JPH078766A - Hydrogen separation device - Google Patents
Hydrogen separation deviceInfo
- Publication number
- JPH078766A JPH078766A JP15332693A JP15332693A JPH078766A JP H078766 A JPH078766 A JP H078766A JP 15332693 A JP15332693 A JP 15332693A JP 15332693 A JP15332693 A JP 15332693A JP H078766 A JPH078766 A JP H078766A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- hydrogen separation
- separation membrane
- gas
- mixed gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000001257 hydrogen Substances 0.000 title claims abstract description 100
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 100
- 238000000926 separation method Methods 0.000 title claims abstract description 48
- 125000004435 hydrogen atom Chemical class [H]* 0.000 title 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 55
- 150000002431 hydrogen Chemical class 0.000 claims abstract description 51
- 239000007789 gas Substances 0.000 claims abstract description 36
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 11
- 229910010272 inorganic material Inorganic materials 0.000 claims abstract description 7
- 239000011147 inorganic material Substances 0.000 claims abstract description 7
- 229910001252 Pd alloy Inorganic materials 0.000 claims abstract description 6
- 239000012528 membrane Substances 0.000 claims description 36
- 230000001737 promoting effect Effects 0.000 claims description 4
- 239000000758 substrate Substances 0.000 abstract 1
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 13
- 238000012360 testing method Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 239000000835 fiber Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000007772 electroless plating Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000001612 separation test Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は水素と水素以外のガスと
の混合ガスから水素のみを分離する水素分離装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen separator for separating only hydrogen from a mixed gas of hydrogen and a gas other than hydrogen.
【0002】[0002]
【従来の技術】水素と水素以外の混合ガスから水素ガス
のみを分離する方法としてパラジウムあるいはパラジウ
ム合金からなる水素分離膜を用いる方法が提案されてお
り、99.99%以上の高純度の水素を得る方法として
利用されている。この水素分離膜として近年、分離膜の
単位面積当たりの水素透過量を大きくするために無機質
材料からなる多孔質支持体にパラジウムを含有する薄膜
を形成させた水素分離膜が提案されている。(例えば特
開昭62−121616号公報)2. Description of the Related Art As a method for separating only hydrogen gas from hydrogen and a mixed gas other than hydrogen, a method using a hydrogen separation membrane made of palladium or a palladium alloy has been proposed. It is used as a way to obtain. As this hydrogen separation membrane, a hydrogen separation membrane has recently been proposed in which a thin film containing palladium is formed on a porous support made of an inorganic material in order to increase the amount of hydrogen permeation per unit area of the separation membrane. (For example, Japanese Patent Laid-Open No. 62-121616)
【0003】また、特開平3−52630号公報には無
機質材料からなる多孔質支持体として多孔質金属を用い
る方法が示されており、この方法によれば多孔質金属と
して以下の例が示されている。 発泡金属をプレス成形し細孔径を制御したもの、さ
らにこれに溶射またはメッキなどにより細孔を小さくし
たもの 粒径の小さい金属微粉末(50μ以下)を成形した
もの 化学反応により除去可能な粉末(例えば、燃焼除去
が可能なグラファイト)を金属粉末に混合または溶融し
た金属に添加した後、粉末を化学反応により除去し細孔
を生成させたもの 金属繊維Further, JP-A-3-52630 discloses a method of using a porous metal as a porous support made of an inorganic material. According to this method, the following examples are shown as the porous metal. ing. A foamed metal that is press-molded to control the pore size, and the pores are made smaller by thermal spraying or plating. A fine metal powder (50μ or less) with a small particle size is molded. A powder that can be removed by a chemical reaction ( For example, graphite that can be removed by combustion is added to a metal mixed or melted with a metal powder, and then the powder is removed by a chemical reaction to create pores. Metal fiber
【0004】次に前記多孔質金属体の表面にパラジウム
を含有する薄膜を形成させる方法として、以下の方法が
示されている。 メッキなどの液相法 真空蒸着法、イオンプレーティング、気相化学反応
法(CVD)などの気相法 さらに、特開昭60−97024号公報には水素分離薄
膜を保護するために金属網あるいは金属織物による金属
層によって挟み込んだ構造を有する水素分離膜が示され
ている。Next, the following method is shown as a method for forming a thin film containing palladium on the surface of the porous metal body. Liquid phase method such as plating Vapor phase method such as vacuum vapor deposition method, ion plating, vapor phase chemical reaction method (CVD), etc. Furthermore, Japanese Patent Laid-Open No. 60-97024 discloses a metal mesh or a metal mesh for protecting a hydrogen separation thin film. A hydrogen separation membrane having a structure sandwiched by metal layers made of metal fabric is shown.
