JPH0771668B2 - Method for removing trace organic substances in ultrapure water - Google Patents
Method for removing trace organic substances in ultrapure waterInfo
- Publication number
- JPH0771668B2 JPH0771668B2 JP61244872A JP24487286A JPH0771668B2 JP H0771668 B2 JPH0771668 B2 JP H0771668B2 JP 61244872 A JP61244872 A JP 61244872A JP 24487286 A JP24487286 A JP 24487286A JP H0771668 B2 JPH0771668 B2 JP H0771668B2
- Authority
- JP
- Japan
- Prior art keywords
- ultrapure water
- water
- activated carbon
- exchange resin
- ion exchange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Physical Water Treatments (AREA)
- Water Treatment By Sorption (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、電子工業、医薬品工業等で使用される超純水
中の微量有機物の除去方法に関する。TECHNICAL FIELD The present invention relates to a method for removing a trace amount of organic matter from ultrapure water used in the electronic industry, the pharmaceutical industry and the like.
(従来の技術) 上記の分野で使用される超純水は各種イオンやコロイド
物質とともに有機物も極度に除去したものであることが
要求される。特に、IC、LSI、超LSIを製造する電子工業
において、半導体ウエハーの洗浄水として使用する超純
水は、有機物が水中に残存すると、鏡面加工されたシリ
コンウエハーに炭化ケイ素のシミを作ったり、有機物を
栄養源として供給配管内等で繁殖した細菌類が洗浄中に
放出されてサブミクロンオーダーの回路を短絡させる等
のトラブルを生じ、製品の歩留りを左右することになる
ので、超純水中の微量有機物の除去対策がこの分野にお
ける重要な課題となっている。(Prior Art) The ultrapure water used in the above fields is required to have various organic substances as well as various ions and colloidal substances. In particular, in the electronic industry that manufactures ICs, LSIs, and VLSIs, ultrapure water used as cleaning water for semiconductor wafers, if organic matter remains in the water, creates stains of silicon carbide on the mirror-finished silicon wafer, Bacteria that have grown in the supply pipes, etc., using organic matter as a nutrient source are released during cleaning, causing problems such as short-circuiting of submicron-order circuits, which affects the yield of products. Countermeasures for the removal of trace organic substances have become an important issue in this field.
超純水は、逆浸透、イオン交換、精密濾過等の処理操作
を経て得られた1次純水を、さらに精製して製造され
る。この超純水精製工程は、例えば第2図のフローのよ
うに、(1)で示す1次純水装置系からの1次純水を貯
槽(2)に受入れ、それから水が停滞しないようにポン
プ(3)でループ配管系(4)に常時循環する。そして
ループ配管系に配置した紫外線殺菌器(5)、非再生型
イオン交換器(6)、精密濾過器(7)、限界濾過器
(8)からなる精製装置(9)に循環通水することによ
り精製したものを超純水としてその下流側から各分岐管
(10)を通してユースポイントに供給している。分岐管
(10)から系外に取出した超純水の量だけ1次純水を液
面制御により貯槽(2)に補給する。Ultrapure water is produced by further refining primary pure water obtained through processing operations such as reverse osmosis, ion exchange, and microfiltration. In this ultrapure water purification step, for example, as shown in the flow chart of FIG. 2, the primary pure water from the primary pure water system shown in (1) is received in the storage tank (2) so that the water does not become stagnant. The pump (3) constantly circulates in the loop piping system (4). Then, circulating water is passed through a purification device (9) consisting of an ultraviolet sterilizer (5), a non-regenerative ion exchanger (6), a microfilter (7), and a limit filter (8) arranged in a loop piping system. The purified water is supplied as ultrapure water from the downstream side to each point of use through each branch pipe (10). The primary pure water is replenished to the storage tank (2) by controlling the liquid level by the amount of the ultrapure water taken out of the system from the branch pipe (10).
