[go: up one dir, main page]

JP2772494B2 - Super hard film coated member and method of manufacturing the same - Google Patents

Super hard film coated member and method of manufacturing the same

Info

Publication number
JP2772494B2
JP2772494B2 JP6513987A JP51398794A JP2772494B2 JP 2772494 B2 JP2772494 B2 JP 2772494B2 JP 6513987 A JP6513987 A JP 6513987A JP 51398794 A JP51398794 A JP 51398794A JP 2772494 B2 JP2772494 B2 JP 2772494B2
Authority
JP
Japan
Prior art keywords
diamond
heat treatment
substrate
film
cemented carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6513987A
Other languages
Japanese (ja)
Other versions
JPH07503637A (en
Inventor
寧 松本
一仁 西村
紘 冨森
昭夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOSAKA DAIYAMONDO KOGYO KK
Original Assignee
OOSAKA DAIYAMONDO KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOSAKA DAIYAMONDO KOGYO KK filed Critical OOSAKA DAIYAMONDO KOGYO KK
Priority to JP6513987A priority Critical patent/JP2772494B2/en
Publication of JPH07503637A publication Critical patent/JPH07503637A/en
Application granted granted Critical
Publication of JP2772494B2 publication Critical patent/JP2772494B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/29Floor-scrubbing machines characterised by means for taking-up dirty liquid
    • A47L11/30Floor-scrubbing machines characterised by means for taking-up dirty liquid by suction
    • A47L11/302Floor-scrubbing machines characterised by means for taking-up dirty liquid by suction having rotary tools
    • A47L11/305Floor-scrubbing machines characterised by means for taking-up dirty liquid by suction having rotary tools the tools being disc brushes
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4036Parts or details of the surface treating tools
    • A47L11/4044Vacuuming or pick-up tools; Squeegees
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/408Means for supplying cleaning or surface treating agents
    • A47L11/4088Supply pumps; Spraying devices; Supply conduits

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は、切削・耐磨工具,耐磨部品,光学部品,電
子材料として用いられる超硬質膜被覆部材に関し、超硬
合金の表面に化学的気相合成法によりダイヤモンド及び
/又はダイヤモンド状炭素の膜を形成してなるものであ
る。
Description: TECHNICAL FIELD The present invention relates to a superhard film-coated member used as a cutting / polishing tool, a polishing component, an optical component, or an electronic material, and a chemical vapor deposition method on a surface of a cemented carbide. To form a diamond and / or diamond-like carbon film.

背景技術 化学的気相合成法で超硬合金表面へダイヤモンドを被
覆するとき、結合相のコバルト上に無定形炭素が生成さ
れやすく、ダイヤモンドの生成が阻害される。その解決
策として、酸によるエッチング処理や、基材表面より一
定の深さ結合相金属を除去する処理を施すと、ダイヤモ
ンド膜を生成できること、およびダイヤモンド膜と基材
との付着強度を著しく改善しうる事が開示されており、
その代表例として特公昭63-20911号公報がある。
BACKGROUND ART When diamond is coated on the surface of a cemented carbide by a chemical vapor synthesis method, amorphous carbon is easily formed on cobalt in a binder phase, and diamond formation is inhibited. As a solution, etching treatment with an acid or treatment to remove the binder metal at a certain depth from the substrate surface can produce a diamond film and significantly improve the adhesion strength between the diamond film and the substrate. Things are disclosed,
A representative example is JP-B-63-20911.

さらに、特開昭63-100182号公報で結合相となるコバ
ルトを1〜4重量%に減らした超硬合金がダイヤモンド
被覆基材として適していることが開示されているが、こ
の低コバルト超硬合金でも酸によるエッチングでコバル
トを除去することが必要とされている。
Further, Japanese Unexamined Patent Publication (Kokai) No. 63-100182 discloses that a cemented carbide in which the amount of cobalt serving as a binder phase is reduced to 1 to 4% by weight is suitable as a diamond-coated base material. It is necessary to remove cobalt by etching with an acid even in an alloy.

また、結合相の除去法として、酸による方法以外に弗
化炭素プラズマ中でドライエッチングする方法、水素、
アルゴンガスなどでスパッタエッチングする方法が特開
昭62-67174号公報に開示されている。
As a method for removing the binder phase, other than the acid method, a dry etching method in carbon fluoride plasma, hydrogen,
A method of performing sputter etching with an argon gas or the like is disclosed in Japanese Patent Application Laid-Open No. 62-67174.

他方、上記のような結合相を除去することなく付着強
度を高める方法として中間層を形成する方法が提案され
ている。その例として、超硬合金などの基材の表面にIV
a,Va,VIa族元素の炭化物,窒化物,ホウ化物等、或はこ
れらの化合物,混合物からなる層を形成しその上にダイ
ヤモンド膜を設ける特公昭63-1280号公報などがある。
On the other hand, a method of forming an intermediate layer has been proposed as a method for increasing the adhesion strength without removing the binder phase as described above. As an example, the surface of a substrate such as cemented carbide
Japanese Patent Publication No. Sho 63-1280 discloses a method of forming a layer composed of carbides, nitrides, borides and the like of elements a, Va and VIa, or a compound or a mixture thereof, and providing a diamond film thereon.

また、超硬質膜の膜厚は特開平1-242491号公報では20
μmを超えると膜中の熱応力により膜が剥離するので好
ましくないと記載されている。
Further, the thickness of the ultra-hard film is 20 in JP-A-1-242491.
It is described that if the thickness exceeds μm, the film is peeled off due to thermal stress in the film, which is not preferable.

上述のようにダイヤモンド膜の付着強度の向上につい
ては多くの提案が見られるが、未だ十分な品質を備え、
工業生産にも適する方法は見いだされておらず、その確
立が求められている。
As mentioned above, many proposals have been made for improving the adhesion strength of the diamond film, but still have sufficient quality,
No method suitable for industrial production has been found, and its establishment is required.