【0005】これら従来の水素分離膜により水素含有混
合ガスから水素のみを分離する場合には、該混合ガスか
らなる非透過側に圧力をかけ該水素分離膜に沿って該混
合ガスを流しながら低圧側に水素を透過させている。こ
の場合、該水素分離膜の水素透過速度は温度が高く、分
離膜の高圧側と低圧側との水素分圧差が大きいほど大き
くなる。When only hydrogen is separated from the hydrogen-containing mixed gas by these conventional hydrogen separation membranes, pressure is applied to the non-permeate side of the mixed gas and the mixed gas is flowed along the hydrogen separation membrane at a low pressure. Permeate hydrogen to the side. In this case, the hydrogen permeation rate of the hydrogen separation membrane increases as the temperature increases and the hydrogen partial pressure difference between the high pressure side and the low pressure side of the separation membrane increases.
【0006】例えば、特開平3−52630号公報に示
された方法で金属繊維を多孔質支持体とし、無電解メッ
キ法によって該支持体表面上にパラジウムを約40μの
厚さにコーティングして製作した円筒状の水素分離膜
(外径20mm、内径17mm、長さ300mm)を用
いて図3に示す試験装置で水素透過試験を行った。水素
分離膜1をOリング2でステンレス鋼製の外管3に固定
し、その外側を電気炉で加熱する。温度は熱電対8を使
用し、内管の中心部で測定した。供給孔4からH2 /N
2 =1(モル)の混合ガスを連続的に供給し、排出孔5
から水素ガスが透過した後のガスを排出し、下部の取り
出し孔6から99.99%以上の水素(圧力:1kg/
cm2 abs.)を得ることができた。具体的には、混
合ガスの圧力を3kg/cm2 abs.、流量を10N
l/min、温度500℃で試験した結果、製品水素が
0.73Nl/min得られた。For example, the metal fiber is used as a porous support by the method disclosed in JP-A-3-52630, and palladium is coated on the surface of the support by electroless plating to a thickness of about 40 μ. A hydrogen permeation test was carried out by using the cylindrical hydrogen separation membrane (outer diameter 20 mm, inner diameter 17 mm, length 300 mm) with the test apparatus shown in FIG. The hydrogen separation membrane 1 is fixed to an outer tube 3 made of stainless steel with an O-ring 2, and the outside is heated in an electric furnace. The temperature was measured using a thermocouple 8 at the center of the inner tube. From supply hole 4 to H 2 / N
2 = 1 (mol) mixed gas is continuously supplied, and discharge hole 5
After the hydrogen gas has permeated from it, the gas is discharged, and 99.99% or more of hydrogen (pressure: 1 kg /
cm 2 abs. ) Was able to be obtained. Specifically, the pressure of the mixed gas is set to 3 kg / cm 2 abs. , Flow rate 10N
As a result of testing at 1 / min and a temperature of 500 ° C., 0.73 Nl / min of product hydrogen was obtained.
【0007】また、供給孔4からH2 /N2 =1(モ
ル)の混合ガスを連続的に供給し、排出孔5から水素ガ
スが透過した後のガスを排出するに際し、上部供給孔7
から水素払い出し用スチームを供給し、透過した水素と
スチームとの混合ガスを下部の取り出し孔6から排出す
る。水素分離試験条件は前記混合ガス流量10Nl/m
in、圧力3kg/cm2 abs.、水素払い出し用ス
チーム1Nl/min、圧力1kg/cm2 abs.で
ある。以上の条件で1.60Nl/minの水素透過量
を得た。前記スチームと水素との混合ガスから水素だけ
を得るには、例えば該混合ガスを水の凝縮温度以下に冷
却しスチームを水として凝縮分離すればよい。Further, when the mixed gas of H 2 / N 2 = 1 (mol) is continuously supplied from the supply hole 4 and the gas after the hydrogen gas has permeated is discharged from the discharge hole 5, the upper supply hole 7
The hydrogen-releasing steam is supplied from the above, and the mixed gas of the permeated hydrogen and steam is discharged from the lower extraction hole 6. The hydrogen separation test condition is the mixed gas flow rate of 10 Nl / m.
in, pressure 3 kg / cm 2 abs. , Steam for hydrogen discharge 1 Nl / min, pressure 1 kg / cm 2 abs. Is. Under the above conditions, a hydrogen permeation rate of 1.60 Nl / min was obtained. To obtain only hydrogen from the mixed gas of steam and hydrogen, for example, the mixed gas may be cooled to a temperature below the condensation temperature of water and steam may be condensed and separated as water.
