JPH0623431B2 - Hard coating coated cutting tool parts - Google Patents
Hard coating coated cutting tool partsInfo
- Publication number
- JPH0623431B2 JPH0623431B2 JP8409388A JP8409388A JPH0623431B2 JP H0623431 B2 JPH0623431 B2 JP H0623431B2 JP 8409388 A JP8409388 A JP 8409388A JP 8409388 A JP8409388 A JP 8409388A JP H0623431 B2 JPH0623431 B2 JP H0623431B2
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- film
- cutting tool
- cutting
- coated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は非鉄金属、セラミックスおよび複合材料の切削
において高い耐摩耗性と耐溶着性を示す硬質被膜被覆切
削工具部材に関する。TECHNICAL FIELD The present invention relates to a hard coating-coated cutting tool member that exhibits high wear resistance and welding resistance in cutting non-ferrous metals, ceramics and composite materials.
(従来の技術) 従来、切削工具基材としては拘束度工具鋼、炭化タング
ステン基超硬合金、サーメットないしはセラミックスが
一般に用いられており、さらに近年はそれらにより高い
耐摩耗性を付与せしめるため、例えば特公昭54-24914あ
るいは特公昭62-56231に示されるごとく、それらの表面
にチタンの窒化物、炭化物、炭窒化物および酸化アルミ
ニウムの単層ないしは複層から成る硬質層を被覆した切
削工具部材も用いられている。(Prior Art) Conventionally, as a cutting tool base material, a constraint degree tool steel, a tungsten carbide based cemented carbide, a cermet or a ceramic is generally used, and in recent years, to impart higher wear resistance to them, for example, As shown in JP-B-54-24914 or JP-B-62-56231, a cutting tool member whose surface is coated with a hard layer composed of a single layer or multiple layers of titanium nitride, carbide, carbonitride and aluminum oxide is also available. It is used.
しかし、これらの工具部材は、例えば Al-Si合金、 FRP
などのようにその材料内に硬質物質を含む材料を高速で
切削した場合には耐摩耗性の不足から工具寿命が短く、
より高い耐摩耗性を持つ切削工具が求められていた。However, these tool components are, for example, Al-Si alloys, FRP
When a material containing a hard substance is cut at high speed, such as, the tool life is short due to lack of wear resistance,
There has been a demand for cutting tools having higher wear resistance.
これに対し、単結晶ダイヤモンドまたは焼結ダイヤモン
ド切削工具はダイヤモンドが現存する物質中で最高の高
度を持つことから上記の被削材の切削においても非常に
高い耐摩耗性を持つことが知られており、また被削材の
溶着も少ないという特徴を持っている。しかし、これら
のダイヤモンド切削工具は高価でありまた複雑形状に加
工することが難しい。On the other hand, single crystal diamond or sintered diamond cutting tools are known to have extremely high wear resistance even when cutting the above work materials, because diamond has the highest altitude among existing substances. In addition, it also has the characteristic that there is little welding of the work material. However, these diamond cutting tools are expensive and difficult to machine into complicated shapes.
近年ダイヤモンドの気相合成技術が進展し、熱フィラメ
ント法、直流放電 CVD法、マイクロ波放電法あるいは高
周波放電法などでダイヤモンドないしはダイヤモンド状
硬質炭素膜(以下ダイヤモンド膜と総称する)の合成が
行われるようになり、切削工具への応用も試みられてい
る。しかしながら、ダイヤモンド膜は従来のセラミック
ス硬質被膜に較べ基材との間の密着性が不足しているた
め、切削時に膜に強い応力がかかった場合、膜が基材か
ら剥離してしまうという問題点があった。In recent years, the vapor phase synthesis technology of diamond has progressed, and diamond or a diamond-like hard carbon film (hereinafter collectively referred to as a diamond film) is synthesized by a hot filament method, a direct current discharge CVD method, a microwave discharge method or a high frequency discharge method. As a result, application to cutting tools has also been attempted. However, the diamond film lacks the adhesion to the base material as compared with the conventional ceramic hard coating, so that the film peels off from the base material when a strong stress is applied to the film during cutting. was there.