すなわち、酸でエッチング処理した超硬合金では超硬
合金表層部の結合相が除去されているため、基材とダイ
ヤモンド膜の界面に存在するWC粒子が必ずしも強固に保
持されているとはいえない。かかる表面に成膜されたダ
イヤモンド膜の付着強度は十分でなく、その切削工具と
しての用途は低(12%以下)シリコン−アルミニウム合
金、グラファイト,炭素繊維強化プラスチック,未焼結
セラミック成形体などに限定され、18〜20%Si-Al合金
の断続切削や、長時間にわたる高送り及び深切り込みな
どの重切削には耐えられない。
That is, in the cemented carbide etched with acid, the binder phase at the surface layer of the cemented carbide is removed, so that the WC particles present at the interface between the base material and the diamond film are not necessarily held firmly. . The adhesion strength of the diamond film formed on such a surface is not sufficient, and its use as a cutting tool is low (less than 12%) for silicon-aluminum alloys, graphite, carbon fiber reinforced plastics, green compacts, etc. It is limited and cannot withstand heavy cutting such as intermittent cutting of 18-20% Si-Al alloy and long-time high feed and deep cutting.

さらに、酸でエッチングした超硬合金上に15μmに近
いダイヤモンド膜を被覆すると膜は自然に剥離する。従
って、従来法での膜の厚さは剥離対策上0.1〜5μmに
しかできないため、たとえダイヤモンド膜の剥離が起こ
らなくても工具寿命を判定する逃げ面摩耗(Vb)量が所
定量に達する前に基材が露出してしまい、自ずと工具寿
命に限界がある。
Further, when a diamond film close to 15 μm is coated on a cemented carbide etched with an acid, the film spontaneously peels off. Therefore, since the thickness of the film in the conventional method can be set to only 0.1 to 5 μm in view of the peeling measure, the flank wear (Vb) amount for judging the tool life even when the diamond film does not come off before reaching the predetermined amount. The base material is exposed to the surface, which naturally limits the tool life.

本発明は、高い付着力を有する超硬質膜被覆超硬合金
を提供し、かつ厚い膜を被覆することによりさらに寿命
の長い超硬質膜被覆超硬合金並びにその製造方法を提供
し、従来の問題を解決しようとするものである。
The present invention provides a super-hard film-coated cemented carbide having a high adhesive force and provides a super-hard film-coated cemented carbide having a longer life by coating with a thick film and a method for producing the same. Is to solve.

発明の開示 発明者等は超硬合金の結合相をエッチングにより除去
する前工程を経ることなく熱処理を施すことにより超硬
質膜の被覆を可能ならしめること、かつ基材表面部の熱
膨張係数をダイヤモンドのそれに近づけることにより付
着力の強い厚い超硬質膜を超硬合金へ被覆する研究を行
い、 1) 超硬合金基材を熱処理またはその繰り返しを行う
と、基材表面に結合相金属を主成分とする半球状の析出
物が生成される。
DISCLOSURE OF THE INVENTION The present inventors have made it possible to coat a super hard film by performing a heat treatment without performing a pre-process of removing a binder phase of a cemented carbide by etching, and to reduce a thermal expansion coefficient of a substrate surface portion. A study was conducted to coat a cemented carbide with a thick super-hard film with a strong adhesive force by approaching that of diamond. 1) When the cemented carbide substrate was heat-treated or repeated, the binder phase metal was mainly deposited on the substrate surface. A hemispherical precipitate as a component is formed.

2) 上記熱処理工程を1回以上繰り返す前処理を行っ
た後、超硬質膜を被覆すれば付着力の優れた20μmを越
える超硬質膜被覆超硬合金が得られる。
2) If a super-hard film is coated after performing the pre-treatment one or more times by repeating the above-mentioned heat treatment step, a super-hard film-coated super-hard alloy exceeding 20 μm having excellent adhesion is obtained.

3) 炭素原子含有雰囲気中で熱処理を施すと、基材表
面に半球状の析出物と炭素を主成分とする堆積物が生成
される。熱処理と堆積物の除去を1回以上繰り返した後
成膜すれば、付着力が強く厚い超硬質膜が得られる。
3) When heat treatment is performed in an atmosphere containing carbon atoms, hemispherical precipitates and deposits mainly composed of carbon are formed on the surface of the base material. If the film is formed after the heat treatment and the removal of the deposit are repeated one or more times, a thick ultra-hard film having a strong adhesive force can be obtained.

4) 上記2及び3の熱処理を施した超硬合金基材の表
面から30μmの範囲内に結合相の含有量が低下した部分
を有しているが、硬質相粒子間の間隔は原基材のそれよ
り狭小となり基材の強度は低下していないので断続切削
や高送り,深切り込みの重切削に耐える強度を有する。
また基材表面の熱膨張係数はこれにより小さくなりダイ
ヤモンドのそれに近づくのである。
4) The cemented carbide base material having the heat treatment of the above 2 and 3 has a portion where the content of the binder phase is reduced within a range of 30 μm from the surface, but the interval between the hard phase particles is the same as that of the base material. It has a strength that can withstand heavy cutting such as intermittent cutting, high feed, and deep cutting because the strength of the base material has not been reduced since it is smaller than that of.
Also, the coefficient of thermal expansion of the surface of the base material is thereby reduced and approaches that of diamond.

5) 超硬質膜被覆部材としては、上記基材表面部の構
成や超硬質膜と基材表面との界面に存在する析出物によ
り付着力が向上される。
5) As the super-hard film-coated member, the adhesive force is improved by the structure of the above-mentioned substrate surface portion and the precipitate existing at the interface between the super-hard film and the substrate surface.

以上(1)〜(5)に示される知見を得ることによっ
て、次の実施例に詳述する本発明を完成するに至ったも
のである。
By obtaining the findings described in (1) to (5) above, the present invention described in the following examples has been completed.

なお、上述の本発明手段や以下の実施例はいずれも従
来技術との比較によりWC-Co系に代表される市販の汎用
超硬合金を基材とするものについて示したが、遊離炭素
を含有するもの,焼結肌のままのもの,さらにはコバル
ト以外の結合相金属を用いた他の超硬合金を基材とする
ものについても実施できることはいうまでもない。ま
た、実施例に示した実施工程において、例えば後述する
5の成膜前の基材表面に傷付け処理を行うなど、既知の
あるいは新しい工程を付加しても差し支えない。特に超
硬合金の表面粗さが0.2μmRa以下のものについては熱処
理に先立つ傷つけ処理が不可欠となる。
The above-described means of the present invention and the following examples all show a case where a base material is a commercially available general-purpose cemented carbide represented by a WC-Co system by comparison with the prior art, but contains free carbon. Needless to say, the present invention can be applied to a material having a sintered surface, a material having a sintered surface, and a material having a base material of another cemented carbide using a binder metal other than cobalt. In addition, in the implementation process shown in the embodiment, a known or new process may be added, for example, a process of scratching the surface of the base material before film formation described in 5 described later. In particular, when the surface roughness of the cemented carbide is 0.2 μmRa or less, the damage treatment prior to the heat treatment is indispensable.

