JPH0782082A - Part coated with ultra-hard film and its production - Google Patents
Part coated with ultra-hard film and its productionInfo
- Publication number
- JPH0782082A JPH0782082A JP5254954A JP25495493A JPH0782082A JP H0782082 A JPH0782082 A JP H0782082A JP 5254954 A JP5254954 A JP 5254954A JP 25495493 A JP25495493 A JP 25495493A JP H0782082 A JPH0782082 A JP H0782082A
- Authority
- JP
- Japan
- Prior art keywords
- film
- ultra
- diamond
- substrate
- hard film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 239000000463 material Substances 0.000 claims abstract description 33
- 229910003460 diamond Inorganic materials 0.000 claims abstract description 31
- 239000010432 diamond Substances 0.000 claims abstract description 30
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 24
- 150000001875 compounds Chemical class 0.000 claims abstract description 10
- 239000012808 vapor phase Substances 0.000 claims abstract description 8
- 239000012071 phase Substances 0.000 claims description 8
- 238000001308 synthesis method Methods 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 239000011195 cermet Substances 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000007654 immersion Methods 0.000 claims 1
- 238000005520 cutting process Methods 0.000 abstract description 34
- 230000015572 biosynthetic process Effects 0.000 abstract description 15
- 230000003746 surface roughness Effects 0.000 abstract description 4
- 238000003786 synthesis reaction Methods 0.000 abstract description 2
- 239000007788 liquid Substances 0.000 abstract 1
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- 238000005498 polishing Methods 0.000 description 11
- 239000011734 sodium Substances 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 239000010410 layer Substances 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 6
- 229910017052 cobalt Inorganic materials 0.000 description 6
- 239000010941 cobalt Substances 0.000 description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 150000001639 boron compounds Chemical class 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910021538 borax Inorganic materials 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000009776 industrial production Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000009832 plasma treatment Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000004328 sodium tetraborate Substances 0.000 description 3
- 235000010339 sodium tetraborate Nutrition 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910000676 Si alloy Inorganic materials 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000005121 nitriding Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000006748 scratching Methods 0.000 description 2
- 230000002393 scratching effect Effects 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910020808 NaBF Inorganic materials 0.000 description 1
- 229910002796 Si–Al Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 1
- -1 cemented carbide Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 238000004050 hot filament vapor deposition Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Carbon And Carbon Compounds (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、切削・耐磨工具、耐磨
部品、光学部品、電子材料として用いられる超硬質膜被
覆部材並びにその製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cutting and abrasion resistant tool, an abrasion resistant component, an optical component, an ultra hard film coated member used as an electronic material, and a method for producing the same.
【0002】[0002]
【従来の技術】気相合成法で超硬合金へダイヤモンドを
被覆するとき、結合相であるコバルト上で無定形炭素が
生成されやすく、ダイヤモンドの核生成が阻害される。
その解決策として、酸によるエッチング処理で、基材表
面より一定の深さでコバルトを除去すると、ダイヤモン
ド被膜を生成できること、およびダイヤモンド膜と基材
との付着強度を改善しうる事が開示されており、その代
表例として特公昭63-20911号公報および特開昭62-67174
号公報がある。2. Description of the Related Art When a diamond is coated on a cemented carbide by a vapor phase synthesis method, amorphous carbon is likely to be produced on cobalt as a binder phase, which hinders the nucleation of diamond.
As a solution, it is disclosed that by removing cobalt at a constant depth from the surface of the base material by etching treatment with an acid, a diamond film can be formed and that the adhesion strength between the diamond film and the base material can be improved. As typical examples thereof, Japanese Patent Publication No. 63-20911 and Japanese Patent Laid-Open No. 62-67174.
There is a gazette.
【0003】さらに、特開昭 63-100182号公報では結合
相となるコバルトを1〜4重量%に減らした超硬合金が
ダイヤモンド被覆基材として適していることが開示され
ているが、この低コバルト超硬合金でも酸によるエッチ
ングでコバルトを除去することが不可欠とされている。
また、結合相の除去法として、酸による方法以外に弗化
炭素プラズマ中でドライエッチングする方法、水素、ア
ルゴンガスなどでスパッタエッチングする方法が特開昭
62-67174号に開示されている。Further, Japanese Patent Laid-Open No. 63-100182 discloses that a cemented carbide containing 1 to 4% by weight of cobalt serving as a binder phase is suitable as a diamond-coated substrate. Even in the case of cobalt cemented carbide, it is essential to remove cobalt by acid etching.
In addition to the acid method, a method of dry etching in a fluorocarbon plasma and a method of sputter etching with hydrogen, argon gas, etc. are also available as methods for removing the binder phase.
No. 62-67174.
