JPH075923B2 - High alloy steel powder for powder metallurgy with excellent compressibility and formability - Google Patents
High alloy steel powder for powder metallurgy with excellent compressibility and formabilityInfo
- Publication number
- JPH075923B2 JPH075923B2 JP63075955A JP7595588A JPH075923B2 JP H075923 B2 JPH075923 B2 JP H075923B2 JP 63075955 A JP63075955 A JP 63075955A JP 7595588 A JP7595588 A JP 7595588A JP H075923 B2 JPH075923 B2 JP H075923B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- steel powder
- steel
- formability
- alloy steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Powder Metallurgy (AREA)
Description
【発明の詳細な説明】 <産業上の利用分野> 本発明は、耐熱焼結合金鋼部品などを粉末冶金法によっ
て製造する際に用いられる、Co含有の高合金鋼粉に関
し、その圧縮性および成形性を改善したものである。DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a high alloy steel powder containing Co, which is used when a heat-resistant sintered alloy steel part or the like is manufactured by powder metallurgy. It has improved moldability.
<従来の技術> 焼結合金鋼は、自動車部品などに盛んに使用されてお
り、最近では高合金組成の部品も増加してきた。重要な
用途に、耐熱部品があり、自動車エンジンの排気側弁座
リングなどが実用化している。これらの耐熱部品は、合
金元素としてCoを用いることが多く、たとえば6.5%
(重量%、以下同様)Coを含有する合金鋼粉を原料とし
ている。耐熱性向上のためには、さらに多量のCo添加が
必要であることが多く、7〜25%のCoを含む焼結合金鋼
が検討されている。Coが7%以上になると、今までのプ
リアロイ鋼粉では、鋼粉粒子が硬くなるため、鋼粉の圧
縮性と成形性が劣化し、部品製造上大きな問題となる。
一方、鉄粉と合金元素の粉末、たとえばCo粉を混合し
て、いわゆる混粉法で部品を製造すれば、粉末の圧縮性
においては問題がないが、焼結時の均一拡散合金化をね
らって、Coの微粉を用いると、粉末の流れ性が悪く、成
形性が極端に劣化して、圧粉体の欠損がひんぱんに生じ
る問題がおきる。<Prior Art> Sintered alloy steel is widely used for automobile parts and the like, and recently, parts having a high alloy composition have been increasing. Heat-resistant parts are an important application, and exhaust valve seat rings for automobile engines are being put to practical use. These heat-resistant parts often use Co as an alloying element, for example 6.5%.
(Wt%, the same applies below) Alloy steel powder containing Co is used as a raw material. In order to improve heat resistance, it is often necessary to add a larger amount of Co, and a sintered alloy steel containing 7 to 25% Co has been studied. When the Co content is 7% or more, the steel particles of the pre-alloyed steel powder up to now become hard, so that the compressibility and the formability of the steel powder are deteriorated, which is a serious problem in the production of parts.
On the other hand, if iron powder and alloy element powder, for example, Co powder, are mixed to produce a component by the so-called mixed powder method, there is no problem in the compressibility of the powder, but it is aimed at uniform diffusion alloying during sintering. If fine Co powder is used, the flowability of the powder is poor, the formability is extremely deteriorated, and defects of the green compact frequently occur.
これらの点を解決するため、母合金法と称して、Co含有
量の更に高いFe−Co合金粉を純鉄粉等と混合して用いる
方法が考えられ、類似の技術が特公昭61−36043号にも
見られるが、Co以外の添加元素も含めて、優れた組成の
母合金法はこれまで存在しなかった。In order to solve these points, a method called a mother alloy method, in which a Fe-Co alloy powder having a higher Co content is mixed with pure iron powder, etc., is considered, and a similar technique is disclosed in Japanese Patent Publication No. Sho 61-36043. As can be seen in No. 6, there is no master alloy method with an excellent composition including additive elements other than Co until now.
