[go: up one dir, main page]

JPH0782995B2 - Method for manufacturing semiconductor substrate - Google Patents

Method for manufacturing semiconductor substrate

Info

Publication number
JPH0782995B2
JPH0782995B2 JP14890385A JP14890385A JPH0782995B2 JP H0782995 B2 JPH0782995 B2 JP H0782995B2 JP 14890385 A JP14890385 A JP 14890385A JP 14890385 A JP14890385 A JP 14890385A JP H0782995 B2 JPH0782995 B2 JP H0782995B2
Authority
JP
Japan
Prior art keywords
layer
thickness
mother substrate
semiconductor substrate
epi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14890385A
Other languages
Japanese (ja)
Other versions
JPS629623A (en
Inventor
公一 釘宮
裕一 広藤
直人 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14890385A priority Critical patent/JPH0782995B2/en
Publication of JPS629623A publication Critical patent/JPS629623A/en
Publication of JPH0782995B2 publication Critical patent/JPH0782995B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高密度の半導体装置に必要な半導体基板の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor substrate required for a high density semiconductor device.

従来の技術 完全絶縁分離された基板として、いわゆるSOSやSOIがあ
る。SOSは、サファイア単結晶上にシリコンをエピ成長
させたものであり、既に一部実用化されている。しか
し、格子定数の差からくる結晶性の悪さや、Alのオート
ドープなどの問題がある。SOIとしては、上記SOS以外の
種々の方法が提案されている。例えば、レーザーやエレ
クトロンビームのようなエルネギービームを照射し、表
面層のみを瞬間的に溶融、再固化することによって、絶
縁体上の多結晶体を単結晶化する方法が提案され、検討
が続けられている。簡単な素子も形成され、評価されて
いるが、基礎となる表面の再結晶層の品質は良くない。
結晶方位の乱れ、熱歪によるスリップ状の欠陥、粒界な
どが観察される[Editor:S.Furukawa,Silicon−on−Ins
ulator:HsTechnology and Application,KTK Suie.pub.
(1985)]。
2. Description of the Related Art So-called SOS and SOI are examples of substrates that are completely isolated. SOS is an epitaxial growth of silicon on a sapphire single crystal and has already been partially put into practical use. However, there are problems such as poor crystallinity due to the difference in lattice constant and autodoping of Al. As the SOI, various methods other than the above SOS have been proposed. For example, there has been proposed a method of irradiating an energy beam such as a laser or an electron beam to instantaneously melt and re-solidify only the surface layer to single-crystallize a polycrystal on an insulator. It continues. Although simple devices have been formed and evaluated, the quality of the underlying surface recrystallized layer is poor.
Distortion of crystal orientation, slip-like defects due to thermal strain, grain boundaries, etc. are observed [Editor: S. Furukawa, Silicon-on-Ins
ulator: HsTechnology and Application, KTK Suie.pub.
(1985)].

また、スピネルをSi基板上にエピ成長させ、続いて、Si
をさらにエピ成長させる技術も報告され、かなり良好な
結果が報告されているが、やはり格子不整合に起因する
歪や欠陥は不可避となっている。[M.Ihara,etal,J.Ele
ctrochem.Sol,129,2569(1982)]。
In addition, spinel was epitaxially grown on the Si substrate, followed by Si
A technique for further epitaxial growth has been reported, and quite good results have been reported, but strains and defects due to lattice mismatch are inevitable. [M.Ihara, et al, J. Ele
ctrochem.Sol, 129, 2569 (1982)].

またスピネルにかえ、CaFのような弗化物をMBEのような
装置によりヘテロエピ成長させ、さらにSiを成長させる
技術もあるが、やはり、格子不整合の問題があり、他に
双晶の問題が大きな検討課題として指摘されている[H.
Ishiwara.etal,A.P.L,40,66(1982)]。
There is also a technique of heteroepitaxially growing a fluoride such as CaF instead of spinel using an apparatus such as MBE and further growing Si, but again, there is a problem of lattice mismatch and another problem of twinning is large. It has been pointed out as a subject for consideration [H.
Ishiwara. Et al, APL, 40, 66 (1982)].

この他、種々の方法が数多く提案されているが、いずれ
も上述と同じ問題点を有しており、現在、一部特殊な用
途に使用、実用されているのは、SOSにすぎない。
In addition to this, many various methods have been proposed, but all of them have the same problems as described above, and it is only SOS that is currently used and practically used for some special applications.