図面の簡単な説明 図1は本発明の実施例において、熱処理及び成膜に用
いた熱フィラメントCVD装置の概略断面図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic sectional view of a hot filament CVD apparatus used for heat treatment and film formation in an embodiment of the present invention.

図2は炭素原子含有雰囲気中で熱処理を施した超硬合
金基材の粒子構造を示す表面部の2次電子像である。
FIG. 2 is a secondary electron image of the surface showing the particle structure of the cemented carbide substrate heat-treated in an atmosphere containing carbon atoms.

図3は図2を説明するための模式図である。 FIG. 3 is a schematic diagram for explaining FIG.

図4は図2の表面上に生成したダイヤモンドが生成さ
れる初期の組織写真である。
FIG. 4 is a photograph of an initial structure in which diamond formed on the surface of FIG. 2 is formed.

図5は図4よりさらにダイヤモンドの生成が進んだ状
態を示す組織写真である。
FIG. 5 is a structural photograph showing a state in which diamond generation has progressed further than in FIG.

図6a,b,cは超硬合金基材とダイヤモンド膜の界面の組
成を示す組織写真である。
6a, 6b, and 6c are micrographs showing the composition of the interface between the cemented carbide substrate and the diamond film.

図7は超硬合金基材の表面部の粒子構造を対比して示
す表面部断面の2次電子像である。
FIG. 7 is a secondary electron image of a cross section of the surface showing the particle structure of the surface of the cemented carbide substrate in comparison.

図8は熱処理温度と析出物の生成状態を示す図表であ
る。
FIG. 8 is a table showing the heat treatment temperature and the state of formation of precipitates.

図9は熱処理時間と析出物の生成個数,大きさを示す
図表である。
FIG. 9 is a table showing the heat treatment time and the number and size of precipitates generated.

図10は熱処理した超硬合金基材表面の反射電子像であ
る。
FIG. 10 is a backscattered electron image of the surface of the heat-treated cemented carbide substrate.

図11a,b,cは図10を拡大し分析した像である。 11a, 11b and 11c are images obtained by enlarging and analyzing FIG.

図12,13はそれぞれ市販並びに本発明実施例工具の切
削試験後の切れ刃の2次電子像である。
FIGS. 12 and 13 are secondary electron images of the cutting edge of the commercially available tool and the cutting tool of the present invention after the cutting test, respectively.

図14,15,16及び17はいずれも比較例並びに本発明実施
例における切削試験結果を示す図表である。
FIGS. 14, 15, 16 and 17 are tables showing the results of cutting tests in the comparative example and the example of the present invention.

図18は比較例並びに本発明実施例における生成膜の厚
さを示す図表である。
FIG. 18 is a table showing the thickness of the formed film in the comparative example and the example of the present invention.

発明を実施するための最良の形態 超硬合金基材としては市販のWC−4%Coの超硬チップ
の第1グループとWC-25%Coの超硬チップの第2グルー
プを用い、次の実施工程を行った。
BEST MODE FOR CARRYING OUT THE INVENTION As the cemented carbide substrate, a first group of commercially available WC-4% Co cemented carbide chips and a second group of WC-25% Co cemented carbide chips are used. Implementation steps were performed.

1.熱処理→2.除媒→3.熱処理→4.除煤→5.成膜→6.研
磨 各実施工程の詳細については後述するが、各工程の主
要な条件は次の通りである。
1. Heat treatment → 2. Solvent removal → 3. Heat treatment → 4. Soot removal → 5. Film formation → 6. Polishing The details of each execution step will be described later, but the main conditions of each step are as follows.

2,4.除煤(共通) 綿棒で基材表面に生じた煤(堆積
物)をぬぐいとる。
2,4. Soot removal (common) Use a cotton swab to wipe off soot (sediment) generated on the substrate surface.

5.成膜(共通) 使用装置 図1に示す熱フィラメン
トCVD装置 雰囲気 H2−1%CH4 圧力 100Torr 基材温度 900℃ 反応時間 15時間 7.研磨(共通) #800(30μm)レジンボンドダイ
ヤモンドホイールで研磨 各実施工程の詳細 1,3熱処理 使用した装置は1図に示す構成のCVD装置で、1は反
応容器,2は雰囲気ガスの導入バルブ,3はダングステンフ
ィラメント,4は基材支持用冷却台,5は超硬合金基材,6は
ガスの排出バルブである。
5. Film forming (common) Equipment used Hot filament CVD apparatus shown in Fig. 1 Atmosphere H 2 -1% CH 4 pressure 100 Torr Base material temperature 900 ° C Reaction time 15 hours 7. Polishing (common) # 800 (30 μm) resin bonded diamond Polishing with a wheel Details of each process 1,3 Heat treatment The equipment used is a CVD apparatus with the configuration shown in Fig. 1, 1 is a reaction vessel, 2 is an atmosphere gas introduction valve, 3 is a dangsten filament, and 4 is a substrate support. A cooling stand, 5 is a cemented carbide substrate, and 6 is a gas discharge valve.

タングステンフィラメントにはAC120v×120Aを印加
し、温度2150〜2200℃とした。
AC120v × 120A was applied to the tungsten filament, and the temperature was set to 2150 to 2200 ° C.

該フィラメントと基材との間の距離は10mmで、基材温
度は前記のように900℃である。
The distance between the filament and the substrate is 10 mm and the substrate temperature is 900 ° C. as described above.

第1グループの基材にA群の熱処理を施したものの基
材表面部断面の2次電子像を図2に示す。図3はその模
式図である。
FIG. 2 shows a secondary electron image of a cross section of the surface of the base material obtained by subjecting the base material of the first group to the heat treatment of Group A. FIG. 3 is a schematic diagram thereof.