【0004】他方上記の様な結合相を除去することなく
付着強度を高める方法として、中間層を形成する方法が
提案されている。その例として超硬合金等の基材の表面
にIVa, Va, VIa族元素の炭化物、窒化物、ホウ化物等あ
るいはこれらの化合物、混合物からなる層を形成し、そ
の上にダイヤモンド膜を設ける特開昭 58-126972号公
報、特開昭 59-182300号公報、特開昭 63-1280号公報な
どがある。On the other hand, a method of forming an intermediate layer has been proposed as a method of increasing the adhesion strength without removing the binder phase as described above. As an example, a layer made of carbides, nitrides, borides, etc. of IVa, Va, and VIa group elements or their compounds or mixtures is formed on the surface of a base material such as cemented carbide, and a diamond film is formed on the layer. JP-A-58-126972, JP-A-59-182300 and JP-A-63-1280 are available.
【0005】また超硬合金等の基材表面にダイヤモンド
膜を気相合成法で形成するに当り、気相合成中にB2H6等
のBを存在させて、形成ダイヤモンド膜中にBを含有さ
す特開昭 61-163275号公報、同様にB2H6等の存在下で気
相合成法でBおよびまたはホウ素化合物とダイヤモンド
及びまたはダイヤモンド状炭素との中間層を形成せしめ
た上に、ダイヤモンド膜を形成さす特開昭 62-133067号
公報も見られる。Further, in forming a diamond film on the surface of a substrate such as cemented carbide by a vapor phase synthesis method, B such as B 2 H 6 is present during the vapor phase synthesis so that B is formed in the formed diamond film. Japanese Patent Laid-Open No. 163275/1986, similarly, after forming an intermediate layer of B and / or a boron compound and diamond and / or diamond-like carbon by a vapor phase synthesis method similarly in the presence of B 2 H 6 and the like, Japanese Unexamined Patent Publication No. 62-133067 for forming a diamond film can also be seen.
【0006】別に、超硬合金等の基材表面をB2H6等の揮
発性ホウ素化合物の存在下でプラズマ処理して、ダイヤ
モンド膜との付着強度を改善しようとする提案特開平2-
101167号公報がある。この提案では、上記プラズマ処理
による付着性向上の原因は明かではないが、基材が含有
するコバルトのホウ素化合物化が起きたり、あるいはB
の膜が形成されたりするためではないかと推測される、
と記載されている。また超硬質膜の膜厚は、特開昭62-4
7480号で 0.1〜20μmの厚さであることを特徴としてお
り、また特開平1-242401号では20μmを超えると膜中の
熱応力により膜が剥離するので好ましくないと記載され
ている。Separately, it is proposed to improve the adhesion strength to a diamond film by plasma-treating the surface of a base material such as cemented carbide in the presence of a volatile boron compound such as B 2 H 6.
There is 101167 publication. In this proposal, although the cause of the improvement in adhesion by the plasma treatment is not clear, the cobalt contained in the base material may be converted to a boron compound, or
It is presumed that it is because the film of is formed,
Is described. Further, the film thickness of the ultra-hard film is as described in JP-A-62-4
No. 7480 is characterized by a thickness of 0.1 to 20 .mu.m, and JP-A No. 1-242401 describes that the thickness of 20 .mu.m is not preferable because the film peels off due to thermal stress in the film.
【0007】[0007]
【本発明が解決しようとする課題】上述の様にダイヤモ
ンド膜の付着強度の向上については、多くの提案が見ら
れるが、未だ十分な品質を備え、工業生産にも適する方
法は見い出されておらず、その確立が求められている。
即ち酸でエッチング処理したあと、超硬合金に被覆した
超硬質膜の付着力は必ずしも十分でなく、その切削工具
としての用途は、Al−12wt%Si以下の合金、グラファイ
ト、炭素繊維強化プラスティック、未焼結セラミック成
形体などに限定され、Al−18wt%Si以上の合金の断続切
削や、長時間にわたる高送りおよび深切り込みなどの重
切削には耐えられない。さらに、酸でエッチングした超
硬合金上の被膜の厚さは剥離対策上 0.1〜5μmにしか
できないためたとえダイヤモンド膜の剥離が起こらなく
ても、工具寿命を判定する逃げ面摩耗(Vb)量が所定量
に達する前に基材が露出してしまい、おのずと工具寿命
に限界がある。As described above, many proposals have been made for improving the adhesion strength of diamond films, but a method having sufficient quality and suitable for industrial production has not yet been found. First, the establishment is required.