【0008】[0008]
【発明が解決しようとする課題】前記従来の方法につい
ては次のような問題点がある。 (1)水素を分離する際には水素を含有する混合ガスを
水素分離膜に沿って流すため、該水素分離膜表面から混
合ガス中にかけて水素濃度分布が生じ、水素分離膜表面
近傍に水素濃度の低い領域が生ずる。このため水素分離
膜の高圧側の水素分圧が低下する結果、水素透過速度が
小さくなる。 (2)水素分離膜の低圧側に、水素以外のガスを流しな
がら水素を分離する場合には、水素分離膜の低圧側表面
と透過した水素と水素以外のガスとの混合ガス中の間に
水素濃度勾配が生じ、混合ガス中に比べ低圧表面近傍で
水素分圧が高くなる。このため、水素透過速度が小さく
なる。The above-mentioned conventional method has the following problems. (1) When separating hydrogen, a mixed gas containing hydrogen flows along the hydrogen separation membrane, so that a hydrogen concentration distribution is generated from the surface of the hydrogen separation membrane to the mixed gas, and the hydrogen concentration near the surface of the hydrogen separation membrane. Low areas of For this reason, the hydrogen partial pressure on the high-pressure side of the hydrogen separation membrane decreases, and as a result, the hydrogen permeation rate decreases. (2) When hydrogen is separated while flowing a gas other than hydrogen on the low-pressure side of the hydrogen separation membrane, the hydrogen concentration is between the low-pressure side surface of the hydrogen separation membrane and the permeated mixed gas of hydrogen and a gas other than hydrogen. A gradient occurs and the hydrogen partial pressure becomes higher near the low pressure surface than in the mixed gas. Therefore, the hydrogen permeation rate becomes small.
【0009】本発明は前記従来技術が有する問題点を解
決することを目的としたものであり、水素分離膜の高圧
側及び低圧側の表面近傍に形成される水素濃度勾配を解
消することによって、高圧側の表面近傍の水素分圧を上
げ、また、低圧側の表面近傍の水素分圧を下げることに
よって、水素透過速度を向上させるものである。The present invention is intended to solve the problems of the above-mentioned prior art, and by eliminating the hydrogen concentration gradient formed near the surface of the hydrogen separation membrane on the high pressure side and the low pressure side, By increasing the hydrogen partial pressure near the surface on the high pressure side and decreasing the hydrogen partial pressure near the surface on the low pressure side, the hydrogen permeation rate is improved.
【0010】[0010]
【課題を解決するための手段】本発明は無機材料からな
る多孔質支持体上に、パラジウム又はパラジウム合金を
担持した水素分離膜を円筒状又は平板状に成形してなる
水素分離装置において、水素分離膜の水素含有ガスの供
給側及び/又は水素ガスの透過側に水素分離膜に沿って
流れるガス流れを乱す乱流促進体を設置してなることを
特徴とする水素分離装置である。Means for Solving the Problems The present invention provides a hydrogen separation apparatus in which a hydrogen separation membrane carrying palladium or a palladium alloy is formed into a cylindrical shape or a flat plate shape on a porous support made of an inorganic material. The hydrogen separation device is characterized in that a turbulent flow promoting body that disturbs a gas flow flowing along the hydrogen separation membrane is installed on the hydrogen-containing gas supply side and / or the hydrogen gas permeation side of the separation membrane.
【0011】本発明の水素分離膜とは金属やガラスなど
の無機材料からなる多孔質支持体上にパラジウム又はパ
ラジウム合金をコーティングしたものや、パラジウム又
はパラジウム合金からなる薄膜を無機材料からなる多孔
質薄膜で支持、補強したものなどが使用される。The hydrogen separation membrane of the present invention is a porous support made of an inorganic material such as metal or glass coated with palladium or a palladium alloy, or a thin film made of palladium or a palladium alloy made of an inorganic material is porous. Those supported or reinforced with a thin film are used.