(本発明が解決しようとする課題) ダイヤモンド膜は従来のセラミックス膜に較べ、工具基
材との間の密着性が低く剥離しやすいと言われている。
これはダイヤモンドが工具用基材との間で相互拡散層を
作りにくいこと、熱膨張係数が母材と大きく異なるため
ダイヤモンド合成時の基材の温度 700℃〜1200℃から室
温まで冷却した場合ダイヤモンド膜に大きな圧縮応力が
残っているためと考えられる。(Problems to be solved by the present invention) It is said that a diamond film has lower adhesion to a tool substrate and is more likely to be peeled off than a conventional ceramic film.
This is because it is difficult for diamond to form an interdiffusion layer with the base material for tools, and the coefficient of thermal expansion is significantly different from that of the base material. When the base material temperature during diamond synthesis is cooled from 700 ℃ to 1200 ℃ to room temperature. It is considered that a large compressive stress remains in the film.
本発明者らがダイヤモンド被覆を施した切削工具を用い
て種々の条件にて Al-Si合金の切削試験を行いダイヤモ
ンド膜の剥離の様子を調べた結果、刃先にかかる応力が
大きい場合および被削材の切削工具刃先への溶着の起こ
りやすい条件下でダイヤモンド膜の剥離が起きやすい傾
向のあることが判った。次いで、この試験で用いた切削
工具上のダイヤモンド膜を光学顕微鏡で観察したとこ
ろ、ダイヤモンド膜は自形面を持った多結晶から成り起
状の激しい表面構造を持っていた。The present inventors conducted a cutting test of an Al-Si alloy under various conditions using a cutting tool coated with diamond and examined the state of delamination of the diamond film. It was found that the peeling of the diamond film tends to occur under the condition that the welding of the material to the cutting tool cutting edge is likely to occur. Next, when the diamond film on the cutting tool used in this test was observed with an optical microscope, the diamond film was composed of polycrystals having a self-shaped surface and had a violent surface structure.
ダイヤモンド膜の成長過程を観察した場合、核発生後の
ダイヤモンド粒は時間とともに成長し、やがて付近のダ
イヤモンド粒と接触し膜を形成する。そして、膜となっ
た後はダイヤモンド粒の選択的な成長が起こり、膜の表
面から観察したダイヤモンド粒の平均粒径は増大し表面
粗さも増すのであるが、その過程の途中で新たなダイヤ
モンド粒の核発生が起こり、表面粗さの急激な増加は抑
えられる。しかし、自形面を持った高硬度のダイヤモン
ドから成る膜を合成する場合にはある程度膜の表面が粗
くなるのは避けがたい。When observing the growth process of the diamond film, the diamond grains after nucleation grow with time and eventually come into contact with nearby diamond grains to form a film. Then, after the film is formed, selective growth of diamond particles occurs, the average particle size of the diamond particles observed from the surface of the film increases, and the surface roughness also increases. Nucleation occurs, and a sudden increase in surface roughness is suppressed. However, when synthesizing a film made of high-hardness diamond having a self-shaped surface, it is unavoidable that the surface of the film becomes rough to some extent.
本発明者らはダイヤモンド膜がその表面に激しい起状を
持っているため、被削材の流れに対する摩擦抵抗が大き
くなり、膜が剥離しやすくなっているとともに被削材の
溶着をも助長していると判断した。そこで膜表面の起状
を少なくするため切削工具基体上へダイヤモンドの被覆
を行った後ダイヤモンドの微粉末を用いて基体表面をラ
ッピングにより鏡面に研磨し切削試験を行った。その結
果、切削工具刃先への被削材の溶着が焼結ダイヤモンド
と同じ程度となり切削工具寿命も格段に延びることが判
った。しかし、ダイヤモンド膜を被覆後切削工具表面を
さらに鏡面研磨する方法はダイヤモンド膜を研磨中に剥
離させる危険が大きく、また複雑な形状の工具にはこの
方法は適用できないなどの欠点があり実用化する上で問
題が多い。The present inventors have found that the diamond film has a sharp undulation on its surface, so that the frictional resistance to the flow of the work material increases, the film is easily separated, and the welding of the work material is also facilitated. I decided that. Therefore, in order to reduce the surface roughness of the film surface, the cutting tool substrate was coated with diamond, and then the substrate surface was polished to a mirror surface by lapping fine diamond powder to perform a cutting test. As a result, it was found that the welding of the work material to the cutting edge of the cutting tool was almost the same as that of the sintered diamond, and the life of the cutting tool was remarkably extended. However, the method of mirror-polishing the surface of the cutting tool after coating the diamond film has a large risk of peeling off the diamond film during polishing, and there is a drawback that this method cannot be applied to tools with complicated shapes and is put to practical use. There are many problems above.