発明が解決しようとする問題点 上述の説明でも明らかなように、ヘテロエピ成長におい
ては、基本的に格子不整合が問題となっている。しか
し、現実には格子定数が0.01%以下の差で一致するもの
はない。さらに、0.01%の非常に小さな差であっても、
エピ成長の観点から考えると大きな差である。即ち、母
基板表面に並んだ原子1万個を一直線上にとったとする
と、長さは1〜2μ程度にすぎない。この時、この上に
エピ成長された原子を同じ1万個を1つずつ対応させて
並べると、1つずれることになる。したがって、全面を
うまくエピ成長させるためには、この1個の差を吸収し
なければならない。このため、微小欠陥および歪が導入
される。さらにエピ成長が厚くなると、歪が滞積し、逆
には大きな欠陥に成長してゆく。
Problems to be Solved by the Invention As is apparent from the above description, in heteroepitaxial growth, lattice mismatch is basically a problem. However, in reality, the lattice constants do not match with a difference of 0.01% or less. Moreover, even with a very small difference of 0.01%,
This is a big difference from the viewpoint of epitaxial growth. That is, if 10,000 atoms arranged on the surface of the mother substrate are taken on a straight line, the length is only about 1 to 2 μm. At this time, if the same number of 10,000 epitaxially grown atoms are arranged corresponding to each one, they are shifted by one. Therefore, in order to successfully epitaxially grow the entire surface, this one difference must be absorbed. Therefore, minute defects and strains are introduced. When the epitaxial growth becomes thicker, strain accumulates, and conversely grows into large defects.

本発明は、上述の考察に基づき、格子不整合による歪は
不可避であるが、その歪が集積され、欠陥となることを
防止することによって、良好な絶縁分離シリコンエピ成
長膜を得ることのできる半導体基板の製造方法を提供す
ることを目的とする。
According to the present invention, strain due to lattice mismatch is unavoidable based on the above consideration, but by preventing the strain from being accumulated and becoming a defect, a good insulating silicon epitaxial growth film can be obtained. It is an object to provide a method for manufacturing a semiconductor substrate.

問題点を解決するための手段 上記問題点を解決するため、本発明の半導体基板の製造
方法は、シリコン母基板上に、300Å以下の厚さのAl2O3
層と、前記母基板と同じ材質で350Å以下の厚さのシリ
コン緩衝層とが交互に多層形成された絶縁層とをヘテロ
エピ成長により形成し、このヘテロエピ絶縁層上に活性
シリコンエピ層を形成するものである。
Means for Solving the Problems In order to solve the above problems, a method for manufacturing a semiconductor substrate according to the present invention comprises: a silicon mother substrate; and Al 2 O 3 having a thickness of 300 Å or less.
A layer and an insulating layer in which multiple layers of a silicon buffer layer of the same material as the mother substrate and having a thickness of 350 Å or less are alternately formed, are formed by heteroepitaxial growth, and an active silicon epilayer is formed on the heteroepitaxial insulating layer. It is a thing.

作用 上記構成によれば、極めて薄い本発明者らにより見い出
された厚さの特定の絶縁層を複数の層により構成したの
で、この各層の層厚を適切に定めることにより、格子定
数の差によるエネルギーの蓄積を防止でき、粒界、結晶
欠陥、双晶などの問題を解消でき、欠陥密度の極めて少
ない絶縁分離シリコン層を形成できる。
Action According to the above configuration, the specific insulating layer having a thickness found by the inventors of the present invention, which is extremely thin, is composed of a plurality of layers. Therefore, by appropriately setting the layer thickness of each layer, the difference in lattice constant Energy can be prevented from being accumulated, problems such as grain boundaries, crystal defects, and twinning can be solved, and an insulating isolation silicon layer with extremely low defect density can be formed.