ところで溶製材料の耐熱合金鋼に用いられる元素は、C
o,Cr,Ni,Mo,Vなどだが、粉末冶金の場合、焼結までの過
程で難還元性の酸化物が形成されると、還元されずに部
品の品質を劣化させるので、その酸化物がFeの酸化物よ
り易還元性の元素であるCo,Ni,Moなどが好まれて多用さ
れる。ここで、Niの一部は等重量のCuで、Moの一部は2
倍重量のWで置き換えることができる。現在、焼結鋼の
組成として検討されることが多いのは、Co:3〜25%,Ni:
0.2〜10%,Mo:0.2〜15%である。CuやWを含む時は、Ni
をNi+Cu(Ni含有量とCu含有量との和を示す。以下同
様)で置きかえることができ、また、MoをMo+1/2W(Mo
含有量とW含有量の1/2との和を示す。以下同様)で置
きかえることができる。By the way, the element used in the heat-resisting alloy steel is C
O, Cr, Ni, Mo, V, etc., but in the case of powder metallurgy, if a non-reducible oxide is formed in the process up to sintering, the quality of parts will be deteriorated without being reduced. However, elements such as Co, Ni, and Mo, which are easily reducing elements, are preferred over oxides of Fe and are often used. Here, part of Ni is equal weight Cu and part of Mo is 2
It can be replaced with double weight W. Currently, the composition of sintered steel is often studied as Co: 3 to 25%, Ni:
0.2-10%, Mo: 0.2-15%. Ni when Cu or W is included
Can be replaced by Ni + Cu (the sum of Ni content and Cu content. The same applies below), and Mo can be replaced by Mo + 1 / 2W (Mo
The sum of the content and 1/2 of the W content is shown. The same applies below).
<発明が解決しようとする課題> このような状況に鑑み、本発明はこのような組成範囲の
合金元素を含み、しかもCo含有量が3〜25%にわたっ
て、圧縮性および成形性に優れた合金鋼粉を提供するも
のである。<Problems to be Solved by the Invention> In view of such a situation, the present invention includes an alloy element having such a composition range and a Co content of 3 to 25%, which is excellent in compressibility and formability. It provides steel powder.
<課題を解決するための手段> 本発明は、重量割合で、Co:10〜36%,Ni+Cu:0.2〜20
%,Mo+1/2W:0.15%以下を含有し、残部がFeおよび不可
避的不純物からなる組成範囲の合金鋼粉と、Mo+1/2W:
0.2〜19%,Co+Ni+Cu:2%以下を含有し、残部がFeおよ
び不可避的不純物からなる組成範囲の合金鋼粉との混合
粉で、必要に応じて粉末冶金用純鉄粉も混合でき,その
平均組成がCo:3〜25%,Ni+Cu:0.2〜10%,Mo+1/2W:0.2
〜15%の範囲にあり、残部がFeおよび不可避的不純物か
らなることを特徴とする圧縮性および成形性に優れる粉
末冶金用高合金鋼粉である。但し、Ni+CuはNiとCuの含
有量の和、Mo+1/2WはMoの含有量とWの含有量の半分の
和、Co+Ni+CuはCo,NiおよびCuの含有量の和のそれぞ
れ表示である。<Means for Solving the Problems> In the present invention, by weight ratio, Co: 10 to 36%, Ni + Cu: 0.2 to 20
%, Mo + 1 / 2W: 0.15% or less, with the balance being alloy steel powder with a composition range consisting of Fe and unavoidable impurities, and Mo + 1 / 2W:
0.2 to 19%, Co + Ni + Cu: 2% or less, the balance is a mixed powder with alloy steel powder with a composition range consisting of Fe and unavoidable impurities, and pure iron powder for powder metallurgy can be mixed if necessary. Average composition: Co: 3-25%, Ni + Cu: 0.2-10%, Mo + 1 / 2W: 0.2
It is a high alloy steel powder for powder metallurgy having excellent compressibility and formability, characterized by being in the range of up to 15% and the balance being Fe and inevitable impurities. However, Ni + Cu is the sum of the contents of Ni and Cu, Mo + 1 / 2W is the sum of the contents of Mo and half of the content of W, and Co + Ni + Cu is the sum of the contents of Co, Ni and Cu.
<作用> 以下、本発明の限定範囲の根拠を詳細に説明する。<Operation> The grounds for the limited scope of the present invention will be described in detail below.
まず、第1鋼粉のCo量を10〜36%とするが、これは後述
する実施例に示すように、最終組成を一定とした時、混
合合金鋼粉の圧縮性と成形性が、最適となるために選定
している。最終組成が与えられた時、第1鋼粉のCoが10
%未満であると、第1鋼粉よりも柔かい第2鋼粉の配合
割合が必然的に小さくなるので、総体的な圧縮性と成形
性が劣化する。一方でCoが36%を超えると、第1鋼粉そ
のものが硬くなりすぎて、これも圧縮性と成形性が劣化
する原因となる。適切な範囲は10〜36%である。First, the Co content of the first steel powder is set to 10 to 36%. This is because the compressibility and formability of the mixed alloy steel powder are optimal when the final composition is constant, as shown in the examples described later. Has been selected. When the final composition is given, the Co of the first steel powder is 10
If it is less than%, the blending ratio of the second steel powder, which is softer than that of the first steel powder, is inevitably small, and overall compressibility and formability deteriorate. On the other hand, when Co exceeds 36%, the first steel powder itself becomes too hard, which also causes deterioration of compressibility and formability. A suitable range is 10-36%.