このようにして精製した超純水は、各種イオンおよびコ
ロイド物質がほぼ完全に除去されているので、比抵抗値
については、H2Oのみの理論純水の18.24に近い17〜18M
Ω−cmが容易に得られるが、有機物については、精製工
程内のイオン交換樹脂や各種の有機材料からの有機物の
溶出があるため、超純水中のTOC(全有機炭素)の量を
数10ppb以下とすることは困難である。In the ultrapure water purified in this way, various ions and colloidal substances have been almost completely removed, so the specific resistance value is 17 to 18 M, which is close to the theoretical pure water of H 2 O of 18.24.
Although Ω-cm can be easily obtained, the amount of TOC (total organic carbon) in the ultrapure water can be calculated as a few because the elution of organic substances from the ion exchange resin and various organic materials in the purification process may occur. It is difficult to keep it below 10 ppb.
(発明が解決しようとする問題点) 超純水中には、精製装置からのリークやユースポイント
からの逆汚染によって、常に細菌類が侵入する可能性が
あり、細菌類は数10ppbの有機物を栄養源として、ユー
スポイントへの配管等の水の流れが停滞する配管の内壁
に付着して増殖するので、上記のような超純水精製工程
では、定期的に薬品または熱水による細菌処理が行われ
ている。(Problems to be solved by the invention) In ultrapure water, bacteria may constantly invade due to leaks from the purification equipment and reverse pollution from the point of use. As a nutrient source, the flow of water such as piping to the use point stagnates and adheres to the inner wall of the piping to grow, so in the above ultrapure water purification process, bacterial treatment with chemicals or hot water is regularly performed. Has been done.
ところが薬品殺菌は、薬品を各配管に送り込んで保持す
るのに繁雑な操作と時間を要し薬品の洗浄排出のため多
量の超純水を消費する。一方熱水殺菌は、イオン交換樹
脂や有機材料からの有機物の溶出量が増加することとな
るため、殺菌類の繁殖に対しては、いずれも根本的な対
策ではない。However, chemical sterilization requires a complicated operation and time to feed and retain the chemicals in each pipe, and consumes a large amount of ultrapure water for cleaning and discharging the chemicals. On the other hand, hot water sterilization increases the elution amount of organic substances from the ion exchange resin and the organic material, and therefore is not a fundamental measure against the propagation of sterilization products.
従って、超純水中での殺菌数の繁殖の阻止、繁殖原因と
なる有機物の除去について、安価で確実な処理方法の確
立が望まれている次第である。Therefore, it has been desired to establish an inexpensive and reliable treatment method for preventing the breeding of the sterilization number in ultrapure water and removing the organic substances that cause the breeding.
水中の有機物除去方法については、従来から活性炭吸着
法や逆浸透処理法がある。超純水の精製工程で活性炭を
用いると有機物はよく吸着除去できるものの、活性炭か
らの、無機物溶出によって超純水の比抵抗値が著しく低
下させられ、また活性炭床が細菌類の温床となって後続
の限外濾過器に目づまりを生じさせる等の問題がある。As a method for removing organic matter in water, there are conventionally known an activated carbon adsorption method and a reverse osmosis treatment method. When activated carbon is used in the purification process of ultrapure water, organic matter can be adsorbed and removed well, but the resistivity of ultrapure water is significantly reduced by elution of inorganic substances from activated carbon, and the activated carbon bed becomes a hotbed for bacteria. There are problems such as clogging of the subsequent ultrafilter.
一方、逆浸透処理法は、超純水中の有機物は比較的低分
子のものが多いため逆浸透膜により有機物を充分に阻止
することが期待できず、また逆浸透処理法は高圧運転と
なるためエネルギー消費が大きく、逆浸透膜面に細菌類
が付着してさらに圧力損失を増加させる危険性もある。On the other hand, in the reverse osmosis treatment method, many organic compounds in ultrapure water have relatively low molecular weight, so it cannot be expected that the reverse osmosis membrane sufficiently blocks the organic substances, and the reverse osmosis treatment method requires high-pressure operation. Therefore, energy consumption is large, and there is a risk that bacteria will adhere to the reverse osmosis membrane surface and further increase pressure loss.