(課題を解決するための手段) ダイヤモンド膜の表面の起状を小さくすることによって
切削工具刃先への被削材の溶着が減少し耐剥離性が向上
することから、本発明者らは切削工具基体表面に先ず自
形面を持った高硬度の多結晶ダイヤモンド膜を被覆し、
次いでその外層に自形面を持たないアモルファス硬質炭
素膜を被覆することによってその表面を平滑にすること
を考案するに到った。(Means for Solving the Problem) Since the welding of the work material to the cutting tool cutting edge is reduced and the peeling resistance is improved by reducing the surface roughness of the diamond film, the present inventors First, coat the surface of the substrate with a high-hardness polycrystalline diamond film having an automorphic surface,
Then, it was devised to make the surface smooth by coating the outer layer with an amorphous hard carbon film having no self-shaped surface.
ダイヤモンドのビッカース硬度が 7000〜10000kg/mm2で
あるのに対し、アモルファス硬質炭素膜はその合成条件
によって硬度が大きく変わり、そのビッカース硬度は10
00 kg/mm2 以下から約7000kg/mm2まで分布し、合成雰囲
気中に水素が含まれる場合には合成温度が低いほど膜内
に水素を多く含むようになる。また、ラマン分光器を用
いてラマンスペクトルを測定した場合、ダイヤモンドな
いしはダイヤモンド状硬質炭素膜がスペクトル中に少な
くとも1330cm-1付近にシヤープなピークを持つのに対
し、アモルファス硬質炭素膜は1450〜1660cm-1に最大値
を持つ半価幅の広いピークを有する。本発明のねらいと
するアモルファス硬質炭素膜はこのうちビッカース硬度
が2000kg/mm2以上のものでi-カーボンあるいはアモルフ
ァスダイヤと呼ばれ、切削工具に用いても十分に高い耐
摩耗性を示すものである。While the Vickers hardness of diamond is 7,000 to 10,000 kg / mm 2 , the hardness of the amorphous hard carbon film varies greatly depending on the synthesis conditions, and the Vickers hardness is 10
It is distributed from less than 00 kg / mm 2 to about 7,000 kg / mm 2 , and when hydrogen is contained in the synthesis atmosphere, the lower the synthesis temperature is, the more hydrogen is contained in the film. Also, when measured Raman spectrum with a Raman spectrometer, whereas with Shiyapu peak at least near 1330 cm -1 in the spectrum diamond or diamond-like hard carbon film, the amorphous hard carbon film 1450~1660Cm - It has a wide half-value peak with a maximum at 1 . The amorphous hard carbon film aimed at by the present invention has a Vickers hardness of 2000 kg / mm 2 or more and is called i-carbon or amorphous diamond, and shows sufficiently high wear resistance even when used for cutting tools. is there.
アモルファス炭素膜はまた自形面を持たない状態で合成
されるため、切削工具内層に被覆された自形面をダイヤ
モンド膜の起状を平滑にする効果があり、被削材の溶着
の減少および被削材と硬質被膜との間の摩擦抵抗の減少
が期待される。Since the amorphous carbon film is also synthesized without having a self-shaped surface, it has the effect of smoothing the origin of the diamond film on the self-shaped surface coated on the inner layer of the cutting tool, reducing the welding of the work material and A reduction in frictional resistance between the work material and the hard coating is expected.
超硬合金基体から成る切削工具上にダイヤモンド膜を被
覆して切削工具の寿命延長効果が認められるのは膜の厚
さが0.5μm以上の場合であるが、100μmを越えてダイ
ヤモンド膜を被覆しようとすると、超硬合金とダイヤモ
ンドの熱膨張係数が違うことからダイヤモンド膜を被覆
後部材を室温まで冷却する途中で膜が基体から剥離して
しまう。The effect of extending the life of the cutting tool by coating the cutting tool made of cemented carbide substrate with the diamond film is when the film thickness is 0.5 μm or more, but try to coat the diamond film beyond 100 μm. Then, since the cemented carbide and the diamond have different thermal expansion coefficients, the film peels off from the substrate during cooling of the member after coating the diamond film to room temperature.