That is, after the acid etching treatment, the adhesion of the superhard film coated on the cemented carbide is not always sufficient, the application as a cutting tool, Al-12wt% Si or less alloy, graphite, carbon fiber reinforced plastic, It is limited to non-sintered ceramic compacts, etc., and cannot withstand intermittent cutting of alloys of Al-18wt% Si or more and heavy cutting such as high feed and deep cutting for a long time. Furthermore, the thickness of the coating film on the cemented carbide that has been etched with acid can only be 0.1 to 5 μm as a measure against peeling, so even if peeling of the diamond film does not occur, the flank wear (Vb) amount for judging the tool life is The base material is exposed before reaching the predetermined amount, which naturally limits the tool life.
【0008】一方、中間層を設ける方法は製造工程が煩
雑であるという問題があるうえに中間層とダイヤモンド
膜との付着力が必ずしも実用のレベルに達しているとは
言いがたい。また、揮発性ホウ素化合物の存在下でのプ
ラズマ処理法は、有毒ガスであるため安全性に配慮した
特別な装置を必要とするうえ、基体とダイヤモンド膜の
付着力は切削に耐えるだけの十分な強度を有していると
は云い難い。本発明は、特別な装置を使用することなく
高い付着力を有する超硬質膜被覆部材を安定して提供す
ると共に、厚い膜を被覆することにより、さらに寿命の
長い超硬質膜被覆部材並びにその製造方法を提供し、上
記課題を解決しようとするものである。On the other hand, the method of providing the intermediate layer has a problem that the manufacturing process is complicated, and it is hard to say that the adhesive force between the intermediate layer and the diamond film has reached a practical level. Further, the plasma treatment method in the presence of a volatile boron compound requires a special device considering safety because it is a toxic gas, and the adhesion force between the substrate and the diamond film is sufficient to withstand cutting. It is hard to say that it has strength. INDUSTRIAL APPLICABILITY The present invention stably provides an ultra-hard film-coated member having high adhesion without using a special device, and by coating a thick film, an ultra-hard film-coated member having a longer life and its production. A method is provided to solve the above problems.
【0009】[0009]
【課題を解決するための手段】発明者らは、課題解決に
当り、従来の結合相のエッチング・除去や中間層形成の
方法をとらず、また揮発性ホウ素化合物中でのプラズマ
処理等の雰囲気中での高温処理にとらわれず、サーメッ
トに超硬質膜を被覆する方法について探索研究を重ねた
結果、品質の揃った工業生産に適する方法を把握するこ
とができた。即ちサーメット基材表面をNの様なVb族元
素の1種以上またはその化合物を含む雰囲気中で熱処理
するか、または、Ia, Vb族元素の1種以上またはその化
合物の溶液または融液に浸漬処理し、該処理面上に気相
合成法によりダイヤモンド及びまたはダイヤモンド状炭
素よりなる超硬質膜を形成すると、超硬質膜の付着強度
が飛躍的に向上し、従来不可能であった20μm超の膜を
被覆でき、しかもその成膜面を研磨できること、研磨す
ることにより切削性能をさらに向上させうることを確認
した。この確認はA390(Al−18wt%Si)の切削テストに
より行ったものであるが、以下実施例によりその内容を
詳述する。[Means for Solving the Problems] In solving the problems, the inventors did not adopt the conventional methods of etching / removing the binder phase and forming an intermediate layer, and did not use an atmosphere such as plasma treatment in a volatile boron compound. As a result of repeated exploratory research on a method of coating a cermet with an ultra-hard film regardless of the high-temperature treatment, it was possible to identify a method suitable for industrial production with uniform quality. That is, the surface of the cermet substrate is heat-treated in an atmosphere containing at least one Vb group element such as N or a compound thereof, or immersed in a solution or melt of at least one Ia or Vb group element or a compound thereof. When an ultra-hard film made of diamond and / or diamond-like carbon is formed on the treated surface by a vapor phase synthesis method, the adhesion strength of the ultra-hard film is remarkably improved, and the ultra-hard film having a thickness of 20 μm or more It was confirmed that the film can be coated and that the film-forming surface can be polished, and that the polishing performance can be further improved by polishing. This confirmation was carried out by a cutting test of A390 (Al-18 wt% Si), and the contents will be described in detail in the following examples.
【0010】実施例においては、何れも従来技術との比
較より、WC−Co系に代表される超硬合金を基材とするも
のについて示したが、炭窒化チタンと結合相金属とより
なる他のサーメットを基材とするものについても実施で
きることは云う迄もない。また実施例に示した実施工程
において、処理前の基材表面に傷つけ処理を行う等、既
知の或は新しい工程を付加しても勿論差し支えない。In each of the examples, a base material made of cemented carbide represented by WC--Co is shown in comparison with the prior art, but it is made of titanium carbonitride and a binder phase metal. It goes without saying that the present invention can also be applied to those using cermet as a base material. In addition, it is of course possible to add a known or new process such as a scratching treatment to the surface of the base material before the treatment in the process shown in the examples.