(問題点を解決するための手段) 本発明は、上記諸問題の解決について種々検討した結果
なされたものであって、超純水中の有機物はその殆どが
比抵抗上昇のために使用する非再生型イオン交換樹脂部
から溶出した有機物である点に着目し、超純水を精製す
る過程において、イオン交換樹脂と活性炭との混合床に
通水して各種イオンとともに有機物も同時に除去するこ
とを特徴としている。(Means for Solving Problems) The present invention has been made as a result of various studies on solving the above-mentioned problems, and most of the organic substances in ultrapure water are used for increasing the specific resistance. Focusing on the fact that it is an organic substance eluted from the regenerated ion exchange resin part, in the process of purifying ultrapure water, it is necessary to pass water through the mixed bed of the ion exchange resin and activated carbon to simultaneously remove the organic substances together with various ions. It has a feature.
実例に即して具体的に説明すると、第1図は本発明方法
の実施のためのフローの1例を示し、1次純水装置系
(1)からの1次純水を貯槽(2)に受入れ、これをポ
ンプ(3)でループ配管系(4A)に常時循環する。この
ループ配管系(4A)には超純水精製装置(9A)が配置さ
れ、循環水は紫外線殺菌器(5)の通過後に、非再生型
イオン交換器に代え器内にイオン交換樹脂と有効径0.5m
mの球形の活性炭とを体積比で例えば1:1の割合で混合充
填した混合塔(11)を通過させる。その後、精密濾過器
(7)、限外濾過器(8)を通過させ、超純水として各
分岐管(10)からユースポイントに供給する。分岐管
(10)から系外に取出した超純水の量だけ1次純水を液
面制御によって貯槽(2)に補給する。More specifically, referring to an actual example, FIG. 1 shows an example of a flow for carrying out the method of the present invention, and a primary pure water from a primary pure water system (1) is stored in a storage tank (2). The pump (3) constantly circulates it in the loop piping system (4A). An ultrapure water purifying device (9A) is arranged in this loop piping system (4A), and the circulating water passes through the ultraviolet sterilizer (5) and is replaced with a non-regenerative ion exchanger, and the ion exchange resin is effectively used in the device. Diameter 0.5m
It is passed through a mixing tower (11) in which m-shaped spherical activated carbon is mixed and packed in a volume ratio of, for example, 1: 1. Then, it is passed through the microfilter (7) and the ultrafilter (8), and supplied as ultrapure water from each branch pipe (10) to the use point. The primary pure water is replenished to the storage tank (2) by the liquid level control by the amount of the ultrapure water taken out of the system from the branch pipe (10).
混合塔(11)内に混合充填する活性炭としては、破砕さ
れにくく、摩耗の少ない成型活性炭を使用し、イオン交
換樹脂と混合する前に、あらかじめ超純水で充分に洗浄
し、灰分等に起因する溶出成分をできるだけ除去してお
くことが望ましい。As the activated carbon to be mixed and filled in the mixing tower (11), molded activated carbon that is hard to be crushed and has little wear is used. Before mixing with the ion-exchange resin, it is thoroughly washed with ultrapure water to cause ash content. It is desirable to remove as much of the eluted components as possible.
混合塔(11)は第1図のように単独設置する以外に、第
2図の非再生型イオン交換器(6)の出口側に追加設置
してもよく、あるいは、非再生型イオン交換器(6)、
紫外線殺菌器(5)、混合塔(11)の順に配置して、非
再生型イオン交換器(6)から溶出する有機物の一部を
紫外線で分解した後、混合塔(11)に通水するようにし
てもよい。また水質条件等によりイオン交換樹脂と活性
炭との混合比を変えて実施することもできる。The mixing tower (11) may be additionally installed on the outlet side of the non-regenerative ion exchanger (6) of FIG. 2 instead of being installed alone as shown in FIG. (6),
The ultraviolet sterilizer (5) and the mixing tower (11) are arranged in this order, and a part of the organic substances eluted from the non-regenerative ion exchanger (6) are decomposed by ultraviolet rays, and then water is passed through the mixing tower (11). You may do it. It is also possible to change the mixing ratio of the ion exchange resin and the activated carbon depending on the water quality conditions and the like.