そこで本発明者らは、この範囲内の厚さで超硬合金母材
から成る切削工具上へ直流防電 CVD法およびマイクロ波
放電法により自形面を持つダイヤモンド膜を合成し観察
した。その結果、ダイヤモンド粒の大きさと膜表面の粗
さは合成条件、基材上の位置および合成時間すなわち膜
厚によって変化するのであるが、膜厚をパラメータとし
て膜表面の粗さを与えると膜厚が2μm付近における起
状の幅は 0.1〜1μm、膜厚 10μm付近では 0.5〜2μ
m、膜厚が50μm付近では 2〜5μmであった。次い
で、これらのダイヤモンド膜の外層に高周波CVD 法にて
アモルファス硬質炭素膜をダイヤモンド膜の 1/2の厚さ
を目標に被覆したところ、その表面粗さがアモルファス
硬質炭素膜を被覆する前の膜 1/3以下に減少した。Therefore, the inventors of the present invention synthesized and observed a diamond film having a self-shaped surface on a cutting tool made of a cemented carbide base material with a thickness within this range by a DC antistatic CVD method and a microwave discharge method. As a result, the size of diamond grains and the roughness of the film surface change depending on the synthesis conditions, the position on the substrate, and the synthesis time, that is, the film thickness. Is 0.1 to 1 μm near 2 μm, and 0.5 to 2 μ near film thickness 10 μm.
m, and the film thickness was 2 to 5 μm in the vicinity of 50 μm. Next, when an amorphous hard carbon film was coated on the outer layer of these diamond films by a high frequency CVD method with the target of 1/2 the thickness of the diamond film, the surface roughness of the film before the amorphous hard carbon film was coated. It decreased to less than 1/3.
ダイヤモンド膜の外層に被覆するアモルファス硬質炭素
膜の厚さはダイヤモンド膜の表面粗さによって変えられ
るべきものであり、ダイヤモンド膜の表面粗さが0.5μ
mであればアモルファス硬質炭素膜の厚さは0.5μmで
基体表面が十分に滑らかとなるが、ダイヤモンド膜の厚
さが100μm付近ではその表面粗さが約5μmとなりこれ
を平滑にするためには25μmのアモルファス硬質炭素膜
を被覆する必要がある。The thickness of the amorphous hard carbon film coated on the outer layer of the diamond film should be changed according to the surface roughness of the diamond film.
If the thickness is m, the thickness of the amorphous hard carbon film is 0.5 μm and the surface of the substrate is sufficiently smooth. However, when the thickness of the diamond film is around 100 μm, the surface roughness is about 5 μm. It is necessary to coat an amorphous hard carbon film of 25 μm.
以下に本発明の具体的な実施例を示す。Specific examples of the present invention will be shown below.
(実施例) メタンおよび水素の混合ガスを真空槽内に導入し、該真
空槽内に備えたフィラメントと陽極の間に直流放電プラ
ズマを発生させた。陽極上に置いたWC-Co基超硬合金か
ら成るSNGA120408型の切削用チップにダイヤモンド膜の
被覆を行った。このときのダイヤモンドの合成条件はメ
タンの流量が10SCCM、水素の流量が 500SCCM、フィラメ
ントと基材の距離が 3cm、フィラメントの温度が約2100
℃、フィラメントと陽極間の電流が 3Aで 3時間合成を
行った。この試料を光学顕微鏡で調べたところダイヤモ
ンドは自形面を持った多結晶から成っており、その表面
粗さが約1μmであった。(Example) A mixed gas of methane and hydrogen was introduced into a vacuum chamber, and DC discharge plasma was generated between a filament and an anode provided in the vacuum chamber. A diamond film was coated on a SNGA120408 type cutting tip made of WC-Co based cemented carbide placed on the anode. The conditions for synthesizing diamond at this time are as follows: flow rate of methane is 10 SCCM, flow rate of hydrogen is 500 SCCM, distance between filament and substrate is 3 cm, and filament temperature is about 2100.
Synthesis was carried out for 3 hours at a current of 3 A between filament and anode. When this sample was examined by an optical microscope, diamond was composed of polycrystals having an automorphic surface, and its surface roughness was about 1 μm.