【0011】[0011]
(実施例1) 1.基材WC−6%Co超硬合金チップ 2.窒化処理(N2+Ar) マイクロ波プラズマCVD装置中に基材を装入し、装置
内を、圧力25Torrで、N2とArガスが夫々1/2容量雰囲
気に保たれる様、両ガスを供給しつつ 800℃で2時間熱
処理して、基材表面を窒化させる。(Example 1) 1. Base material WC-6% Co cemented carbide chip 2. Nitriding treatment (N 2 + Ar) The substrate was loaded into a microwave plasma CVD apparatus, and both gases were kept inside the apparatus at a pressure of 25 Torr so that N 2 and Ar gases were kept in a 1/2 volume atmosphere. While being supplied, heat treatment is performed at 800 ° C for 2 hours to nitride the substrate surface.
【0012】3.成膜 上記処理後、供給ガスを切換えて同装置内で同基材表面
上に成膜を施した。成膜条件は圧力 100Torr、ガス組成
H2−2% CH4、基材温度 900℃、成膜時間10時間(略1
μm/H)で、厚さ15μmのダイヤモンド膜を得ること
が出来た。3. Film formation After the above treatment, the supply gas was changed to form a film on the surface of the substrate in the same apparatus. Film formation conditions are pressure 100 Torr, gas composition
H 2 -2% CH 4 , substrate temperature 900 ° C, film formation time 10 hours (approximately 1
It was possible to obtain a diamond film having a thickness of 15 μm.
【0013】4.仕上げ加工 上記成膜を施したチップの逃げ面とすくい面を研磨して
切刃を仕上げた。研磨後の膜厚は10μmであった。4. Finishing processing The flank and rake surface of the chip on which the above-mentioned film was formed were polished to finish the cutting edge. The film thickness after polishing was 10 μm.
【0014】5.切削試験 前記成膜を施したチップの仕上げ加工を施したものと施
さないもの、及び比較例として市販のダイヤモンド膜被
覆超硬チップ(膜厚5μm、仕上げなし)の切削試験を
行った。切削条件は下記の通りで、試験結果は図1に示
す様に逃げ面摩耗が少なく、切削寿命は著しく長くな
る。 切削装置 森精機製旋盤 SL−15型 被削材 A390 (Al−18wt%Si合金) 切削速度 800m/min 切り込み 0.5mm 送り 0.1mm/rev 切削方法 湿式連続切削(水溶性エマルジョン)5. Cutting Test A cutting test was performed on the film-formed chips with and without finishing, and as a comparative example, commercially available diamond film-coated carbide chips (film thickness 5 μm, unfinished). The cutting conditions are as follows, and the test results show that the flank wear is small and the cutting life is significantly extended as shown in FIG. Cutting equipment Mori Seiki lathe SL-15 type Work material A390 (Al-18wt% Si alloy) Cutting speed 800m / min Cutting depth 0.5mm Feed 0.1mm / rev Cutting method Wet continuous cutting (water-soluble emulsion)
【0015】上記窒化処理条件を、雰囲気はN21%、10
%H290〜99%、温度は 600℃、1000℃、保持時間は 0.5
時間、1時間、5時間に替えたものについて夫々実施
し、その実施品に成膜を施したところ順調であった。The above-mentioned nitriding treatment conditions are as follows: the atmosphere is N 2 1%, 10
% H 2 90-99%, temperature 600 ℃, 1000 ℃, holding time 0.5
When the time was changed to 1 hour and 5 hours, the operation was carried out for each of them, and the film was applied to the implemented product, and it was satisfactory.
【0016】また雰囲気中のN2を、同様にVb族元素を含
むNH3, PH3, AsH3に置き換えたものについても試験を行
ったところ、成膜を進めることができた。これは、基材
をVb族元素を含む雰囲気中で熱処理することにより、基
材表面層の結合金属相中にVb族元素が浸透乃至浸入反応
し、ダイヤモンド膜の成膜時結合金属の活性が抑制され
るためと考えられる。Further, when a test was carried out with N 2 in the atmosphere replaced with NH 3 , PH 3 and AsH 3 which also contained a Vb group element, the film formation was able to proceed. This is because when the base material is heat-treated in an atmosphere containing a Vb group element, the Vb group element permeates or penetrates into the bond metal phase of the base material surface layer, and the activity of the bond metal during the formation of the diamond film is increased. It is thought to be suppressed.