(作用) 混合塔(11)のイオン交換樹脂と活性炭との混合床内で
は、超純水中の各種イオンおよび活性炭から溶出した無
機物をイオン交換樹脂が捕捉し、イオン交換樹脂その他
の有機材料から溶出した有機物を活性炭が捕捉するの
で、イオン交換樹脂および活性炭がもつ作用が相互に補
完しあう形となって、無機物も有機物も同時に除去され
る。また超純水中でイオン交換樹脂に菌の吸着作用およ
び殺菌作用があることが知られており、混合床内での殺
菌繁殖防止の効果も期待できる。(Function) In the mixing bed of the ion exchange resin and the activated carbon in the mixing tower (11), the ions exchanged in the ultrapure water and the inorganic substances eluted from the activated carbon are captured by the ion exchange resin and separated from the ion exchange resin and other organic materials. Since the activated carbon captures the eluted organic matter, the actions of the ion exchange resin and the activated carbon complement each other, and the inorganic matter and the organic matter are simultaneously removed. Further, it is known that the ion exchange resin has an action of adsorbing bacteria and a bactericidal action in ultrapure water, and an effect of preventing sterilization and breeding in the mixed bed can be expected.
(実施例) 次に本発明の実施例を比較例とともに示す。(Example) Next, the Example of this invention is shown with a comparative example.
〔A〕比較例I 第2図に示すフローにより、比抵抗2〜15MΩ〜cm、TOC
100〜700ppbの1次純水を補給し、塔形の非再生型イオ
ン交換器(6)内にアンオン交換樹脂とカチオン交換樹
脂とを混合充填し、SV5〜50/Hの流速で循環通水した。[A] Comparative Example I Specific resistance of 2 to 15 MΩ to cm, TOC
Replenish primary pure water of 100 to 700 ppb, mix and fill anion-exchange resin and cation-exchange resin in a tower-shaped non-regeneration type ion exchanger (6), and circulate water at a flow rate of SV5 to 50 / H. did.
この場合、得られた超純水の比抵抗は17〜18MΩ−cmで
あるがTOCは50〜150ppb(平均100ppb)程度にしかなら
ない。In this case, the specific resistance of the ultrapure water obtained is 17 to 18 MΩ-cm, but the TOC is only about 50 to 150 ppb (average 100 ppb).
〔B〕比較例II 第2図のフローの非再生型イオン交換器(6)の出口側
に活性炭のみの充填塔(図示せず)を設置し、比較例I
と同条件で通水した。[B] Comparative Example II A packed tower (not shown) containing only activated carbon was installed on the outlet side of the non-regenerative ion exchanger (6) in the flow of FIG.
Water was passed under the same conditions.
この場合の超純水は、TOCは比較例Iの1/4〜1/5に減少
するものの、活性炭からの無機物の溶出により比抵抗は
4MΩ−cmにまで低下した。In the ultrapure water in this case, the TOC was reduced to 1/4 to 1/5 of that of Comparative Example I, but the specific resistance was increased due to the elution of the inorganic substances from the activated carbon.
It dropped to 4 MΩ-cm.
〔C〕本発明実施例 第1図に示すフローに比較例I、IIの非再生型イオン交
換塔(6)と同一形状の混合塔(11)内に混合比1:1の
イオン交換樹脂と活性炭とを混合充填し、SV5〜80/H
(平均40/H)の流速で循環通水して本発明方法を実施し
た。[C] Inventive Example In the flow chart shown in FIG. 1, in the mixing tower (11) having the same shape as the non-regenerative ion exchange tower (6) of Comparative Examples I and II, an ion exchange resin having a mixing ratio of 1: 1 was used. SV5 ~ 80 / H mixed and filled with activated carbon
The method of the present invention was carried out by circulating water at a flow rate of (average 40 / H).
超純水の比抵抗は18〜18.2MΩ−cmに向上し、TOCは5〜
15ppb(平均10ppb)にまで低減された。The resistivity of ultrapure water has been improved to 18-18.2 MΩ-cm, and the TOC is 5-
It was reduced to 15ppb (10ppb on average).