【0012】また、本発明において乱流促進体として
は、例えば、日本機械学会編、伝熱工学資料 改訂第3
版 119〜122頁に示されているような下記の形状
のものが使用される。 (1)表面近傍の流れを攪乱させるもの:表面に突起体
(四角形、台形のこ歯形、三角形、針金)を設ける。 (2)主流を旋回させるもの:管路にねじり板、らせん
羽根(主軸を有するもの)を入れる。 (3)主流を攪乱させるもの:管路に一定の間隔で円
板、円環を並べる。In the present invention, the turbulent flow promoter is, for example, edited by the Japan Society of Mechanical Engineers, Heat Transfer Engineering Material Revision No. 3
The following shapes are used, as shown on plates 119-122. (1) What disturbs the flow near the surface: Protrusions (square, trapezoidal sawtooth, triangle, wire) are provided on the surface. (2) What swirls the main flow: Put a twist plate and a spiral blade (having a main axis) in the pipe line. (3) What disturbs the mainstream: Arrange disks and rings at regular intervals in the pipeline.
【0013】[0013]
【作用】本発明の水素分離膜においては、水素含有混合
ガスと分離膜表面との間の水素拡散移動過程で高圧側及
び/又は低圧側の分離膜表面近傍に形成される水素濃度
勾配を、乱流促進体を用いて解消あるいは、小さくする
ことによって、該高圧側の分離膜表面近傍の水素分圧を
上げ及び/又は低圧側の分離膜表面近傍の水素分圧を下
げて水素透過速度を向上させるものである。In the hydrogen separation membrane of the present invention, the hydrogen concentration gradient formed near the surface of the separation membrane on the high pressure side and / or the low pressure side in the hydrogen diffusion transfer process between the hydrogen-containing mixed gas and the surface of the separation membrane, By using a turbulence promoter to eliminate or reduce it, the hydrogen partial pressure near the surface of the separation membrane on the high pressure side is increased and / or the hydrogen partial pressure near the surface of the separation membrane on the low pressure side is decreased to reduce the hydrogen permeation rate. To improve.
【0014】[0014]
(実施例1)本発明の作用、効果を図1に示す構成の水
素分離膜を用いた実施例により説明する。図1に示すよ
うに、金属繊維を多孔質支持体とし、無電解メッキ法に
よって該支持体表面上にパラジウムを約40μの厚さに
コーティングし、製作した円筒状の水素分離膜本体(外
径20mm、内径17mm、長さ300mm)1の高圧
側に、外径2mmの丸棒をピッチ10mm、内径21m
mのらせん状の乱流促進体9を設置した。この乱流促進
体を設置した水素分離膜を前記図3に示す試験装置で水
素透過試験を実施し、該促進体を設置していない場合と
比較することにとって本発明の効果を示す。試験条件は
前記従来例に示したものである。具体的には、混合ガス
の圧力:3kg/cm2 abs.、流量:10Nl/m
in.、温度:500℃の条件で行ない、この場合、水
素払い出し用ガスは使用しなかった。結果を表1に示
す。(Embodiment 1) The operation and effect of the present invention will be described with reference to an embodiment using a hydrogen separation membrane having the structure shown in FIG. As shown in FIG. 1, a metal fiber is used as a porous support, and the surface of the support is coated with palladium to a thickness of about 40 μ by an electroless plating method. 20mm, inner diameter 17mm, length 300mm) 1, the outer diameter of 2mm round bar pitch 10mm, inner diameter 21m
A m-shaped spiral turbulence promoter 9 was installed. The effect of the present invention is shown by carrying out a hydrogen permeation test on the hydrogen separation membrane provided with the turbulent flow accelerator with the test apparatus shown in FIG. 3 and comparing it with the case where the accelerator is not provided. The test conditions are those shown in the conventional example. Specifically, the pressure of the mixed gas: 3 kg / cm 2 abs. , Flow rate: 10 Nl / m
in. , Temperature: 500 ° C., and in this case, no hydrogen discharging gas was used. The results are shown in Table 1.
【0015】[0015]
【表1】 このように、乱流促進体を設置した結果、製品水素流量
が約10%増加させることができた。[Table 1] In this way, as a result of installing the turbulence promoter, the product hydrogen flow rate could be increased by about 10%.