熱処理により結合相11のコバルトは基材表面に析出す
るが、基材表面全体に広がらず半球状の析出物12として
盛り上がる。逆に基材中には析出により結合相金属の含
有量が少ない部分13が生じる。
Although cobalt of the binder phase 11 precipitates on the surface of the base material by the heat treatment, it does not spread over the entire surface of the base material but rises as a hemispherical precipitate 12. Conversely, a portion 13 having a low content of the binder phase metal is generated in the base material by precipitation.

この含有量の少ない部分は、基材表面から30μm以内
程度で観察される。この部分では硬質粒子15であるWC粒
子が再配列を起こし、WC粒子の間隔が内部よりも狭小と
なっている。
This low content portion is observed within about 30 μm from the substrate surface. In this portion, the WC particles, which are the hard particles 15, undergo rearrangement, and the interval between the WC particles is narrower than the inside.

析出物12の生成状態は次の通りで、A群では熱処理10
分以上でコバルトの析出物が観察できる。なお、14は基
材表面上に堆積した煤、16は生成ダイヤモンドである。
The state of formation of the precipitate 12 is as follows.
In more than a minute, a precipitate of cobalt can be observed. Here, 14 is soot deposited on the surface of the base material, and 16 is generated diamond.

2.4除煤 除煤により堆積物のほぼ全てを除く。この際析出物12
の殆どはその儘残る。
2.4 Soot removal Almost all of the sediment is removed by soot removal. At this time, precipitate 12
Most remain as is.

析出物は結合相金属であるコバルトを主成分とし、こ
れに微量のタングステンや炭素などが含まれるもので、
析出物表面に堆積物が付くと析出物の成長が止まるの
で、この堆積物を除く除煤を行うことが好ましいわけで
ある。析出物の生成はA群の熱処理90分,除煤2回で十
分である。なお、熱処理温度は500〜1300℃の間で熱処
理の保持時間との兼ね合いで適度に選定されるが、次工
程の成膜温度より高いことが良い結果を生む。
Precipitates are mainly composed of cobalt, a binder phase metal, which contains trace amounts of tungsten, carbon, etc.
Since the growth of the precipitate stops when the deposit adheres to the surface of the precipitate, it is preferable to remove the soot by removing the deposit. For the formation of precipitates, heat treatment of Group A for 90 minutes and soot removal twice are sufficient. The heat treatment temperature is appropriately selected from the range of 500 to 1300 ° C. in consideration of the holding time of the heat treatment. However, it is preferable that the heat treatment temperature is higher than the film formation temperature in the next step.

5 成膜 図4で理解されるようにダイヤモンドの核の発生は析
出物の周辺及び析出物のない部分の基材表面で始まる。
その後、図5に示すようにダイヤモンド膜が析出物を包
みこみ基材表面を覆う。
5 Film formation As can be understood from FIG. 4, the generation of diamond nuclei starts around the precipitate and on the surface of the base material in a portion where no precipitate exists.
Thereafter, as shown in FIG. 5, the diamond film wraps around the precipitate and covers the substrate surface.

図6a,b,cは基材とダイヤモンド膜の界面の断面の写真
で、それぞれ同一場所のaは2次電子像,bはCoのKalの
X線イメージ像、cはWのLalのX線イメージ像であ
る。
6a, b, and c are cross-sectional photographs of the interface between the substrate and the diamond film, where a is a secondary electron image, b is an X-ray image of Kal of Co, and c is an X-ray image of Lal of W. It is an image image.

X線像は同一のLiF結晶で受光している。2次電子像
から基材とダイヤモンド膜との境界を特定できる。タン
グステンはダイヤモンドとの境界線が明確であるのに対
し、コバルトは境界面よりダイヤモンド側にも存在する
ことがわかる。このダイヤモンド側で検出されるコバル
トは析出物の痕跡であると思われる。
The X-ray image is received by the same LiF crystal. The boundary between the substrate and the diamond film can be specified from the secondary electron image. It can be seen that tungsten has a clear boundary with diamond, whereas cobalt exists on the diamond side from the boundary. The cobalt detected on the diamond side is considered to be a trace of the precipitate.

6.成膜 成膜後の表面粗さは2μmRaで、研磨により5nmRaに仕
上げることができる。また、30μmの膜厚さのものでも
剥離せず成膜できて、しかも研磨することができる。従
来法では20μm超の膜の研磨はおろか付着力の良い膜を
製作することすら不可能であった。
6. Film formation The surface roughness after film formation is 2 μmRa, and can be finished to 5 nmRa by polishing. Further, even a film having a thickness of 30 μm can be formed without peeling and can be polished. In the conventional method, polishing of a film having a thickness of more than 20 μm was impossible even to produce a film having good adhesive force.

前記した基材の第1,第2グループより別に第3のもの
で実施例工程を変えたものについてさらに試作を行った
結果、卓越した成膜を得た。以下にその第3のものにつ
いて示す。
As a result of further trial production of a third substrate other than the first and second groups, which was obtained by changing the process of the embodiment, an excellent film was obtained. The third one will be described below.

第3のものにおいて用いた超硬合金基材は市販のWC−
6%Coの超硬合金チップ口1/2″である。
The cemented carbide substrate used in the third one is a commercially available WC-
6% Co cemented carbide tip 1/2 ".

実施工程 0.基材の前加工→1.熱処理→2.除煤→3.熱処理→4.除煤
→5.成膜→6.研磨→7.切削試験 工程別条件 0.基材の前加工 傷つけ #80のSiC粒をブラスト 脱脂 アセトン液中で超音波洗浄 1,3.熱処理条件 装置 熱フィラメントCVD装置 雰囲気 H2-0.6%CH4(大気をロータリーポン
プで排気後雰囲気ガスを導入) 圧力 100Torr 温度 フィラメント温度 2180℃ 基材温度 950℃ 保持時間 90分×3回 2,4.除煤 綿棒で基材表面に生じた煤(堆積物)
をぬぐいとる。
Process 0. Pre-processing of base material → 1. Heat treatment → 2. Removal of soot → 3. Heat treatment → 4. Removal of soot → 5. Deposition → 6. Polishing → 7. Cutting test Machining Damage Blasting # 80 SiC particles Degreasing Ultrasonic cleaning in acetone solution 1,3.Heat treatment conditions Equipment Hot filament CVD equipment Atmosphere H 2 -0.6% CH 4 (Atmospheric gas is introduced after exhausting the atmosphere with a rotary pump) Pressure 100 Torr temperature Filament temperature 2180 ° C Base material temperature 950 ° C Holding time 90 minutes x 3 times 2,4. Soot removal Soot generated on the base material surface with a cotton swab (sediment)
Towel.