この場合、比較例Iと比較して、イオン交換樹脂が半分
の量になっているにもかかわらず、比抵抗値がこのよう
に向上するのは、有機物の中に荷電性のものが含まれて
おり、これが活性炭で吸着除去されるためであると考え
られる。また上記循環流速の範囲では、流速変化が処理
水質に与える影響は殆どなく、3ヶ月の運転継続後も混
合塔(11)の超純水精製能力は変化していない。このこ
とから、混合塔(11)内でイオン交換樹脂および活性炭
がもつ作用の相乗効果が充分に発揮され、超純水の比抵
抗を低下させることなく有機物が吸着除去されることが
確認された。In this case, as compared with Comparative Example I, even though the amount of the ion-exchange resin is half, the reason why the specific resistance value is improved in this way is that the organic substance contains a chargeable substance. It is considered that this is because this is adsorbed and removed by activated carbon. In the range of the circulation flow rate, the change in flow rate has almost no effect on the quality of treated water, and the ultrapure water purification capacity of the mixing tower (11) does not change even after 3 months of operation. From this, it was confirmed that the synergistic effect of the action of the ion exchange resin and the activated carbon was sufficiently exhibited in the mixing tower (11), and the organic matter was adsorbed and removed without lowering the specific resistance of the ultrapure water. .
(発明の効果) 以上に説明したとおり、本発明の方法によると、従来の
超純水精製工程の中に、イオン交換樹脂と活性炭とを混
合充填した混合塔(11)を設置するだけで、両者の本来
の有効作用が発揮され付随する悪質化作用を互に是正し
合う相乗効果が生じて、超純水の純度が著しく向上し、
微量有機物に起因する細菌類の繁殖が抑制されるので、
その分だけ殺菌洗浄の必要頻度を低下させることができ
る。(Effect of the invention) As described above, according to the method of the present invention, in the conventional ultrapure water purification step, simply by installing the mixing tower (11) in which the ion exchange resin and the activated carbon are mixed and packed, The original effective effect of both is exerted, and the synergistic effect of mutually correcting the accompanying deteriorating effect occurs, and the purity of ultrapure water is significantly improved.
Since the growth of bacteria caused by trace organic substances is suppressed,
The required frequency of sterilization cleaning can be reduced accordingly.
第1図は本発明の超純水中の微量有機物の除去方法の実
施例を説明するためのロー線図、第2図は従来技術の超
純水精製工程のフロー線図である。 (1)……1次純水装置系、(2)……貯槽、(3)…
…ポンプ、(4)(4A)……ループ配管系、(5)……
紫外線殺菌器、(6)……非再生型イオン交換器、
(7)……精密濾過器、(8)……限外濾過器、(9)
(9A)……精製装置、(10)……分岐管、(11)……混
合塔。FIG. 1 is a row diagram for explaining an embodiment of a method for removing a trace amount of organic substances in ultrapure water according to the present invention, and FIG. 2 is a flow chart of a conventional ultrapure water purification process. (1) …… Primary pure water system, (2) …… Storage tank, (3)…
… Pump, (4) (4A) …… Loop piping system, (5) ……
UV sterilizer, (6) …… Non-regenerative ion exchanger,
(7) ... Microfilter, (8) ... Ultrafilter, (9)
(9A) …… Refining equipment, (10) …… Branching pipe, (11) …… Mixing tower.
Claims (2)
いて、精製過程の水をイオン交換樹脂と活性炭との混合
床に通水することを特徴とする超純水中の微量有機物の
除去方法。1. A trace amount in ultrapure water characterized in that, in the process of purifying primary pure water into ultrapure water, water in the purification process is passed through a mixed bed of ion exchange resin and activated carbon. How to remove organic matter.