【0017】(実施例2) 1.基材 WC-6%Co 超硬合金 2.硼砂処理(Na2 B4 O7 ) 基材を下記組成の950℃に加熱した溶融塩中に3時間
浸漬処理した。加熱温度は850〜1100℃が好まし
いと考えられる。 Na2 B4 O7 Na2 B4 O7 +B4 C 15% NaBF4 +5%B4 C+ 80%NaCl(Embodiment 2) 1. Base material WC-6% Co cemented carbide 2. Borax treatment (Na 2 B 4 O 7 ) The substrate was immersed in a molten salt having the following composition heated to 950 ° C. for 3 hours. It is considered that the heating temperature is preferably 850 to 1100 ° C. Na 2 B 4 O 7 Na 2 B 4 O 7 + B 4 C 15% NaBF 4 + 5% B 4 C + 80% NaCl
【0018】3.成膜 実施例1と同条件で付着力の良いダイヤモンド膜が得ら
れた。3. Film formation Under the same conditions as in Example 1, a diamond film with good adhesion was obtained.
【0019】(実施例3) 1.基材 WC-6%Co 超硬合金 2.硼砂電解処理(Na2 B4 O7 ) 基材を下記組成の950℃に加熱した溶融塩中に3時間
浸漬処理し、基材を陰極、白金を陽極とし、0.1〜1
A/cm2 の電流を通し1時間電解した。加熱温度は8
50〜1100℃が好ましく、陽極は黒鉛に替えること
もできる。 Na2 B4 O7 Na2 B4 O7 +NaCl+B2 O3 HBO2 +NaF(Example 3) 1. Base material WC-6% Co cemented carbide 2. Borax electrolysis treatment (Na 2 B 4 O 7 ) A base material was immersed in a molten salt having the following composition heated to 950 ° C. for 3 hours, and the base material was used as a cathode and platinum was used as an anode.
A current of A / cm 2 was passed to electrolyze for 1 hour. Heating temperature is 8
The temperature is preferably 50 to 1100 ° C, and the anode may be replaced with graphite. Na 2 B 4 O 7 Na 2 B 4 O 7 + NaCl + B 2 O 3 HBO 2 + NaF
【0020】尚、溶融硼砂は粘度が高いため、850℃
では処理が難しいのでこれより高い温度で行う。また、
電解に当たっては陽極と対向する陰極の裏側は陰になっ
て処理が進み難いので複数の陽極を用いるか、基材を回
転させる。Since molten borax has a high viscosity, 850 ° C.
Since it is difficult to process, the temperature is higher than this. Also,
In electrolysis, the back side of the cathode facing the anode is shaded and the process is difficult to proceed. Therefore, use a plurality of anodes or rotate the substrate.
【0021】3.成膜 実施例1と同条件で付着力の良いダイヤモンド膜が得ら
れた。Na2 B4 O7溶融塩中で電解処理した基材に成
膜したもののダイヤモンド膜面から深さ方向に10数μ
mまでのSIMSによるプロファイルを図2に示す。基
材表面はCoが低濃度となり、Na,Bが高濃度となっ
ている。Na,Bは基材内部まで入っており、これがW
−Na−B−Cの化合物などの形で成膜に寄与している
と考えられる。3. Film formation Under the same conditions as in Example 1, a diamond film with good adhesion was obtained. A film formed on a substrate electrolyzed in a molten salt of Na 2 B 4 O 7 but having a thickness of 10 several μm from the diamond film surface in the depth direction.
The SIMS profile up to m is shown in FIG. Co has a low concentration and Na and B have a high concentration on the surface of the base material. Na and B are contained inside the base material, and this is W
It is considered that they contribute to the film formation in the form of a compound such as —Na—B—C.
【0022】(実施例4) 1.基材 WC−6%Co超硬合金チップ 2.水酸化ナトリウム処理(NaOH) アルミナ製容器中にNaOHの濃度を夫々1,3,5規定と
した溶液を入れ、これに基材を入れる。この際溶液の温
度は各規定液について25℃,50℃,90℃の3種とし、夫
々1時間浸漬処理した後水洗した。 3.成膜 2の処理基材を熱フィラメントCVD装置に装入し、圧
力 100Torr、ガス組成H2−1%CH4 、基材温度 900℃
で、成膜時間 240分と 600分の成膜品を得た。(Embodiment 4) 1. Base material WC-6% Co cemented carbide chip 2. Sodium hydroxide treatment (NaOH) A solution containing NaOH at a concentration of 1, 3 or 5N is placed in an alumina container, and the base material is placed therein. At this time, the temperature of the solution was three kinds of 25 ° C., 50 ° C., and 90 ° C. for each standard solution, and each of them was immersed for 1 hour and washed with water. 3. The treated base material of the film formation 2 is charged into the hot filament CVD apparatus, the pressure is 100 Torr, the gas composition is H 2 -1% CH 4 , the base material temperature is 900 ° C.
Thus, film-forming products with film-forming times of 240 minutes and 600 minutes were obtained.
