), and apply this to a predetermined portion of the lower electrode substrate 5 by screen printing or spraying (see FIG. 1).
(Shown in (a)). Then the upper electrode substrate 5 (or a flexible connector, IC electrode pads, etc.) After eye combined, Figure 1 an electrode between the thus two to these pressure board
Connect as shown in (b).

【0013】図1(b)に示すように、本発明による異
方導電材料を用いて電気接続すれば、粒径の揃った異方
導電材料10が基板5上に均質に存在するとともに、各
導電材料には、絶縁材料が被覆されているので導電微粒
子間に必ず絶縁層が形成され、電気的な短絡現象は生じ
ない。したがって、図5に示した如き従来の不具合は生
じない。このため、信頼性、分解能を共に高めることが
できる。尚、分解能は芯物質11の粒子径と皮膜12の
膜厚を調整することによって、任意の値が得られる。従
来より、異方導電フィルムの形成に際しては、絶縁性フ
ィルム材と導電粒子を直接混練したのち、シート状ある
いは整形している。同様に本発明においても、図3に示
すように、導電粒子をマイクロカプセル化して異方導電
マイクロカプセル10を形成し、これをローラ15(又
はヒートローラ等)によってシート状あるいはテープ状
の異方導電フィルムを製造することができる
As shown in FIG. 1B, if the anisotropic conductive material according to the present invention is used for electrical connection, the anisotropic conductive material 10 having a uniform grain size is uniformly present on the substrate 5, and Since the conductive material is covered with the insulating material, the insulating layer is always formed between the conductive fine particles, and the electrical short circuit phenomenon does not occur. Therefore, the conventional inconvenience as shown in FIG. 5 does not occur. Therefore, both reliability and resolution can be improved. The resolution can be set to an arbitrary value by adjusting the particle diameter of the core substance 11 and the film thickness of the coating film 12. Conventionally, when forming an anisotropic conductive film, the insulating film material and the conductive particles are directly kneaded and then formed into a sheet or shaped. Similarly, in the present invention, as shown in FIG. 3, conductive particles are microencapsulated to form anisotropic conductive microcapsules 10, and the anisotropic conductive microcapsules are formed into a sheet or tape by a roller 15 (or a heat roller or the like). A conductive film can be manufactured .

【0014】[0014]

【発明の効果】以上説明した通り、本発明の電気接続用
異方導電材料によれば、導電性微粒子を圧力の作用によ
って膜厚を減じて導電性微粒子に導通部を形成しうる電
気絶縁性物質で被覆したため、すなわち、導電性粒子を
電気絶縁性物質で包み込んでマイクロカプセル化したた
め、導電性粒子の側面には必ず電気絶縁性物質が存在す
るので、隣接する電極間に異方導電性粒子が凝集しても
短絡が発生しなくなり、高分解能を得ることができる。
さらに、導電性粒子を被覆する電気絶縁性物質が加圧に
よって異方導電性材料の配列方向に移動し膜厚が減じら
れるので、接続方向の導電性を確実に得ることができ
る。しかも、導電粒子の材料を選ばないため、あらゆる
電極材料に合せてオーミックな接続を行うことができ
る。
As described in the foregoing, according to the anisotropic conductive material for electrical connection of the present invention, electrical insulation capable of forming a conductive portion conductive particles by subtracting the film thickness by the action of the pressure to the conductive fine particles Since the conductive particles are coated with a conductive substance, that is, the conductive particles are wrapped with an electrically insulating substance to form microcapsules, the electrically insulating substance always exists on the side surface of the conductive particles. Even if particles agglomerate, short circuit does not occur, and high resolution can be obtained.
Furthermore, since the electrically insulating substance that coats the conductive particles moves in the arrangement direction of the anisotropically conductive material by pressure and the film thickness is reduced, it is possible to reliably obtain the conductivity in the connection direction. Moreover, since the material of the conductive particles is not selected, ohmic connection can be performed according to any electrode material.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例を示す断面図。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】 本発明に係るマイクロ化した導電性粒子の断
面図。
FIG. 2 is a sectional view of micronized conductive particles according to the present invention.

【図3】 本発明における異方導電フィルムの製造説明
図。
FIG. 3 is an explanatory view for manufacturing an anisotropic conductive film according to the present invention.

【図4】 従来の異方導電材料を用いた電極の接続説明
図。
FIG. 4 is an explanatory view of connection of electrodes using a conventional anisotropic conductive material.

【図5】 従来の材料による接続トラブル発生を示す説
明図。
FIG. 5 is an explanatory view showing the occurrence of a connection trouble caused by a conventional material.

【符号の説明】[Explanation of symbols]

4 電極、 5 基板、 10 異方導電マイクロカプ
セル、 11 芯物質、 12 皮膜物質。
4 electrodes, 5 substrate, 10 anisotropically conductive microcapsules, 11 core substance, 12 coating substance.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 導電性粒子の表面を、圧力の作用によっ
て膜厚を減じてこの導電性粒子に導通部を形成しうる電
気絶縁性物質被覆した異方導電性粒子を用いることを
特徴とする電気接続用異方導電材料。
The surface of claim 1 conductive particles, and wherein the use of anisotropic conductive particles coated with electrically insulating material by subtracting the film thickness can form a conductive portion on the conductive particles by the action of the pressure Anisotropic conductive material for electrical connection.
JP4280233A 1985-09-30 1992-10-19 Anisotropically conductive material for electrical connection Expired - Lifetime JPH0799644B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60217598A JPH0618082B2 (en) 1985-09-30 1985-09-30 Anisotropically conductive material for electrical connection
JP4280233A JPH0799644B2 (en) 1985-09-30 1992-10-19 Anisotropically conductive material for electrical connection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60217598A JPH0618082B2 (en) 1985-09-30 1985-09-30 Anisotropically conductive material for electrical connection
JP4280233A JPH0799644B2 (en) 1985-09-30 1992-10-19 Anisotropically conductive material for electrical connection