第1鋼粉のNi+Cu量は、0.2〜20%とする。The Ni + Cu content of the first steel powder is 0.2 to 20%.
Ni+Cu量の下限は、最終焼結材料のNi+Cuの下限量を確
保するため、自動的に定められる。上限は、Coと同様、
圧縮性と成形性を向上させる範囲として定められる。The lower limit of the amount of Ni + Cu is automatically determined to secure the lower limit of Ni + Cu in the final sintered material. The upper limit is the same as Co
It is defined as the range in which the compressibility and the moldability are improved.
第1鋼粉には、基本的にMoやWを含有しないことが望ま
しい。これは本発明者らの検討の結果の知見に基づくも
ので、本発明の重要なポイントである。すなわち、Moや
Wは、それ自体を鉄粉に合金化しても、あまり圧縮性や
成形性を損わないが、CoやNiあるいはCuが合金化する
と、相乗効果によって、格段にそれらの劣化が著しくな
るのである。後述の実施例で、適正範囲が具体的にデー
タとして示されるが、第1鋼粉のMo+1/2Wの上限量は0.
15%である。これを超えると、圧縮性と成形性の低下が
顕著になる。Basically, it is desirable that the first steel powder does not contain Mo or W. This is based on the findings of the study conducted by the present inventors and is an important point of the present invention. That is, Mo and W do not impair the compressibility and formability even if they are alloyed with iron powder themselves, but when Co, Ni, or Cu is alloyed, their deterioration is markedly increased due to a synergistic effect. It will be remarkable. In the examples described later, the proper range is specifically shown as data, but the upper limit of Mo + 1 / 2W of the first steel powder is 0.
15%. When it exceeds this, the compressibility and the moldability are significantly deteriorated.
本発明では、このように第1鋼粉中のMoやWの含有量を
極力制限し、第2鋼粉にMoやWを含有させる。第2鋼粉
中のMo+1/2Wは0.2〜19%とする。この下限は、最終組
成の下限量を確保するために必然的に定められる。上限
は、第1鋼粉のCoやNi+Cuと同様、混合合金鋼粉全体の
圧縮性、成形性が劣化しないための条件として与えられ
る。これらは、後述する実施例で具体的なデータによっ
て裏付けられる。In the present invention, the contents of Mo and W in the first steel powder are thus limited as much as possible, and Mo and W are contained in the second steel powder. Mo + 1 / 2W in the second steel powder is 0.2 to 19%. This lower limit is necessarily established to ensure the lower limit of the final composition. Similar to Co and Ni + Cu of the first steel powder, the upper limit is given as a condition that does not deteriorate the compressibility and formability of the entire mixed alloy steel powder. These are supported by concrete data in the examples described later.
第2鋼粉には、基本的にCo,Ni,Cuを含有しないが、その
理由は、第1鋼粉のMoやWを制限する理由と同様であ
る。ただし、Co+Ni+Cuが2%までならば悪影響が小さ
いので許容できる。The second steel powder basically does not contain Co, Ni, and Cu, but the reason is the same as the reason for limiting Mo and W of the first steel powder. However, if Co + Ni + Cu is up to 2%, the adverse effect is small, so that it is acceptable.
本発明の第2の形態は、第1鋼粉、第2鋼粉に加え、粉
末冶金用の純鉄粉をさらに混合した場合である。この場
合の利点は、限られた組成範囲の第1鋼粉と第2鋼粉
に、純鉄粉を混合することにより、多様な最終組成の混
合合金鋼粉が得られるとともに、第2表(2)の実施例
15,16,18に示すように圧縮性や成形性が向上する点にあ
る。The second embodiment of the present invention is a case where pure iron powder for powder metallurgy is further mixed in addition to the first steel powder and the second steel powder. The advantage in this case is that by mixing pure iron powder with the first and second steel powders having a limited composition range, mixed alloy steel powders with various final compositions can be obtained, and Table 2 ( Example of 2)
As shown in 15,16,18, the compressibility and moldability are improved.
この粉末冶金用純鉄粉はアトマイズ法あるいは酸化スケ
ールの還元によって得られる。This pure iron powder for powder metallurgy is obtained by the atomization method or reduction of oxide scale.