【0023】図3は、基材を50℃のNaOH、3規定溶液に
1時間浸漬処理を行った後 240分成膜したもののダイヤ
モンド表面から、深さ方向に10数μmまでのSIMS
によるデプスプロファイルを示す。図3より、基材表面
は、Coが低濃度となり、反対にNaが高濃度となり、この
Naは基材内部まで入っていっていることが判る。これは
浸漬処理によりCo−Naが析出し、またW−Na−Cの化合
物の生成も考えられ、これらの反応がダイヤモンドの成
膜に寄与しているものと思われる。FIG. 3 shows a SIMS of the substrate from the diamond surface to a depth of several tens of μm in the depth direction, which was obtained by immersing the substrate in 50 ° C. NaOH and 3N solution for 1 hour and then forming a film for 240 minutes.
3 shows a depth profile according to FIG. From Fig. 3, the base material surface has a low concentration of Co and, on the contrary, a high concentration of Na.
It can be seen that Na penetrates to the inside of the base material. It is considered that Co-Na is precipitated by the dipping treatment and that a W-Na-C compound is generated, and it is considered that these reactions contribute to the film formation of diamond.
【0024】また浸漬処理の前に、基材表面を 3.0μm
Rmax 程度の研削面にしたもの、0.2μmRmax 程度の
ラップ面としたものについての成膜への影響を調べた
が、研削面にすると膜の付着力が良く有効であった。ラ
ップ加工された基材表面は付着力が小さく、傷つけ処理
等によりある程度以上の表面粗さにしておく必要があ
る。Before the dipping treatment, the surface of the substrate is 3.0 μm.
The effects on the film formation of the ground surface of about Rmax and the lapping surface of about 0.2 μmRmax were examined, and the ground surface showed good adhesive force and was effective. The surface of the lapped base material has a small adhesive force, and it is necessary to make the surface roughness to a certain level or more by a scratching process or the like.
【0025】(実施例5)実施例4の2の水酸化ナトリ
ウム処理のみを次の様に替えて実施した。水酸化カリウ
ム水溶液(KOH)中に基材を浸漬し、50℃で30分間処
理した。結果は実施例4と略同程度の成膜を得ることが
できた。(Embodiment 5) Only the sodium hydroxide treatment of Embodiment 2 No. 2 was changed to the following. The substrate was immersed in an aqueous potassium hydroxide solution (KOH) and treated at 50 ° C for 30 minutes. As a result, it was possible to obtain a film having substantially the same thickness as in Example 4.
【0026】(実施例6)実施例4の2の水酸化ナトリ
ウム処理のみを次の様に替えて実施した。塩化ナトリウ
ム(NaCl)1,水2の水溶液中に、基材を浸漬し、 100
℃で30分間処理した。結果は、実施例4と略同程度の成
膜状態を得ることができた。(Example 6) Only the sodium hydroxide treatment of 2 of Example 4 was changed as follows. Immerse the base material in an aqueous solution of sodium chloride (NaCl) 1 and water 2
It was treated at 30 ° C. for 30 minutes. As a result, it was possible to obtain a film formation state that was substantially the same as in Example 4.
【0027】図4は従来の市販品と実施例品(実施例4
の図3に示す成膜品)との、切削性能の比較を示す図
で、切削による工作物の表面粗さを示している。図にお
いて本発明の成膜品をその儘切刃として用いたものと研
磨して用いたものの切削実験結果で、切削条件は次の通
りである。 切削装置 森精機製旋盤 SL−15型 被削材 A390 (Al−18wt%Si合金) 切削速度 800m/min 切り込み 0.5mm 送り 0.1mm/rev 切削方法 湿式連続切削(水溶性エマルジョン)FIG. 4 shows a conventional commercial product and an example product (Example 4).
FIG. 3 is a diagram showing a comparison of the cutting performance with the film-formed product shown in FIG. 3), and shows the surface roughness of the workpiece by cutting. In the drawing, the cutting conditions are as follows, based on the cutting test results of the film-forming product of the present invention used as the cutting blade and the one used after polishing. Cutting equipment Mori Seiki lathe SL-15 type Work material A390 (Al-18wt% Si alloy) Cutting speed 800m / min Cutting depth 0.5mm Feed 0.1mm / rev Cutting method Wet continuous cutting (water-soluble emulsion)
【0028】尚、上記本発明実施例品の研磨は、在来の
スカイフによる研磨や、ダイヤモンドホイールによる研
削によって行ったもので、この機械的研磨により 0.1μ
mRmax 以下の表面粗さに仕上げることができた。この
機械的研磨により高精度に加工可能であることが超硬質
膜の付着強度の高さを示すもので、これが可能なものは
充分な切削性能を発揮し得ることを確認した。勿論これ
は評価の一方法であるから、本発明の実施に際しては、
切刃等の形成に当り超硬質膜表面を仕上げる方法とし
て、この機械的研磨によることなく、レーザー加工、イ
オン加工或は超音波の付加等、高エネルギーその他の公
知のあるいは、新規な加工法を採用してよいことは云う
までもない。The polishing of the product of the present invention is carried out by conventional skiff polishing or diamond wheel polishing.