5.成膜 装置 熱フィラメントCVD装置 雰囲気 H2−1%CH4 圧力 100Torr 温度 フィラメント温度 2180℃ 基材温度 850℃ 反応時間 15時間 6.研磨(共通)#800(30μm)レジンボンドダイヤモ
ンドホイールで研磨 7.切削試験 使用機械 森精機製 旋盤 被削材 Al-18%Si 切削条件 切削速度 800m/分 切り込み 0.5mm 送り 0.1mm/回転 湿式・連続切削 工程別内容 1.3熱処理 図7は熱処理を施した同一の基材について析出物のあ
るところとないところの断面を上下において観察した2
次電子像である。
5. Deposition equipment Hot filament CVD equipment Atmosphere H 2 -1% CH 4 Pressure 100 Torr Temperature Filament temperature 2180 ° C Base material temperature 850 ° C Reaction time 15 hours 6. Polishing (Common) # 800 (30μm) Polishing with resin bond diamond wheel 7. Cutting test Machine used Lathe made by Mori Seiki Work material Al-18% Si Cutting conditions Cutting speed 800m / min Depth of cut 0.5mm Feed 0.1mm / rotation Wet / continuous cutting Contents of each process 1.3 Heat treatment Figure 7 shows the same heat treated The cross-section of the base material with and without the precipitate was observed up and down 2
This is the next electron image.

上側(析出物のないところ)は熱処理を施してもWC粒
子の間は結合相金属で満たされ空間は存在しない。
Even if the upper side (where no precipitate is present) is heat-treated, the space between the WC particles is filled with the binder phase metal and there is no space.

下側(下側より上側に向かった白い突出)では結合相
金属の表面への移動(析出)とWC粒子の再配列が起こ
り、結合相金属の厚さが小さくなっている。また、析出
物近傍ではWC粒子の再配列時に埋めきれなかった小さな
空隙が存在している。つまり基材表面部の少なくとも表
面より30μmの深さの範囲において、結合相金属の含有
量は少なくなっており、かつWCの硬質結晶粒子間の間隙
は狭小となり、基材の熱膨張係数はダイヤモンドの熱膨
張係数に近くなって傾斜機能が形成されているものと思
われる。
On the lower side (white protrusions from the upper side to the lower side), migration (precipitation) of the binder phase metal to the surface and rearrangement of WC particles occur, and the thickness of the binder phase metal is reduced. In addition, small voids that could not be filled during the rearrangement of the WC particles exist near the precipitates. In other words, at least in the range of a depth of 30 μm from the surface of the substrate surface, the content of the binder phase metal is small, the gap between the hard crystal grains of WC is narrow, and the coefficient of thermal expansion of the substrate is diamond. It is considered that the gradient function is formed close to the coefficient of thermal expansion.

図8に熱フィラメントCVD装置により各種基材温度で
熱処理を施したときの析出物発生数を示す。フィラメン
ト温度:2200℃,雰囲気ガス:H2−1%CH4(流量H2:500
ccm,CH4:5ccm)、フィラメントと基材との距離:10mmで
1時間熱処理したとき析出物は顕著に現れ、1000℃を越
えると激減する。
FIG. 8 shows the number of precipitates generated when heat treatment is performed at various substrate temperatures by a hot filament CVD apparatus. Filament temperature: 2200 ° C, atmosphere gas: H 2 -1% CH 4 (flow rate H 2 : 500
ccm, CH 4 : 5 ccm), and the distance between the filament and the base material is 10 mm. When heat-treated for 1 hour, precipitates appear remarkably, and drastically decrease when the temperature exceeds 1000 ° C.

また、図9に析出物の粒径,数量の変化と熱処理時間
の関係を示す。
FIG. 9 shows the relationship between the change in the particle size and quantity of the precipitate and the heat treatment time.

装置は熱フィラメントCVD装置を用い、基材はJIS K10
種超硬合金(WC−6%Co),雰囲気ガス:H2−1%CH
4(流量H2:500ccm,CH4:5ccm,圧力:100Torr)、基材温
度:950℃、フィラメント温度:2200℃、フィラメントと
基材間の距離:10mmで行った。
The device used is a hot filament CVD device, and the substrate is JIS K10
Grade cemented carbide (WC-6% Co), atmosphere gas: H 2 -1% CH
4 (flow rate H 2 : 500 ccm, CH 4 : 5 ccm, pressure: 100 Torr), substrate temperature: 950 ° C., filament temperature: 2200 ° C., distance between filament and substrate: 10 mm.

析出物の発生数は50μm×50μmの面積で1時間に数
十箇に達する。処理時間を長くすればその数は減少する
が粒径は大きくなる。
The number of precipitates reaches several tens per hour in an area of 50 μm × 50 μm. If the treatment time is lengthened, the number decreases but the particle size increases.

図10は図8における950℃で熱処理をした基材表面の
反射電子像である。反射電子像は原子番号の大きい元素
ほど白く観察され、小さい元素ほど黒く観察される。写
真の黒い点が析出物で、これを拡大し分析したものが図
11のa,b,cであるが、析出物はCoが主成分なので黒く観
察され、基材表面はWCであるので白く観察される。aは
2次電子像、bはコバルトのKalのX線像、cはタング
ステンのLalのX線像である。
FIG. 10 is a backscattered electron image of the substrate surface heat-treated at 950 ° C. in FIG. In the backscattered electron image, an element having a larger atomic number is observed whiter, and an element having a smaller atomic number is observed blacker. The black dots in the photo are the precipitates, which are enlarged and analyzed.
Although 11 is a, b, and c, the precipitate is observed as black because Co is the main component, and is observed as white because the substrate surface is WC. a is a secondary electron image, b is an X-ray image of Kal of cobalt, and c is an X-ray image of Lal of tungsten.