また、第1鋼粉、第2鋼粉とも、それぞれ1種の鋼粉で
ある必要はなく、夫々の組成範囲内で2種以上の鋼粉を
配合して用いても良い。すなわち、たとえば第1鋼粉が
2種の鋼粉の配合により成り、第2鋼粉が3種の鋼粉の
配合により成るものを配合して最終鋼粉を得ることがで
きる。Further, both the first steel powder and the second steel powder do not have to be one kind of steel powder, and two or more kinds of steel powder may be mixed and used within the respective composition ranges. That is, for example, the final steel powder can be obtained by mixing the first steel powder with a mixture of two types of steel powder and the second steel powder with a combination of three types of steel powder.
なお、これらの合金鋼混合粉末に、ステンレス鋼粉,粉
末冶金で通常用いられる黒鉛粉や、潤滑剤としてステア
リン酸亜鉛,ステアリン酸等を添加した混合粉末も本発
明の範囲に含まれる。It should be noted that stainless steel powder, graphite powder usually used in powder metallurgy, and mixed powder obtained by adding zinc stearate, stearic acid or the like as a lubricant to these alloy steel mixed powders are also included in the scope of the present invention.
<実施例> 実施例に用いる鋼粉は、すべて所定組成の溶鋼を水アト
マイズによって粉化し、H2ガス中980℃で30分間の仕上
還元を施し、−80#粒度として用いた。いずれの鋼粉
も、不純物として、 C:0.002〜0.016%,Si:0.01〜0.03%, Mn:0.05〜0.32%, P:0.003〜0.029%, S:0.006〜0.026%,O:0.06〜0.23%を含有していた。<Example> As for the steel powder used in the examples, all molten steel having a predetermined composition was pulverized by water atomization, subjected to finish reduction in H 2 gas at 980 ° C. for 30 minutes, and used as −80 # grain size. As impurities, all steel powders are C: 0.002-0.016%, Si: 0.01-0.03%, Mn: 0.05-0.32%, P: 0.003-0.029%, S: 0.006-0.026%, O: 0.06-0.23% Was included.
本発明法における第3の粉末として用いる純鉄粉は、同
様に水アトマイズと仕上還元ののちに、−80#として用
いた。不純物は、 C:0.003%,Si:0.01%,Mn:0.06%,P:0.008%,S:0.010%,
O:0.07%であった。The pure iron powder used as the third powder in the method of the present invention was similarly used as -80 # after water atomizing and finish reduction. Impurities are C: 0.003%, Si: 0.01%, Mn: 0.06%, P: 0.008%, S: 0.010%,
O was 0.07%.
比較用のプリアロイ鋼粉も、同様の製法で調達した。ま
た、従来の混粉法による比較例では、純鉄粉は上記同じ
アトマイズ粉を用い、Niは平均粒径7μ、Cuは平均粒径
13μ、Coは平均粒径5μ、Moは平均粒径10μ、Wは平均
粒径9μの、それぞれ単体の金属粉末を上記純鉄粉に混
合した。Prealloy steel powder for comparison was also procured by the same manufacturing method. Further, in the comparative example by the conventional mixed powder method, the same atomized powder as described above was used as the pure iron powder, Ni had an average particle size of 7 μ, and Cu had an average particle size.
13 μ, Co had an average particle size of 5 μ, Mo had an average particle size of 10 μ, and W had an average particle size of 9 μ.
実施例の鋼粉、比較例の鋼粉の組成を第1表に示す。Table 1 shows the compositions of the steel powder of the example and the steel powder of the comparative example.
これらの鋼粉は、ステアリン酸亜鉛0.8%,黒鉛粉(平
均粒径19μ)0.5%を混合し、成形圧力7t/cm2で、直径1
1.3mm、高さ11.3mmの円柱状に成形し、圧粉体の密度に
よって圧縮性を、ラトラー値によって成形性を評価し
た。その結果を配合後の鋼粉の組成と共に第2表にまと
めて示す。These steel powders were prepared by mixing 0.8% zinc stearate and 0.5% graphite powder (average particle size 19μ) at a molding pressure of 7t / cm 2 and a diameter of 1
It was molded into a cylindrical shape having a height of 1.3 mm and a height of 11.3 mm, and the compressibility was evaluated by the density of the green compact, and the moldability was evaluated by the Ratler value. The results are summarized in Table 2 together with the composition of the steel powder after compounding.
比較例1,実施例1〜4,比較例2〜4は、最終組成がCo:7
%,Ni:1.4%,Mo:1.4%の場合である。第1図にこの結果
を整理して示す。第1鋼粉中のCoが10〜36%の範囲にあ
ると、従来のプリアロイ法に比べ、圧縮性が良好(圧粉
密度が高い)で、かつ成形性も優れて(ラトラー値が低
い)いる。また、混粉法に比べると、成形性が格段に向
上している。In Comparative Example 1, Examples 1 to 4, and Comparative Examples 2 to 4, the final composition was Co: 7.