It was possible to finish the surface roughness to mRmax or less. It has been confirmed that the mechanical polishing enables high-precision processing, which indicates the high adhesion strength of the ultra-hard film, and the one capable of this can exhibit sufficient cutting performance. Of course, this is one method of evaluation, so in the practice of the present invention,
As a method for finishing the surface of an ultra-hard film when forming a cutting edge, there is no need for mechanical polishing, but laser processing, ion processing, addition of ultrasonic waves, high energy, or other known or new processing method. It goes without saying that you may adopt it.
【0029】本発明により処理した基材は、即ちIa,Vb
族元素の1種以上またはその化合物によって処理された
基材は、その表面上に被覆された超硬質膜を使用により
損耗した時、又は、機械的、高エネルギー加工により、
膜を除去させた後、再度超硬質膜を被覆することができ
る。この再度の超硬質膜の生成に当っては再度の処理は
省略することができる。これは、図2,図3に示される
ように処理に用いた元素が基材内部にまで存在している
為と推測される。Substrates treated according to the present invention are: Ia, Vb
Substrates treated with one or more of the group elements or compounds thereof, when worn by using a super-hard film coated on the surface, or by mechanical, high energy processing,
After removing the film, the ultra-hard film can be coated again. When the ultra-hard film is formed again, the re-treatment can be omitted. It is speculated that this is because the elements used for the treatment are present even inside the substrate as shown in FIGS.
【0030】[0030]
【発明の効果】本発明においては、超硬質膜を形成する
基材表面が予めIa,Vb族元素の1種以上を含む存在下で
処理され、超硬質膜が20μm程度以上の膜厚に被覆する
ことができ、膜表面を機械研磨できる付着強度を有し、
研磨後の膜厚も5μm以上あるので、高Si−Al合金等の
難削材の高精度、長寿命の切削が可能である。According to the present invention, the surface of the base material forming the ultra-hard film is preliminarily treated in the presence of at least one of the elements Ia and Vb, and the ultra-hard film is coated to a thickness of about 20 μm or more. And has an adhesive strength capable of mechanically polishing the film surface,
Since the film thickness after polishing is also 5 μm or more, it is possible to perform highly accurate and long-life cutting of difficult-to-cut materials such as high Si—Al alloys.
【0031】またその製造もIa,Vb族元素の処理は、成
膜に用いられる装置をその儘用いた雰囲気中か、比較的
低温の溶液または融液への浸漬によって行うものである
から、設備、操業共低コストで安全容易で工業生産に適
する。In addition, the production of the Ia and Vb group elements is performed by treating the apparatus used for film formation in the atmosphere in which the apparatus is used, or by immersing it in a solution or a melt at a relatively low temperature. The operation is low cost, safe and easy, and suitable for industrial production.
【図1】実施例1と比較例の切削試験結果を示す図。FIG. 1 is a view showing a cutting test result of Example 1 and a comparative example.
【図2】実施例3における基材表面から10数μm深さま
でのSIMSによるデプスプロファイルを示す図。FIG. 2 is a diagram showing a SIMS depth profile from a substrate surface to a depth of several tens of μm in Example 3.
【図3】実施例4における基材表面から数10μmまで
のSIMSによるデプスプロファイルを示す図。FIG. 3 is a diagram showing a SIMS depth profile up to several tens of μm from the substrate surface in Example 4.
【図4】実施例4と比較例の切削試験結果を示す図。FIG. 4 is a diagram showing cutting test results of Example 4 and a comparative example.
A 実施例における逃げ面、すくい面を研磨したものの
試験結果。 B 実施例における成膜のままのものの試験結果。 C 比較例(従来の成膜したままのもの)の試験結果。A: Test results of the flank and rake surface of the example polished. B Test results of the as-deposited film in Example. C Test results of comparative example (conventional as-formed film).
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C23C 16/26 // B23B 27/14 A 9326−3C (72)発明者 河合 成宜 大阪府堺市鳳北町2丁80番地 大阪ダイヤ モンド工業株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C23C 16/26 // B23B 27/14 A 9326-3C (72) Inventor Nariyoshi Kawai Sakai Osaka Prefecture 2-chome, Hobokucho, Ichi, Osaka Inside Diamond Diamond Co., Ltd.
Claims (3)
その化合物によって処理されたサーメット基材の表面上
に、気相合成法によりダイヤモンド及びまたはダイヤモ
ンド状炭素よりなる超硬質膜を形成してなることを特徴
とする超硬質膜被覆部材。1. An ultra-hard film made of diamond and / or diamond-like carbon is formed on the surface of a cermet substrate which has been previously treated with one or more elements of group Ia or Vb or a compound thereof, by a vapor phase synthesis method. An ultra-hard film-coated member characterized by the following.