実施例 以下、本発明の一実施例を図面に基づいて説明する。Embodiment An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例における半導体基板の断面図
で、1は母基板、2は絶縁材層、3は母基板1と同じ材
質の緩衝層、4は絶縁層、5は活性エピ層である。この
半導体基板の製造に際しては、母基板1上に、絶縁材層
2を薄くエピ成長させた後、すぐに緩衝層3をエピ成長
せしめ、歪の蓄積を防ぐとともに、一部緩和せしめる。
次に、さらに絶縁材層2と緩衝層3とを交互に何層も形
成して絶縁層4とし、最後に必要な活性エピ層5を形成
する。絶縁材層2の総厚、ないしは緩衝層3も絶縁材で
ある場合には絶縁層4の厚さを、必要な絶縁分離膜厚に
設定しておく。積極的に歪を解消せしめるには、絶縁材
層2と母基板1および緩衝層3との個有の格子定数が近
いことが必要である。各層2,3の層厚には最適値がある
と推定されるが、実験的には、各々数百Å程度あっても
よい。また、厚さは、上述の説明によれば、格子不整合
量に応じて変化させるのが望ましいといえる。なお、絶
縁層4を母基板1上に島状あるいは縞状に形成し、その
上に活性エピ層5を形成するようにしてもよい。
FIG. 1 is a cross-sectional view of a semiconductor substrate according to an embodiment of the present invention, in which 1 is a mother substrate, 2 is an insulating material layer, 3 is a buffer layer made of the same material as the mother substrate 1, 4 is an insulating layer, and 5 is an active epitaxial layer. It is a layer. In manufacturing this semiconductor substrate, the insulating material layer 2 is thinly epitaxially grown on the mother substrate 1, and then the buffer layer 3 is immediately epitaxially grown to prevent strain from being accumulated and partially relax it.
Next, an insulating material layer 2 and a buffer layer 3 are alternately formed in multiple layers to form an insulating layer 4, and finally a necessary active epi layer 5 is formed. The total thickness of the insulating material layer 2, or when the buffer layer 3 is also an insulating material, the thickness of the insulating layer 4 is set to the required insulation separation film thickness. In order to positively eliminate the strain, it is necessary that the unique lattice constants of the insulating material layer 2, the mother substrate 1 and the buffer layer 3 are close to each other. It is estimated that the layer thickness of each layer 2 and 3 has an optimum value, but experimentally, each layer may have a thickness of several hundred Å. Further, according to the above description, it can be said that the thickness is preferably changed according to the lattice mismatch amount. Alternatively, the insulating layer 4 may be formed in an island shape or a stripe shape on the mother substrate 1, and the active epi layer 5 may be formed thereon.

半導体基板の基礎的な原子モデルを第2図に示す。図中
の○印は原子配置を凝視的に示してある。エピ成長時に
は、先ず母基板1の界面6直下の母基板1を構成する原
子1aに対応して、絶縁材層2の原子2aがヘテロエピ成長
し始める。第1層の原子2aは、格子定数が多少異なって
も、歪エネルギーを内在した形で1対1に対応して形成
されると一般に考えられている。次の原子層もほぼこれ
に対応して形成されてゆくが、一定の厚さまで成長する
と、蓄積されたエネルギーが限界値を越えて欠陥7を形
成し、歪を緩和する。第2図では、絶縁材層2の格子定
数が母基板1の格子定数より10%程度大きいと仮定して
いる。本実施例では、この欠陥7が発生しない厚さ(材
料および組み合わせ、熱条件で定まる)で、第3図のよ
うに応力緩和のために緩衝層3を形成する。この時、緩
衝層3の第1層原子3aの配置によって、たとえ欠陥7が
形成されていても、大きく成長していない限り、原子3a
との結合によって、矢印8のように原子2aが移動し、後
に空孔を残す。したがって、エピ成長は欠陥なしに成長
を続ける。このまま成長を続けると、今度は逆に、余分
の原子が1個入り込む形になる。従って、この時は、格
子定数の大きな絶縁材層2を形成して、この欠陥形成を
防ぐ。この操作を繰り返すことにより、無欠陥の充分な
厚さの絶縁層4を形成することができる。しかも、この
表面の実質の格子は、母基板1のそれに一致している。
従って、この上にさらに活性エピ層5をエピ成長させる
ことは、あたかも、絶縁層4がなく、直接に母基板1上
にエピ成長するのと同等であり、良好なエピ膜を形成で
きることになる。
A basic atomic model of a semiconductor substrate is shown in FIG. The circles in the figure show the atomic arrangement in a staring manner. At the time of epitaxial growth, first, atoms 2a of the insulating material layer 2 start heteroepitaxial growth corresponding to the atoms 1a forming the mother substrate 1 immediately below the interface 6 of the mother substrate 1. It is generally considered that the atoms 2a of the first layer are formed in a one-to-one correspondence with the strain energy being inherent even if the lattice constants are slightly different. The next atomic layer is also formed correspondingly, but when it grows to a certain thickness, the accumulated energy exceeds the limit value to form the defect 7 and relax the strain. In FIG. 2, it is assumed that the lattice constant of the insulating material layer 2 is about 10% larger than that of the mother substrate 1. In the present embodiment, the buffer layer 3 is formed for stress relaxation as shown in FIG. 3 with a thickness (determined by the material, combination, and thermal conditions) at which this defect 7 does not occur. At this time, due to the arrangement of the atoms 3a in the first layer of the buffer layer 3, even if the defects 7 are formed, the atoms 3a are not grown unless they grow large.
By the bond with, the atom 2a moves as shown by the arrow 8 and leaves a vacancy behind. Therefore, epi growth continues to grow without defects. Continuing to grow in this way, on the contrary, one extra atom enters. Therefore, at this time, the insulating material layer 2 having a large lattice constant is formed to prevent the defect formation. By repeating this operation, the defect-free insulating layer 4 having a sufficient thickness can be formed. Moreover, the substantial lattice of this surface matches that of the mother substrate 1.
Therefore, the further epitaxial growth of the active epi layer 5 thereon is equivalent to the direct epitaxial growth on the mother substrate 1 without the insulating layer 4, and a good epi film can be formed. .