これからメタン濃度1%における熱処理の最適条件は
900〜1000℃であり、熱処理時間を1時間行えば析出物
が得られる。
From now on, the optimal conditions for heat treatment at a methane concentration of 1%
If the heat treatment time is 1 hour, a precipitate can be obtained.

メタンを流した状態での熱処理では、まず結合相金属
上に無定形炭素の堆積が始まりこの場所で析出物の生成
が始まる。さらに熱処理を続けると、析出物は無定形炭
素で覆われてしまう。この状態になると、析出物の成長
は止まるので、熱処理と除煤の工程を繰り返す。この工
程を繰り返すうちに煤の堆積が減少し基材表面にダイヤ
モンドの発生が顕著に行われるようになる。
In the heat treatment with flowing methane, the deposition of amorphous carbon starts on the binder phase metal, and the formation of precipitates starts at this location. If the heat treatment is further continued, the precipitate will be covered with amorphous carbon. In this state, since the growth of the precipitates stops, the steps of heat treatment and soot removal are repeated. As this process is repeated, the accumulation of soot is reduced, and the generation of diamond on the surface of the base material becomes remarkable.

メタンを流さず水素だけとした雰囲気ガスで図9と同
じ条件で2時間熱処理を行って、析出物を走査型電子顕
微鏡で観察したところ、析出物は極めて少なかった。
A heat treatment was performed for 2 hours in an atmosphere gas containing only hydrogen without flowing methane under the same conditions as in FIG. 9, and the precipitate was observed with a scanning electron microscope.

このことから析出物を効率よく生成させるために炭素
原子を供給することが必要であると考えられる。
From this, it is considered necessary to supply carbon atoms in order to efficiently generate precipitates.

析出物が無定形炭素に覆われると析出物の成長が止ま
り、除煤するとその成長が再度始まることから、析出物
が熱フィラメントから放射される熱電子などの励起子に
さらされることも析出物の成長に必要であると判断す
る。
When the precipitate is covered with amorphous carbon, the growth of the precipitate stops, and when the soot is removed, the growth starts again.Therefore, the precipitate is exposed to excitons such as thermionic electrons emitted from the hot filament. Is determined to be necessary for growth.

励起子の存在が少ない間接加熱の真空炉(5×10-3To
rr)では1300℃に加熱することにより析出物が観察され
た。
Indirectly heated vacuum furnace (5 × 10 -3 To
In rr), a precipitate was observed by heating to 1300 ° C.

このことから励起子の存在下では炭素の存在とあいま
って結合相金属の表面への移動が起こりやすくなる。こ
のとき、基材表面及び析出物が炭素雰囲気並びに雰囲気
内の残存ガス等により汚染され、移動した結合相金属は
半球状の析出物になるものと推察される。
For this reason, in the presence of excitons, movement of the binder phase metal to the surface is likely to occur in combination with the presence of carbon. At this time, it is presumed that the substrate surface and the precipitates are contaminated by the carbon atmosphere and the residual gas in the atmosphere, and the transferred binder phase metal becomes hemispherical precipitates.

熱電子にさらされ、プラズマの発生しやすい100Torr
条件下で熱処理を行えば、900℃で析出物の生成が見ら
れたが、励起子の少ない加熱炉では析出物の発生する温
度が高くなる。従って、効率よく析出物を生成させるに
は、熱処理装置は熱フィラメントCVD装置が好ましい
が、マイクロ波,電子ビーム,レーザービーム等の高エ
ネルギーによる加熱法、その他の加熱法を採用してもよ
いことはいうまでもない。
Exposure to thermoelectrons and easy to generate plasma at 100 Torr
When heat treatment was performed under the conditions, precipitates were formed at 900 ° C., but in a heating furnace with few excitons, the temperature at which precipitates are generated becomes higher. Therefore, in order to efficiently generate precipitates, the heat treatment apparatus is preferably a hot filament CVD apparatus, but a heating method using high energy such as microwave, electron beam, laser beam, or other heating methods may be used. Needless to say.

7.切削装置 図12は市販のダイヤモンド膜被覆工具によりアルミニ
ウム合金(Al-18%Si)を500m加工したときの工具切れ
刃の2次電子像である。500mの加工で被覆膜が剥離して
いる。膜厚も10μm以下と薄く、基材表面の研削条痕が
ダイヤモンド膜の上に凹凸となって観察される。
7. Cutting equipment Fig. 12 is a secondary electron image of the cutting edge of a 500mm aluminum alloy (Al-18% Si) machined with a commercially available diamond film coated tool. The coating film has been peeled off after processing 500m. The film thickness is also as thin as 10 μm or less, and grinding streaks on the substrate surface are observed as irregularities on the diamond film.

図13は図9で1.5時間の熱処理を3回繰り返し、成膜
をH2−1%CH4,基材温度850℃、15時間で施したもの
で作製した工具で3500m加工したときの刃先の2次電子
像である。剥離はなく、逃げ面にわずかの摩耗が見られ
る。また、膜厚も厚いため基材表面の凹凸は膜の表面か
らはわからない。
FIG. 13 shows the cutting edge of 3500 m when a heat treatment of 1.5 hours was repeated three times in FIG. 9 and the film was formed with H 2 -1% CH 4 at a substrate temperature of 850 ° C. for 15 hours. It is a secondary electron image. No delamination and slight wear on flank. Further, since the film thickness is large, irregularities on the surface of the base material cannot be recognized from the surface of the film.

図14は上記図13の工具を用い、同工具のすくい面と逃
げ面を研磨して切削試験を行った結果を示すものであ
る。なお、ここで逃げ面の膜厚は25μmに成膜し、研磨
で15μmとした。図中市販品は図12の工具、超硬合金は
第3の基材で、ダイヤモンドを被覆せず超硬合金をその
まま用いた工具の切削性能を示す。
FIG. 14 shows the results of a cutting test performed by polishing the rake face and flank face of the tool shown in FIG. Here, the thickness of the flank was 25 μm, and the thickness was reduced to 15 μm by polishing. In the figure, the commercial product shows the cutting performance of the tool shown in FIG. 12, and the cemented carbide shows the cutting performance of the third substrate, which is a tool using the cemented carbide as it is without coating diamond.

図15は上記図14の研磨品と未研磨品の切削性能の比較
を示す図表で、研磨により逃げ面摩耗が著しく低減され
ている。
FIG. 15 is a table showing a comparison of the cutting performance between the polished product and the unpolished product in FIG. 14, and the flank wear is significantly reduced by polishing.