次いで、この基体上にメタンを原料とし、容量結合型高
周波プラズマ CVD装置を用いて150Wの出力で 3時間アモ
ルファス硬質炭素膜を被覆し観察したところ起状差が0.
5μm以下の滑らかな表面が得られた。Next, using methane as a raw material on this substrate and coating the amorphous hard carbon film at a power of 150 W for 3 hours using a capacitively coupled high-frequency plasma CVD apparatus, and observing, the origin difference was 0.
A smooth surface of 5 μm or less was obtained.
この本発明被覆切削用チップと前記の条件でダイヤモン
ド膜のみを被覆した切削用チップを用いて以下の条件で
切削試験を行った。A cutting test was conducted under the following conditions using the cutting tip of the present invention and the cutting tip coated only with the diamond film under the above conditions.
被削材 Al-Si合金(Siを13%含有) 切削速度 800m/min 切込み深さ 0.2mm 送り速度 0.15mm/rev 切削方式 乾式連続切削 この結果、ダイヤモンド膜のみを被覆した超硬チップが
1時間切削後刃先のダイヤモンド膜が剥離し逃げ面摩耗
が進行していたのに対し、本発明切削用チップは3時間
切削後も刃先の硬質被膜が残っており、刃先への被削材
の溶着もダイヤモンド膜のみを被覆した切削用チップに
較べて少なかった。Work material Al-Si alloy (containing 13% of Si) Cutting speed 800m / min Depth of cut 0.2mm Feed rate 0.15mm / rev Cutting method Dry continuous cutting As a result, carbide tip coated with diamond film is for 1 hour While the diamond film of the cutting edge was peeled off after cutting and flank wear was progressing, the cutting tip of the present invention still has a hard coating on the cutting edge even after cutting for 3 hours, and welding of the work material to the cutting edge is also possible. It was less than the cutting tip coated with only the diamond film.
切削試験の後、これらの切削用チップを切断しダイヤモ
ンド膜およびアモルファス硬質炭素膜の厚さを調べたと
ころ、本発明切削用チップはダイヤモンド膜の厚さが約
8μm、アモルファス硬質炭素膜の厚さが3μmであり、
ダイヤモンド膜のみを被覆した比較用チップの膜厚は約
8μmであった。After the cutting test, these cutting chips were cut and the thicknesses of the diamond film and the amorphous hard carbon film were examined.
8 μm, the thickness of the amorphous hard carbon film is 3 μm,
The thickness of the comparative chip coated with diamond film is about
It was 8 μm.
本実施例ではダイヤモンド膜の被覆を直流放電プラズマ
法にて行ったが、これは熱フィラメントを用いた CVD
法、マイクロ波ないしは高周波を用いた CVD法などの公
知の手段によって行うことができ、またアモルファス硬
質炭素膜の被覆も本実施例の他に直流放電法、マイクロ
波放電法などの公知の方法によって行うことができる。In this example, the coating of the diamond film was performed by the direct current discharge plasma method, which is a CVD method using a hot filament.
Method, a known method such as a CVD method using microwave or high frequency, and the coating of the amorphous hard carbon film by a known method such as a direct current discharge method and a microwave discharge method in addition to this embodiment. It can be carried out.
(効果) 本発明による硬質被膜被覆切削工具は、高い耐摩耗性を
持つダイヤモンド膜を内層に被覆し、外層にアモルファ
ス硬質炭素膜を被覆し表面を平滑にしたことにより耐溶
着性および耐剥離性が増し非鉄金属、焼結セラミック
ス、 FRPなどの複合材料の切削において長時間にわたり
優れた切削性能を維持することができる。(Effect) The hard coating-coated cutting tool according to the present invention has a diamond film having high wear resistance coated on the inner layer and an amorphous hard carbon film coated on the outer layer to make the surface smooth, thereby providing welding resistance and peeling resistance. It is possible to maintain excellent cutting performance for a long time in cutting non-ferrous metals, sintered ceramics, composite materials such as FRP.
Claims (3)
て、基材に接する最内層の被膜が自形面を持つ多結晶ダ
イヤモンドないしはダイヤモンド状炭素膜から成り、該
被膜の外層に自形面を持たないアモルファス状硬質炭素
膜を被覆したことを特徴とする硬質被膜被覆切削工具部
材。1. A cutting tool member coated with a hard coating, wherein the coating of the innermost layer in contact with the base material is a polycrystalline diamond or diamond-like carbon film having a self-shaped surface, and the outer layer of the coating has a self-shaped surface. A hard film-coated cutting tool member characterized by being coated with a non-crystalline hard carbon film.