次に、具体的実施例を説明する。イオン化型分子線エピ
装置を用いて、他と比較し易い例として、母基板1とし
てSi、絶縁材層2としてAl2O3、活性エピ層5および緩
衝層3としてやはりSiをエピ成長した例を以下に詳述す
る。Si源として、水冷E−gunを用い、またAl源として
同じくE−gunを用い、O2ガスを高速のオン・オフチェ
ックバルブを通してバリアブルリークバルブから微小量
導入し、Al分子線と混合すると同時に、イオンシャワー
を浴びせ、イオン化せしめた。SiおよびAl2O3源には各
々シャッターが取り付けられている。先ず(111)Si基
板を洗浄した後、上記分子線エピ装置中に充填し、エピ
成長室内にて、800℃に加熱しながら、0.6Å/Sという遅
い速度でSi分子線を照射し、表面クリーニングを行っ
た。次に成長速度を約4Å/Sに上昇せしめると同時に、
基板の温度を700℃に低下せしめた。この間にSi層が約2
00Å形成される。シャッターによりSi分子線を止め、チ
ェックバルブとAlのシャッターとを開け、Al、Oおよび
その化合物より成るイオン化ビームを照射せしめた。形
成速度は約2Å/Sである。このシャッターの開閉によ
り、交互に層を形成した後、最終的に活性エピ層5とし
てSi層を厚さ1μm形成した。Al2O3層およびその間に
介在せしめるSi層を各々計約0.3μm形成した。絶縁層
4の層厚は0.6μmである。なお、絶縁材層2について
は、RHEEDにより、Al2O3であることを確認した。
Next, specific examples will be described. An example in which Si is used as the mother substrate 1, Al 2 O 3 is used as the insulating material layer 2, and Si is also used as the active epi layer 5 and the buffer layer 3 by epi growth using an ionization type molecular beam epitaxy device as an example that is easy to compare with others. Will be described in detail below. Using a water-cooled E-gun as the Si source and the same E-gun as the Al source, a minute amount of O 2 gas was introduced from the variable leak valve through a high-speed on / off check valve and mixed with the Al molecular beam. , I took an ion shower and made it ionize. Shutters are attached to the Si and Al 2 O 3 sources, respectively. First, after cleaning the (111) Si substrate, it was filled in the above-mentioned molecular beam epitaxy apparatus and irradiated with Si molecular beam at a slow rate of 0.6Å / S in the epi growth chamber while being heated to 800 ° C. It was cleaned. Next, while increasing the growth rate to about 4Å / S,
The substrate temperature was lowered to 700 ° C. During this time, the Si layer is about 2
00Å formed. The Si molecular beam was stopped by the shutter, the check valve and the Al shutter were opened, and the ionized beam composed of Al, O and its compound was irradiated. The formation speed is about 2Å / S. By opening and closing this shutter, layers were alternately formed, and finally a Si layer having a thickness of 1 μm was formed as the active epi layer 5. An Al 2 O 3 layer and a Si layer interposed between them were formed to a total thickness of about 0.3 μm. The layer thickness of the insulating layer 4 is 0.6 μm. The insulating material layer 2 was confirmed to be Al 2 O 3 by RHEED.

以上の工程により、Al2O3層からなる絶縁材層2とSi層
からなる緩衝層3との厚さを下記第1表に示すように種
々に変えてエピ成長を行った。得られた試料表面をSecc
o液でエッチングし、欠陥密度を計測した。なおRHEEDに
よる解析では、全ての試料は明確な(111)像を示し、
良好なエピ膜が成長していることを示していた。
Through the above steps, epi-growth was performed while changing the thicknesses of the insulating material layer 2 made of the Al 2 O 3 layer and the buffer layer 3 made of the Si layer in various ways as shown in Table 1 below. Secc the obtained sample surface.
The solution was etched with a liquid and the defect density was measured. In addition, in the analysis by RHEED, all samples show clear (111) images,
It showed that a good epi film was growing.