次純水が循環するループ配管精製系において行うととも
に、前記混合床を非再生型イオン交換樹脂と活性炭とを
混合充填した混合塔としてループ配管精製系内に配置し
て循環通水することにより、循環水中の各種イオンの除
去と同時に有機物の吸着除去がなされるようにした特許
請求の範囲第1項記載の超純水中の微量有機物の除去方
法。2. A process of purifying primary pure water into ultrapure water
Performed in a loop piping purification system in which the next pure water circulates, and by circulating water by arranging the mixed bed in the loop piping purification system as a mixing tower in which a non-regenerative ion exchange resin and activated carbon are mixed and packed, The method for removing a trace amount of organic matter in ultrapure water according to claim 1, wherein the removal of various ions in the circulating water is carried out at the same time as the adsorption of organic matter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61244872A JPH0771668B2 (en) | 1986-10-14 | 1986-10-14 | Method for removing trace organic substances in ultrapure water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61244872A JPH0771668B2 (en) | 1986-10-14 | 1986-10-14 | Method for removing trace organic substances in ultrapure water |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6397284A JPS6397284A (en) | 1988-04-27 |
JPH0771668B2 true JPH0771668B2 (en) | 1995-08-02 |
Family
ID=17125253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61244872A Expired - Lifetime JPH0771668B2 (en) | 1986-10-14 | 1986-10-14 | Method for removing trace organic substances in ultrapure water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0771668B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0696147B2 (en) * | 1989-05-15 | 1994-11-30 | 東京有機化学工業株式会社 | Method for producing ultrapure water using ion exchange resin composition |
FR2896792B1 (en) * | 2006-01-27 | 2008-07-18 | Millipore Corp | SYSTEM AND METHOD FOR PURIFYING WATER |
FR2896793B1 (en) | 2006-01-27 | 2008-08-08 | Millipore Corp | SYSTEM AND METHOD FOR PURIFYING WATER |
US20160220958A1 (en) * | 2013-10-04 | 2016-08-04 | Kurita Water Industries Ltd. | Ultrapure water production apparatus |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4430226A (en) * | 1981-03-09 | 1984-02-07 | Millipore Corporation | Method and apparatus for producing ultrapure water |
JPS60119993U (en) * | 1984-01-19 | 1985-08-13 | 株式会社クラレ | Sterile water supply device |
JPS61103594A (en) * | 1984-10-26 | 1986-05-22 | Ebara Infilco Co Ltd | Manufacture of extremely pure demineralized water |
-
1986
- 1986-10-14 JP JP61244872A patent/JPH0771668B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6397284A (en) | 1988-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5833846A (en) | High-purity water producing apparatus utilizing boron-selective ion exchange resin | |
KR100209202B1 (en) | Method and apparatus for waste water treatment | |
US5147605A (en) | Method for the sterilization of ultrapure water line | |
KR100251649B1 (en) | Sterilizing composition for manufacturing high-purity water for using semiconductor device fabrication and sterilizing method of high-purity water manufacturing apparatus by using the sterilizing composition | |
WO1996003350A1 (en) | Method of manufacturing pure water or ultrapure water and apparatus for manufacturing the same | |
JP2008272713A (en) | Method and apparatus for producing ultrapure water | |
JP3646900B2 (en) | Apparatus and method for treating boron-containing water | |
JPH11114596A (en) | Production of ultrapure water and ultrapure water producing device | |
JP3200314B2 (en) | Organic wastewater treatment equipment | |
JPH0771668B2 (en) | Method for removing trace organic substances in ultrapure water | |
JPS62110795A (en) | High purity water production equipment | |
JPS6336890A (en) | Apparatus for producing high-purity water | |
WO2009116479A1 (en) | Method for washing water supply pipeline of water-treating system | |
US4935064A (en) | Iodine sterilization of deionized water in semiconductor processing | |
JP3966482B2 (en) | Method for adjusting specific resistance of ultrapure water and pure water production apparatus using the same | |
JPH0632821B2 (en) | Method for suppressing the growth of microorganisms in pure water | |
US4219414A (en) | Method for fluid purification and deionization | |
JP3998997B2 (en) | Disinfection method of ultrapure water supply pipe | |
JPS62254805A (en) | Method for washing terminal reverse-osmosis membrane device | |
TWI337982B (en) | ||
JPH05134094A (en) | Elimination method and system of organic impurities in condensate | |
JPS6331592A (en) | Method for making ultrapure water | |
JPH0592183A (en) | Sterilization of actrivated carbon | |
JPS63141694A (en) | Production of ultra-pure water | |
JPS61111190A (en) | Treatment of feed water treating device |