図16は上記図15における本発明実施例の超硬質膜被覆
部材をもって作製したドリルと、市販のダイヤモンドコ
ーティングドリルとの性能比較を示した図表である。
FIG. 16 is a table showing a performance comparison between the drill manufactured using the ultra-hard film-coated member of the embodiment of the present invention in FIG. 15 and a commercially available diamond coated drill.

図17は上記図15の未研磨品、つまり熱処理後析出物を
残して成膜したものと、熱処理後、析出物を除去して成
膜を10μm施したものとの切削性能の比較を示す図表で
ある。
FIG. 17 is a table showing a comparison of the cutting performance between the unpolished product of FIG. 15, that is, a film formed by leaving a precipitate after heat treatment and a film formed by removing a precipitate and performing film formation by 10 μm after heat treatment. It is.

図18は本発明の実施例,比較例と従来法による成膜可
能な膜厚の比較を示す図表である。
FIG. 18 is a table showing a comparison of the film thicknesses that can be formed by the conventional method and the comparative example and the conventional method.

析出物を残存させたものにおいては、前述したように
ダイヤモンド膜の基材界面側にコバルトが含有され、基
材との熱膨張係数差による剥離が抑制される効果がさら
に顕著となっている。析出物を除去するとこのさらなる
効果はないが、従来の市販品に比較すれば遥かに優れて
いる。
In the case where the precipitate is left, cobalt is contained on the interface side of the base material of the diamond film as described above, and the effect of suppressing peeling due to a difference in thermal expansion coefficient from the base material is further remarkable. Removing the precipitate does not have this additional effect, but is far superior to conventional commercial products.

図において市販品は市販のダイヤモンドコーティング
チップの膜厚を測定したものである。硼酸処理は発明者
等が試作に成功した超硬合金基材を硼酸中に浸漬処理を
施した後、ダイヤモンド膜を形成したものである。
In the figure, the commercially available product is obtained by measuring the thickness of a commercially available diamond coating chip. In the boric acid treatment, a diamond film is formed after immersing a cemented carbide base material, which has been successfully manufactured by the inventors, in boric acid.

実施例における析出物残存のものは、析出物がダイヤ
モンド成膜時に存在し、ダイヤモンドの核発生は析出物
上にはなく、析出物上ではダイヤモンド状炭素等の生成
が推測され、この部分ではダイヤモンドと基材が強固に
付着していないものと考えられる。逆にこのことがダイ
ヤモンド膜と基材との熱応力の緩和に寄与するものと考
えられる。これがダイヤモンド膜中にも痕跡として残る
効果と、析出物生成による超硬合金基材表面部の結合相
金属の移動減少による熱膨張係数の傾斜機能の両方の効
果を享受して、付着力が強く厚膜が可能となったもので
ある。
In the precipitates remaining in the examples, the precipitates are present at the time of diamond film formation, the nucleation of diamond is not on the precipitates, and the generation of diamond-like carbon or the like is presumed on the precipitates. It is considered that the substrate and the substrate were not firmly attached. Conversely, this is considered to contribute to the relaxation of the thermal stress between the diamond film and the substrate. This has both an effect that remains as a trace in the diamond film and a function of inclining the thermal expansion coefficient by reducing the movement of the binder phase metal on the surface of the cemented carbide base material due to the formation of precipitates. Thick film is now possible.

析出物除去のものは、上記中基材表面部の結合相金属
の移動減少の効果のみを有するもので、市販の従来法や
硼酸処理の比較例よりは優れている。
The method of removing the precipitate has only the effect of reducing the movement of the binder phase metal on the surface of the medium base material, and is superior to the commercially available conventional method and the comparative example of the boric acid treatment.

産業上の利用可能性 以上のように、本発明の超硬質膜被覆部材は従来殆ど
不可能とされていた超硬合金基材上に化学的気相合成法
によりダイヤモンド膜を付着力強く,厚く形成すること
を可能としたもので、切削耐摩工具,耐摩部品など、各
種用途に使用される。しかもその製造においても熱処理
と成膜は同一のCVD装置によって行うことができるの
で、工業生産に適し経済的である。
INDUSTRIAL APPLICABILITY As described above, the super-hard film-coated member of the present invention can form a diamond film on a cemented carbide base material, which has been almost impossible in the past, by a chemical vapor deposition method with a strong adhesion and a thick diamond film. It can be used for various applications such as cutting wear-resistant tools and wear-resistant parts. In addition, the heat treatment and the film formation can be performed by the same CVD apparatus in the production, so that it is suitable for industrial production and economical.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原 昭夫 大阪府堺市鳳北町2丁80番地 大阪ダイ ヤモンド工業株式会社内 (56)参考文献 特開 平3−219079(JP,A) 特開 平1−246361(JP,A) 特開 平1−103992(JP,A) (58)調査した分野(Int.Cl.6,DB名) C23C 16/02 C23C 16/26 C30B 29/04 B23P 15/28──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Akio Hara 2-80, Hokita-cho, Sakai-shi, Osaka Inside Osaka Diamond Diamond Industry Co., Ltd. (56) References JP-A-3-219079 (JP, A) JP-A-Hei 1-246361 (JP, A) JP-A-1-103996 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C23C 16/02 C23C 16/26 C30B 29/04 B23P 15 / 28