上記第1表のNo.1,2の試料のように、緩衝層3が全くな
い場合には、極端に欠陥密度が大きい。ところが本発明
におけるように、緩衝層3を1〜2層挿入するだけで、
No.3,4の試料のように、欠陥密度が3〜4桁と大幅に減
少する。さらに欠陥の原因となる絶縁材層2の厚みを薄
くし、緩衝層3も薄く、かつ多数挿入することによっ
て、さらに欠陥密度が低下してゆき、絶縁材層2を300
Å以下、緩衝層3を350Å以下の厚みとすると、欠陥密
度は102/cm2より小さくなる。102/cm2以下の欠陥密度
は、Si基板上に直接エピ成長したのと同じである。絶縁
材層2の総厚は、0.3μmと同じであるに拘らず、薄く
分割することによって欠陥が大幅に減少しており、本発
明の効果が顕著に出ている。
When the buffer layer 3 is not provided at all like the samples No. 1 and 2 in Table 1 above, the defect density is extremely high. However, as in the present invention, by inserting only one or two buffer layers 3,
Like the samples of Nos. 3 and 4, the defect density is significantly reduced to 3 to 4 digits. By further reducing the thickness of the insulating material layer 2 which causes defects and thinning the buffer layer 3 and inserting a large number thereof, the defect density is further reduced, and the insulating material layer 2 is reduced to 300%.
If the buffer layer 3 has a thickness of Å or less and a thickness of 350 Å or less, the defect density becomes smaller than 10 2 / cm 2 . 10 2 / cm 2 or less of the defect density is the same as that directly epitaxially grown on a Si substrate. Although the total thickness of the insulating material layer 2 is the same as 0.3 μm, defects are significantly reduced by dividing the insulating material layer 2 into thin pieces, and the effect of the present invention is remarkable.

次に、(111)Si面上に0.1μm幅のライン/スペースの
酸化膜のマスクを形成して、上述のような実験を繰り返
し行なった。その結果を下記第2表に示す。上記第1表
に比べて、さらに1桁程度欠陥密度が低減されており、
やはり本発明の効果が確認された。
Next, a 0.1 μm-wide line / space oxide film mask was formed on the (111) Si surface, and the above experiment was repeated. The results are shown in Table 2 below. Compared with the above Table 1, the defect density is reduced by about one digit,
After all, the effect of the present invention was confirmed.

なお、以上の説明から明らかなように、また実験結果を
合わせて考察することにより、本発明は、SiとAl2O3
の組合せのみならず、他のエピ成長が可能な材料の組み
合せに適用できることは明らかである。
As is clear from the above description, and by considering the experimental results together, the present invention is applicable not only to the combination of Si and Al 2 O 3 but also to other combinations of materials capable of epitaxial growth. Clearly applicable.