【0016】(実施例2)本発明の他の実施例を図2に
よって説明する。金属繊維を多孔質支持体とし、無電解
メッキ法によって該支持体表面上にパラジウムを約40
μの厚さにコーティングし、製作した円筒状の水素分離
膜(外径20mm、内径17mm、長さ300mm)1
の内側、すなわち低圧側に、直径16mm、厚さ0.2
mmの円板10′をピッチ10mmで、外径14mmの
丸棒10″に固定した乱流促進体10を設置した。この
乱流促進体を設置した水素分離膜を前記図3に示す試験
装置で水素透過試験を実施し、該促進体を設置していな
い場合と比較することにとって本発明の効果を示す。試
験条件は温度500℃で、供給孔4からH2 /N2 =1
(モル)の混合ガスを連続的に供給し、排出孔5から非
透過ガスを排出する。上部供給孔7から水素払い出し用
スチームを供給し、透過した水素とスチームとの混合ガ
スを下部の取り出し孔6から排出する。 該混合ガス流量:10Nl/min.、圧力:3kg/
cm2 abs.、水素払い出し用スチーム:1Nl/m
in.、圧力:1kg/cm2 abs.である。結果を
表2に示す。(Embodiment 2) Another embodiment of the present invention will be described with reference to FIG. A metal fiber was used as a porous support, and about 40 palladium was deposited on the surface of the support by electroless plating.
Cylindrical hydrogen separation membrane manufactured by coating to a thickness of μ (outer diameter 20 mm, inner diameter 17 mm, length 300 mm) 1
16mm in diameter, 0.2 in thickness
A turbulent flow promoting body 10 in which a circular disc 10 'of mm is fixed to a round bar 10 "having an outer diameter of 14 mm at a pitch of 10 mm was installed. The hydrogen separation membrane provided with the turbulent flow promoting body was tested by the test apparatus shown in FIG. The effect of the present invention is shown in comparison with a case in which the promoter is not installed by conducting a hydrogen permeation test at a temperature of 500 ° C. and H 2 / N 2 = 1 from the supply hole 4.
The (mol) mixed gas is continuously supplied, and the non-permeable gas is discharged from the discharge hole 5. Steam for discharging hydrogen is supplied from the upper supply hole 7, and the mixed gas of hydrogen and steam that has permeated is discharged from the lower discharge hole 6. The mixed gas flow rate: 10 Nl / min. , Pressure: 3kg /
cm 2 abs. , Steam for hydrogen discharge: 1Nl / m
in. , Pressure: 1 kg / cm 2 abs. Is. The results are shown in Table 2.
【0017】[0017]
【表2】 このように、乱流促進体を設置した結果、製品水素流量
を約9%増加させることができた。[Table 2] As described above, as a result of installing the turbulence promoter, the product hydrogen flow rate could be increased by about 9%.
【0018】[0018]
【発明の効果】以上、実施例から明らかなように、本発
明の水素分離装置は従来の水素分離装置の性能を約10
%向上させることができるものであり、その工業的効果
は顕著なものがある。As described above, the hydrogen separating apparatus of the present invention has a performance of about 10 times that of the conventional hydrogen separating apparatus.
%, And its industrial effect is remarkable.
【図1】本発明に係る水素分離膜の一実施例の説明図。FIG. 1 is an explanatory diagram of an embodiment of a hydrogen separation membrane according to the present invention.
【図2】本発明に係る水素分離膜の他の実施例の説明
図。FIG. 2 is an explanatory view of another embodiment of the hydrogen separation membrane according to the present invention.
【図3】従来及び本発明の水素分離装置の水素分離効果
を実証するために用いた試験装置の説明図。FIG. 3 is an explanatory view of a test device used for demonstrating the hydrogen separation effect of the conventional and the hydrogen separation devices of the present invention.