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超硬合金基材の表面にダイヤモンド及び/
またはダイヤモンド状炭素よりなる超硬質膜を形成して
なる部材において、該基材は基材表面より30μmの範囲
内に、硬質相粒子間の間隔が原基材のそれより狭小で、
結合相金属の含有量が少ない部分を有することを特徴と
する超硬質膜被覆部材。
1. The method according to claim 1, wherein the surface of the cemented carbide substrate has diamond and / or diamond.
Or in a member formed by forming an ultra-hard film made of diamond-like carbon, the substrate is within 30 μm from the substrate surface, the spacing between the hard phase particles is smaller than that of the original substrate,
An ultra-hard film covering member having a portion having a low binder phase metal content.
【請求項2】超硬質膜表面は研磨されてなることを特徴
とする請求の範囲第1項記載の超硬質膜被覆部材。
2. The member according to claim 1, wherein the surface of the ultra-hard film is polished.
【請求項3】超硬合金基材表面に熱処理を施し、該基材
表面上に結合相金属を主成分とする半球状の析出物を生
成する工程を経た後、同表面上に化学的気相合成法によ
りダイヤモンド及びまたはダイヤモンド状炭素を生成す
ることを特徴とする超硬質膜被覆部材の製造方法。
3. A step of subjecting a surface of a cemented carbide substrate to a heat treatment to form a hemispherical precipitate mainly composed of a binder phase metal on the surface of the substrate, and then to form a chemical vapor on the surface. A method for producing an ultra-hard film-coated member, wherein diamond and / or diamond-like carbon is produced by a phase synthesis method.
【請求項4】炭素原子が存在する雰囲気中で超硬合金基
材表面に熱処理を施して、該表面上に結合相金属を主成
分とする半球状の析出物並びに炭素を主成分とする堆積
物を生成せしめ、該表面上に生じた堆積物を除去する
か、又は更に析出物の一部または全部を除去した後、同
表面上に化学的気相合成法によりダイヤモンド及びまた
はダイヤモンド状炭素を生成することを特徴とする超硬
質膜被覆部材の製造方法。
4. A heat treatment is performed on the surface of a cemented carbide substrate in an atmosphere in which carbon atoms are present, and a hemispherical precipitate containing a binder phase metal as a main component and a deposit containing carbon as a main component are formed on the surface. After removing the deposits formed on the surface or further removing part or all of the precipitates, diamond and / or diamond-like carbon is deposited on the surface by chemical vapor synthesis. A method for producing an ultra-hard film-coated member, characterized in that the member is formed.
【請求項5】熱処理と堆積物又は堆積物及び析出物の除
去を2回以上行うことを特徴とする請求の範囲第4項記
載の超硬質膜被覆部材の製造方法。
5. The method according to claim 4, wherein the heat treatment and the removal of the deposit or the deposit and the precipitate are performed twice or more.
【請求項6】水素原子が存在する雰囲気中又は低真空中
で超硬合金基材に熱処理を施して、該基材表面上に結合
相金属を主成分とする半球状析出物を生成する工程を経
た後、同表面上に化学的気相合成法によりダイヤモンド
及び又はダイヤモンド状炭素を生成することを特徴とす
る超硬質膜被覆部材の製造方法。
6. A step of subjecting a cemented carbide base material to a heat treatment in an atmosphere in which hydrogen atoms are present or in a low vacuum to form a hemispherical precipitate containing a binder phase metal as a main component on the surface of the base material. And producing diamond and / or diamond-like carbon on the same surface by a chemical vapor synthesis method.
【請求項7】超硬合金の熱処理を熱フィラメントCVD装
置で行うことを特徴とする請求の範囲3、4、5、又は
6項記載の超硬質膜被覆部材の製造方法。
7. The method for producing a superhard film-coated member according to claim 3, wherein the heat treatment of the superhard alloy is performed by a hot filament CVD apparatus.
JP6513987A 1992-12-08 1993-12-08 Super hard film coated member and method of manufacturing the same Expired - Lifetime JP2772494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6513987A JP2772494B2 (en) 1992-12-08 1993-12-08 Super hard film coated member and method of manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
SE9200341-7 1992-02-06
JP35195592 1992-12-08
JP4-351955 1992-12-08
JP6513987A JP2772494B2 (en) 1992-12-08 1993-12-08 Super hard film coated member and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH07503637A JPH07503637A (en) 1995-04-20
JP2772494B2 true JP2772494B2 (en) 1998-07-02

Family

ID=26579533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6513987A Expired - Lifetime JP2772494B2 (en) 1992-12-08 1993-12-08 Super hard film coated member and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2772494B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027485A (en) * 2005-07-19 2007-02-01 Ulvac Japan Ltd Method and device for deposition
US7883775B2 (en) 2003-07-31 2011-02-08 A.L.M.T. Corp. Diamond film coated tool and process for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7883775B2 (en) 2003-07-31 2011-02-08 A.L.M.T. Corp. Diamond film coated tool and process for producing the same
JP2007027485A (en) * 2005-07-19 2007-02-01 Ulvac Japan Ltd Method and device for deposition

Also Published As

Publication number Publication date
JPH07503637A (en) 1995-04-20

Similar Documents

Publication Publication Date Title
CA1336704C (en) Method of producing sintered hard metal with diamond film
US5618625A (en) CVD diamond coated cutting tools and method of manufacture
JP3675577B2 (en) Method for producing diamond-coated article
KR100193546B1 (en) Ultra hard membrane coating member and manufacturing method thereof
EP0503822B1 (en) A diamond- and/or diamond-like carbon-coated hard material
JP2002529601A (en) Polycrystalline diamond member and method for producing the same
US8496993B2 (en) Nanocomposite coatings on cemented carbide
WO2005011902A1 (en) Diamond film coated tool and process for producing the same
CA2173676A1 (en) Diamond film deposition
CA2202026C (en) Method of making a diamond-coated composite body
JPS61124573A (en) Diamond-coated base material and its production
JPH0892742A (en) Matrix composite and method of performing surface preparation thereof
US5328761A (en) Diamond-coated hard material, throwaway insert and a process for the production thereof
JP2772494B2 (en) Super hard film coated member and method of manufacturing the same
JP3718876B2 (en) Ultra-hard film-coated member and manufacturing method thereof
JP2964669B2 (en) Boron nitride coated hard material
JP2987955B2 (en) Diamond or diamond-like carbon coated hard material
JPH0760521A (en) Diamond-coated drill and manufacture thereof
JP3212057B2 (en) Diamond coated substrate and method for producing the same
JP2595203B2 (en) High adhesion diamond coated sintered alloy and method for producing the same
RU2837154C1 (en) Method of preparing substrate surface for application of diamond coating by gas-jet deposition
JPH0623431B2 (en) Hard coating coated cutting tool parts
JPH0354180A (en) Production of diamond-coated sintered material
JP2002038205A (en) Coated cemented carbide having hard composite layer and its production method
JPH08311652A (en) Diamond-coated cemented carbide tool and method of manufacturing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090424

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100424

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100424

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110424

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110424

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 16

EXPY Cancellation because of completion of term