モンド状炭素膜の厚さが 0.5〜100μmであり、アモル
ファス状硬質炭素膜の厚さが0.5μm〜25μmであるこ
とを特徴とする請求項1記載の硬質被膜被覆切削工具部
材。2. The diamond or diamond-like carbon film having a self-shaped surface has a thickness of 0.5 to 100 μm, and the amorphous hard carbon film has a thickness of 0.5 to 25 μm. Hard coating coated cutting tool parts.
ンを主成分とする超硬合金であることを特徴とする請求
項1記載の硬質被膜被覆切削工具。3. The hard coating-coated cutting tool according to claim 1, wherein the base body of the cutting tool member is a cemented carbide containing tungsten carbide as a main component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8409388A JPH0623431B2 (en) | 1988-04-07 | 1988-04-07 | Hard coating coated cutting tool parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8409388A JPH0623431B2 (en) | 1988-04-07 | 1988-04-07 | Hard coating coated cutting tool parts |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01259171A JPH01259171A (en) | 1989-10-16 |
JPH0623431B2 true JPH0623431B2 (en) | 1994-03-30 |
Family
ID=13820895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8409388A Expired - Lifetime JPH0623431B2 (en) | 1988-04-07 | 1988-04-07 | Hard coating coated cutting tool parts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0623431B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0353070A (en) * | 1989-07-20 | 1991-03-07 | Mitsubishi Materials Corp | Surface coated tool member having excellent wear resistance |
JP5488878B2 (en) * | 2009-09-17 | 2014-05-14 | 三菱マテリアル株式会社 | Hard carbon film coated cutting tool |
JP5590330B2 (en) * | 2011-02-07 | 2014-09-17 | 三菱マテリアル株式会社 | Diamond coated cutting tool |
JP5590334B2 (en) * | 2011-02-28 | 2014-09-17 | 三菱マテリアル株式会社 | Diamond coated cutting tool |
-
1988
- 1988-04-07 JP JP8409388A patent/JPH0623431B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01259171A (en) | 1989-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5648119A (en) | Process for making diamond coated tools and wear parts | |
JP3675577B2 (en) | Method for producing diamond-coated article | |
EP0413834B1 (en) | Diamond-covered member and process for producing the same | |
KR101065572B1 (en) | Diamond Membrane Cloth Tool and Manufacturing Method Thereof | |
CA1336704C (en) | Method of producing sintered hard metal with diamond film | |
EP0503822B2 (en) | A diamond- and/or diamond-like carbon-coated hard material | |
KR100193546B1 (en) | Ultra hard membrane coating member and manufacturing method thereof | |
US5626908A (en) | Method for producing silicon nitride based member coated with film of diamond | |
JPH0623431B2 (en) | Hard coating coated cutting tool parts | |
JP2006281361A (en) | Surface coated member and surface coated cutting tool | |
EP0549801A1 (en) | Diamond-covered member and production thereof | |
JPS62107068A (en) | Diamond coated cutting tool | |
JPH0818163B2 (en) | Alumina coating tool and manufacturing method thereof | |
JPH0710443B2 (en) | Cutting tip | |
JPH04280974A (en) | Boron nitride coated hard material | |
JP3212057B2 (en) | Diamond coated substrate and method for producing the same | |
JPS63306805A (en) | Diamond coated cutting tool | |
KR100576318B1 (en) | Method for Improving Surface Roughness of Diamond Coating Film for Cutting Tools | |
JPH01225774A (en) | High-hardness polycrystalline diamond tool | |
JPH06248422A (en) | Coated sintered compact and its production | |
RU2018411C1 (en) | Article, mainly cutting tool, containing sintered base of tungsten carbide base and diamond coating | |
JPH0623601A (en) | Diamond covered super hard alloy tool | |
JP2772494B2 (en) | Super hard film coated member and method of manufacturing the same | |
JP2734134B2 (en) | Diamond coated tool and manufacturing method thereof | |
JPH05125542A (en) | Manufacture of thin diamond film tool |