Claims (1)
ラジウム又はパラジウム合金を担持した水素分離膜を円
筒状又は平板状に成形してなる水素分離装置において、
水素分離膜の水素含有ガスの供給側及び/又は水素ガス
の透過側に水素分離膜に沿って流れるガス流れを乱す乱
流促進体を設置してなることを特徴とする水素分離装
置。1. A hydrogen separation device comprising a porous support made of an inorganic material and a hydrogen separation membrane carrying palladium or a palladium alloy formed into a cylindrical or flat plate shape,
A hydrogen separation device, wherein a turbulence promoting member for disturbing a gas flow flowing along the hydrogen separation membrane is installed on a hydrogen-containing gas supply side and / or a hydrogen gas permeation side of the hydrogen separation membrane.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15332693A JPH078766A (en) | 1993-06-24 | 1993-06-24 | Hydrogen separation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15332693A JPH078766A (en) | 1993-06-24 | 1993-06-24 | Hydrogen separation device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH078766A true JPH078766A (en) | 1995-01-13 |
Family
ID=15560050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15332693A Withdrawn JPH078766A (en) | 1993-06-24 | 1993-06-24 | Hydrogen separation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH078766A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001036077A1 (en) * | 1999-11-18 | 2001-05-25 | Toyota Jidosha Kabushiki Kaisha | Device forming fuel gas for fuel cell and composite material for hydrogen separation |
WO2006082933A1 (en) * | 2005-02-04 | 2006-08-10 | Ngk Insulators, Ltd. | Reactor of selective-permeation membrane type |
JP2011526237A (en) * | 2008-07-01 | 2011-10-06 | リンデ アクチエンゲゼルシヤフト | Hydrogen production method and apparatus |
JP2019084473A (en) * | 2017-11-02 | 2019-06-06 | 日本精線株式会社 | Hydrogen separation membrane module and hydrogen generation device |
-
1993
- 1993-06-24 JP JP15332693A patent/JPH078766A/en not_active Withdrawn
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001036077A1 (en) * | 1999-11-18 | 2001-05-25 | Toyota Jidosha Kabushiki Kaisha | Device forming fuel gas for fuel cell and composite material for hydrogen separation |
JP2002033113A (en) * | 1999-11-18 | 2002-01-31 | Toyota Motor Corp | Fuel gas generator for fuel cell and composite material for hydrogen separation |
US7255721B1 (en) | 1999-11-18 | 2007-08-14 | Toyota Jidosha Kabushiki Kaisha | Device forming fuel gas for fuel cell and composite material for hydrogen separation |
WO2006082933A1 (en) * | 2005-02-04 | 2006-08-10 | Ngk Insulators, Ltd. | Reactor of selective-permeation membrane type |
US7550121B2 (en) | 2005-02-04 | 2009-06-23 | Ngk Insulators, Ltd. | Reactor of selective-permeation membrane type |
JP5015766B2 (en) * | 2005-02-04 | 2012-08-29 | 日本碍子株式会社 | Permselective membrane reactor |
JP2011526237A (en) * | 2008-07-01 | 2011-10-06 | リンデ アクチエンゲゼルシヤフト | Hydrogen production method and apparatus |
JP2019084473A (en) * | 2017-11-02 | 2019-06-06 | 日本精線株式会社 | Hydrogen separation membrane module and hydrogen generation device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5160544A (en) | Hot filament chemical vapor deposition reactor | |
Li et al. | Characterisation and permeation of palladium/stainless steel composite membranes | |
Li et al. | Fabrication of dense palladium composite membranes for hydrogen separation | |
EP2125166B1 (en) | A method of reconditioning a gas separation membrane | |
Tong et al. | Preparation of a pinhole-free Pd–Ag membrane on a porous metal support for pure hydrogen separation | |
AU2005286952B2 (en) | Membrane steam reformer | |
WO2006082933A1 (en) | Reactor of selective-permeation membrane type | |
US9376749B2 (en) | Method for the chemical vapor infiltration of refractive substances | |
JP3217447B2 (en) | Membrane reactor for dehydrogenation reaction | |
Höllein et al. | Preparation and characterization of palladium composite membranes for hydrogen removal in hydrocarbon dehydrogenation membrane reactors | |
JP2010042397A (en) | Hydrogen separator and method of operating hydrogen separator | |
Ji et al. | Vacuum-assisted continuous flow electroless plating approach for high performance Pd membrane deposition on ceramic hollow fiber lumen | |
JPH078766A (en) | Hydrogen separation device | |
Li et al. | Repair of a Pd/α-Al2O3 composite membrane containing defects | |
US6297415B1 (en) | Catalytic distillation process | |
JPS61238303A (en) | Preparation of microporous membrane | |
EP0521078B1 (en) | An improved hot filament chemical vapor deposition reactor | |
JP3117276B2 (en) | Hydrogen separation membrane | |
US2226149A (en) | Method for reacting gas mixtures by means of precious metal catalysts | |
JPH03217227A (en) | Membrane reactor for dehydrogenation reaction | |
JPH06171904A (en) | Gaseous hydrogen refiner | |
JP2955054B2 (en) | Method and apparatus for producing hydrogen for fuel cells and supply method | |
JPS59152299A (en) | Gas-phase production of carbon fiber | |
Kuraoka et al. | Pore-filled palladium-glass composite membranes for hydrogen separation by novel electroless plating technique. | |
JP2021104917A (en) | Exhaust cooling device, device for producing fullerene and method for producing fullerene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000905 |