たはその化合物の存在する雰囲気中で熱処理した後、該
基材表面に気相合成法によりダイヤモンド及びまたはダ
イヤモンド状膜を形成することを特徴とする超硬質膜被
覆部材の製造方法。2. A cermet substrate is heat-treated in an atmosphere in which one or more Vb group elements or compounds thereof are present, and then a diamond and / or diamond-like film is formed on the surface of the substrate by a vapor phase synthesis method. A method for manufacturing a super-hard film-coated member characterized by the above.
種以上またはその化合物の存在する溶液乃至加熱溶融体
中に浸漬処理した後、該基材表面に気相合成法によりダ
イヤモンド及びまたはダイヤモンド状炭素膜を形成する
ことを特徴とする超硬質膜被覆部材の製造方法。3. A cermet base material comprising a group Ia or Vb element
A superhard film-coated member characterized by forming a diamond and / or a diamond-like carbon film on the surface of the base material by a gas phase synthesis method after immersion treatment in a solution or heating melt containing one or more kinds or compounds thereof. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5254954A JPH0782082A (en) | 1993-09-16 | 1993-09-16 | Part coated with ultra-hard film and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5254954A JPH0782082A (en) | 1993-09-16 | 1993-09-16 | Part coated with ultra-hard film and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0782082A true JPH0782082A (en) | 1995-03-28 |
Family
ID=17272171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5254954A Pending JPH0782082A (en) | 1993-09-16 | 1993-09-16 | Part coated with ultra-hard film and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0782082A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU684243B3 (en) * | 1997-02-28 | 1997-12-04 | Scott Cameron Farrell | Methods of producing pictures |
JP2006138011A (en) * | 2004-10-14 | 2006-06-01 | Sumitomo Electric Ind Ltd | Diamond film-coated member and manufacturing method thereof |
JP2008081847A (en) * | 2007-11-30 | 2008-04-10 | Nippon Itf Kk | Manufacturing method of hard carbon coating member |
-
1993
- 1993-09-16 JP JP5254954A patent/JPH0782082A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU684243B3 (en) * | 1997-02-28 | 1997-12-04 | Scott Cameron Farrell | Methods of producing pictures |
JP2006138011A (en) * | 2004-10-14 | 2006-06-01 | Sumitomo Electric Ind Ltd | Diamond film-coated member and manufacturing method thereof |
JP2008081847A (en) * | 2007-11-30 | 2008-04-10 | Nippon Itf Kk | Manufacturing method of hard carbon coating member |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3504675B2 (en) | Method of coating adherent diamond film on ultra-hard tungsten carbide support | |
US6258237B1 (en) | Electrophoretic diamond coating and compositions for effecting same | |
SE503038C2 (en) | Diamond-coated carbide or ceramic cutting tools | |
WO1991004353A1 (en) | Vapor deposited diamond synthesizing method on electrochemically treated substrate | |
CA2155144C (en) | Diamond-coated composite cutting tool and method of making | |
JP4028891B2 (en) | Multi-component hard layer manufacturing method and composite | |
US5635256A (en) | Method of making a diamond-coated composite body | |
Klages et al. | Diamond coatings and cBN coatings for tools | |
JP2017524543A (en) | Diamond-coated cutting tool and method of manufacturing the same | |
WO1994013852A1 (en) | Superhard film-coated material and method of producing the same | |
JP2590139B2 (en) | Coated cutting tool | |
JPH0782082A (en) | Part coated with ultra-hard film and its production | |
Sheikh-Ahmad et al. | Tool coatings for wood machining: Problems and prospects | |
JPH06312319A (en) | Rotary cutting tool and its manufacture | |
WO1997023662A1 (en) | Diamond coated body and method of its production | |
JP3718876B2 (en) | Ultra-hard film-coated member and manufacturing method thereof | |
JPS6312940B2 (en) | ||
JPH06279187A (en) | Super hard film-coated material and its production | |
JPH0920590A (en) | Production of cemented carbide base material having diamond film | |
JP2772494B2 (en) | Super hard film coated member and method of manufacturing the same | |
Cerio et al. | Machining of abrasive materials with diamond-coated tungsten carbide inserts | |
Narutaki et al. | Wear Characteristics and Cultlng Performance of Diamond Coated Ceramic Tools | |
JPS6244572A (en) | Surface coated tool | |
US9409784B2 (en) | Method for producing a hard material layer on a substrate, hard material layer and cutting tool | |
JP2648718B2 (en) | Manufacturing method of coated cemented carbide tool |