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60217598A Division JPH0618082B2 (en) 1985-09-30 1985-09-30 Anisotropically conductive material for electrical connection

Publications (2)

Publication Number Publication Date
JPH0660712A JPH0660712A (en) 1994-03-04
JPH0799644B2 true JPH0799644B2 (en) 1995-10-25

Family

ID=26522114

Family Applications (2)

Application Number Title Priority Date Filing Date
JP60217598A Expired - Lifetime JPH0618082B2 (en) 1985-09-30 1985-09-30 Anisotropically conductive material for electrical connection
JP4280233A Expired - Lifetime JPH0799644B2 (en) 1985-09-30 1992-10-19 Anisotropically conductive material for electrical connection

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP60217598A Expired - Lifetime JPH0618082B2 (en) 1985-09-30 1985-09-30 Anisotropically conductive material for electrical connection

Country Status (1)

Country Link
JP (2) JPH0618082B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010009804A (en) * 2008-06-25 2010-01-14 Asahi Kasei E-Materials Corp Anisotropic conductive adhesive sheet and fine connection structure

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176139A (en) * 1986-01-29 1987-08-01 Fuji Xerox Co Ltd Anisotropic conducting material and packaging method for semiconductor device using said material
JP3050384B2 (en) * 1989-02-01 2000-06-12 日立化成工業株式会社 Anisotropic conductive resin film-shaped molding
US5136365A (en) * 1990-09-27 1992-08-04 Motorola, Inc. Anisotropic conductive adhesive and encapsulant material
JPH04332404A (en) * 1991-05-07 1992-11-19 Nec Corp Anisotropic conductive material and connection of integrated circuit element using it
JPH05326097A (en) * 1992-05-22 1993-12-10 Sharp Corp Electrode connecting method
JP3455871B2 (en) 1997-06-23 2003-10-14 株式会社スリーボンド Method for producing microcapsule type conductive filler
JP4075132B2 (en) * 1998-04-14 2008-04-16 日本ゼオン株式会社 Resin composition
TWI232467B (en) 2001-11-30 2005-05-11 Mitsui Chemicals Inc Paste for circuit connection, anisotropic conductive paste and uses thereof
JP4152163B2 (en) * 2002-10-16 2008-09-17 株式会社巴川製紙所 Conductive adhesive and method for producing the same
CN100537689C (en) 2003-12-04 2009-09-09 旭化成电子材料株式会社 Anisotropic conductive adhesive sheet and connected structure
JP6972216B2 (en) * 2016-03-23 2021-11-24 日東電工株式会社 Heat bonding sheet, heat bonding sheet with dicing tape, manufacturing method of bonded body, power semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4298407A (en) * 1980-08-04 1981-11-03 E. I. Du Pont De Nemours And Company Flux treated solder powder composition
EP0134624A3 (en) * 1983-06-13 1987-05-13 Minnesota Mining And Manufacturing Company Multiple-connector adhesive tape
JPS6040183A (en) * 1983-08-16 1985-03-02 Yazaki Corp Refrigerant composition for absorption refrigerator
JPS60140790A (en) * 1983-12-27 1985-07-25 ソニ−ケミカル株式会社 Coupling sheet
JPS6235410A (en) * 1985-08-08 1987-02-16 株式会社フジクラ Manufacture of anisotropic conducting adhesive sheet
JP2501100B2 (en) * 1985-08-15 1996-05-29 ソニー株式会社 Connection sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010009804A (en) * 2008-06-25 2010-01-14 Asahi Kasei E-Materials Corp Anisotropic conductive adhesive sheet and fine connection structure

Also Published As

Publication number Publication date
JPS6276215A (en) 1987-04-08
JPH0618082B2 (en) 1994-03-09
JPH0660712A (en) 1994-03-04

Similar Documents

Publication Publication Date Title
AU2003205307B2 (en) Apparatus incorporating small-feature-size and large-feature-size components and method for making same
EP0512546B1 (en) Anisotropically conductive material and method for connecting integrated circuits by using the same
US6147311A (en) Multi layer circuit board using anisotropic electroconductive adhesive layer and method for producing same
US4999460A (en) Conductive connecting structure
JP3800631B2 (en) Method for manufacturing anisotropic conductive adhesive, method for manufacturing connection structure, and method for manufacturing liquid crystal device
JPH0799644B2 (en) Anisotropically conductive material for electrical connection
AU2003205307A1 (en) Apparatus incorporating small-feature-size and large-feature-size components and method for making same
JP2794009B2 (en) Method for producing anisotropically conductive particles for electrical connection and method for producing anisotropically conductive material for electrical connection
GB2064233A (en) Liquid crystal display device
JPH053739B2 (en)
KR100772454B1 (en) Anisotropic conductive film and its manufacturing method
JP2836035B2 (en) Electrical connection
JP3622792B2 (en) Connection member and electrode connection structure and connection method using the connection member
JPS63310581A (en) Film body for electric connection
KR20180020520A (en) Multilayered anisotropic conductive film
JPS63102110A (en) Anisotropic conductor and making thereof
JP2579458B2 (en) Anisotropic conductive film and method for producing the same
KR940001260B1 (en) Conductive connecting structure
JP4282097B2 (en) Circuit board connection method, connection structure, and adhesive film used therefor
JPH09147928A (en) Connecting member
JPH0429504Y2 (en)
KR101117768B1 (en) Anisotropic Conductive Film
JP4114576B2 (en) Multilayer wiring board and manufacturing method thereof
JP4357722B2 (en) IC module substrate, IC module manufacturing method, and IC module
JPH0440277Y2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term