発明の効果 以上述べたごとく本発明によれば、格子定数の違いによ
る影響を少なくできるので、欠陥の発生が少なくなって
エピ成長を殆んど欠陥がない状態で続けることができ、
活性エピ層は、あたかも母基板上に直接にエピ成長する
場合と同等な良好なエピ膜として形成でき、かつエピ成
長のみの工程なので工程数も少なく済む。これにより、
欠陥密度の大幅に低減されたSOI基板を得ることがで
き、この基板は、高速・高集積の半導体装置への応用が
期待される。
Effects of the Invention As described above, according to the present invention, since the influence of the difference in lattice constant can be reduced, the number of defects can be reduced and the epi growth can be continued with almost no defects.
The active epi layer can be formed as a good epi film equivalent to that obtained by directly performing epi growth on the mother substrate, and the number of processes can be reduced because it is a process of epi growth only. This allows
It is possible to obtain an SOI substrate with a significantly reduced defect density, and this substrate is expected to be applied to high-speed and highly integrated semiconductor devices.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例における半導体基板の概略断面
図、第2図は結晶欠陥の発生の説明図、第3図は結晶欠
陥の発生を解消する説明図である。 1……母基板、2……絶縁材層、3……緩衝層、4……
絶縁層、5……活性エピ層。
FIG. 1 is a schematic cross-sectional view of a semiconductor substrate according to an embodiment of the present invention, FIG. 2 is an explanatory view of generation of crystal defects, and FIG. 3 is an explanatory view for eliminating generation of crystal defects. 1 ... Mother substrate, 2 ... Insulating material layer, 3 ... Buffer layer, 4 ...
Insulating layer, 5 ... Active epi layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松尾 直人 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 特開 昭55−38020(JP,A) 特開 昭53−17069(JP,A) 特開 昭59−75620(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Naoto Matsuo 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) Reference JP-A-55-38020 (JP, A) JP-A-53-17069 (JP, A) JP-A-59-75620 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】シリコン母基板上に、300Å以下の厚さのA
l2O3層と、前記母基板と同じ材質で350Å以下の厚さの
シリコン緩衝層とが交互に多層形成された絶縁層をヘテ
ロエピ成長により形成し、このヘテロエピ絶縁層上に活
性シリコンエピ層を形成することを特徴とする半導体基
板の製造方法。
1. A 300 Å or less thick A on a silicon mother substrate
An insulating layer in which an l 2 O 3 layer and a silicon buffer layer having the same material as the mother substrate and a thickness of 350 Å or less are alternately formed is formed by heteroepitaxial growth, and an active silicon epilayer is formed on the heteroepitaxial insulating layer. Forming a semiconductor substrate.
【請求項2】絶縁層および活性エピ層を、母基板上に島
状あるいは縞状にヘテロエピ成長させた特許請求の範囲
第1項記載の半導体基板の製造方法。
2. The method for manufacturing a semiconductor substrate according to claim 1, wherein the insulating layer and the active epi layer are heteroepitaxially grown in an island shape or a stripe shape on a mother substrate.
JP14890385A 1985-07-05 1985-07-05 Method for manufacturing semiconductor substrate Expired - Lifetime JPH0782995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14890385A JPH0782995B2 (en) 1985-07-05 1985-07-05 Method for manufacturing semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14890385A JPH0782995B2 (en) 1985-07-05 1985-07-05 Method for manufacturing semiconductor substrate

Publications (2)

Publication Number Publication Date
JPS629623A JPS629623A (en) 1987-01-17
JPH0782995B2 true JPH0782995B2 (en) 1995-09-06

Family

ID=15463244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14890385A Expired - Lifetime JPH0782995B2 (en) 1985-07-05 1985-07-05 Method for manufacturing semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH0782995B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2828152B2 (en) * 1991-08-13 1998-11-25 富士通 株式会社 Method of forming thin film, multilayer structure film, and method of forming silicon thin film transistor
US5480818A (en) * 1992-02-10 1996-01-02 Fujitsu Limited Method for forming a film and method for manufacturing a thin film transistor

Also Published As

Publication number Publication date
JPS629623A (en) 1987-01-17

Similar Documents

Publication Publication Date Title
JP4446424B2 (en) Method for manufacturing relaxed SiGe substrate
US4177084A (en) Method for producing a low defect layer of silicon-on-sapphire wafer
US7666799B2 (en) Epitaxial growth of relaxed silicon germanium layers
JP5693497B2 (en) Semiconductor wafer and manufacturing method thereof
CN101101915A (en) Method for manufacturing silicon-germanium-on-insulator substrate material and the substrate
JP2005516395A (en) Strain-relieved SiGe-on-insulator and method for manufacturing the same
CN1799136A (en) Method for forming a SGOI by annealing near the sige alloy melting point
US4885052A (en) Zone-melting recrystallization process
US5453153A (en) Zone-melting recrystallization process
US3796597A (en) Method of producing semiconducting monocrystalline silicon on spinel substrates
EP0449589A1 (en) Method of producing a SOI structure
EP1553624A1 (en) Silicon-Germanium SOI structure and method for production thereof
JPH0782995B2 (en) Method for manufacturing semiconductor substrate
JPS5918196A (en) Method for manufacturing single crystal thin film
JPS5945996A (en) Vapor growth of semiconductor
JPS63291897A (en) Method for growing single crystal membrane
JPS60234312A (en) Formation of soi film
JPS6041032B2 (en) Single crystal formation method on amorphous film
JP4649918B2 (en) Method for manufacturing bonded wafer
JPH0645249A (en) Growth method of gaas layer
JP2870061B2 (en) Super lattice structure element
JPH04335519A (en) Manufacture of semiconductor crystal
JP2737152B2 (en) SOI forming method
JPS6117491A (en) Production of thin film of single crystal
JPS59204228A (en) Manufacture of semiconductor substrate