%, Ni: 1.4%, Mo: 1.4%. This result is summarized and shown in FIG. When Co in the first steel powder is in the range of 10 to 36%, the compressibility is better (high green compact density) and the formability is better (low ratler value) than the conventional pre-alloy method. There is. Further, the moldability is remarkably improved as compared with the mixed powder method.
実施例5,6,比較例5〜7は、最終組成がCo:8%,Ni:6%,
Mo:2%の場合である。第2図に示すように、第1鋼粉中
Ni量が本発明範囲の0.2〜20%であれば、優れた成形性
と圧縮性が得られていることがわかる。In Examples 5 and 6, Comparative Examples 5 to 7, the final compositions were Co: 8%, Ni: 6%,
Mo: 2%. As shown in FIG. 2, in the first steel powder
It can be seen that when the amount of Ni is 0.2 to 20% within the range of the present invention, excellent moldability and compressibility are obtained.
実施例7,8,比較例8,9は、最終組成Co:10%,Ni:3%,Mo:1
%の場合である。第3図に示すように、第1鋼粉中のMo
量を0.15%以下におさえると、優れた圧縮性と成形性が
得られる。Examples 7, 8 and Comparative Examples 8, 9 have a final composition of Co: 10%, Ni: 3%, Mo: 1.
% Is the case. As shown in FIG. 3, Mo in the first steel powder
When the content is 0.15% or less, excellent compressibility and moldability are obtained.
実施例9,10,比較例10,11は、最終組成がCo:8%,Ni:4%,
Mo:8%の場合である。第4図に示すように、第2鋼粉中
のMo量が0.2〜19%ならば、圧縮性,成形性に優れたも
のが得られる。Examples 9 and 10, Comparative Examples 10 and 11, the final composition is Co: 8%, Ni: 4%,
Mo: 8%. As shown in FIG. 4, when the Mo content in the second steel powder is 0.2 to 19%, the one having excellent compressibility and moldability can be obtained.
実施例11〜13,比較例12〜15は、最終組成がCo:22%,Ni:
9.5%,Mo:2.5%の場合である。第5図に示すように、第
2鋼粉中のCo+Ni+Cu量を2%以内におさえると、圧縮
性と成形性の総合特性が、従来のプリアロイ法や混粉法
に比べて向上する。Examples 11 to 13 and Comparative Examples 12 to 15 have a final composition of Co: 22%, Ni:
This is the case when 9.5% and Mo: 2.5%. As shown in FIG. 5, when the amount of Co + Ni + Cu in the second steel powder is kept within 2%, the overall characteristics of compressibility and formability are improved as compared with the conventional pre-alloy method and the mixed powder method.
実施例14,15,比較例16,17は、最終組成がCo:8%,Ni:1.5
%,Cu:0.5%,Mo:1.5%,W:2%の場合である。第2表から
明らかなように、Niの一部をCuで、Moの一部をWで置き
かえた場合も、本発明法は従来法よりも優れた圧縮性と
成形性をもたらす。実施例15は、第3の粉末として、純
鉄粉を20%配合しているが、これも非常に優れた特性を
示している。Examples 14 and 15, Comparative Examples 16 and 17, the final composition is Co: 8%, Ni: 1.5
%, Cu: 0.5%, Mo: 1.5%, W: 2%. As is clear from Table 2, even when a part of Ni is replaced by Cu and a part of Mo is replaced by W, the method of the present invention provides superior compressibility and moldability as compared with the conventional method. In Example 15, 20% of pure iron powder was blended as the third powder, and this also shows very excellent characteristics.
実施例16,比較例18,19は、最終組成がCo:3%,Cu:1%,W:
2%の場合である。このように低Co量の時も、第2表か
らわかるように、本発明法の効果が十分に見られる。In Example 16 and Comparative Examples 18 and 19, the final composition was Co: 3%, Cu: 1%, W:
It is the case of 2%. Thus, even when the amount of Co is low, the effect of the method of the present invention can be sufficiently seen, as can be seen from Table 2.
実施例17および実施例18は、最終組成が実施例14,15,比
較例16,17と同様に、最終組成がCo:8%,Ni:1.5%,Cu:0.
5%,Mo:1.5%,W:2%であるが、第1鋼粉,第2鋼粉が複
数の場合である。いづれも本発明の効果が達成されてい
る。Example 17 and Example 18, the final composition is the same as Examples 14 and 15, Comparative Examples 16 and 17, the final composition is Co: 8%, Ni: 1.5%, Cu: 0.
5%, Mo: 1.5%, W: 2%, but this is the case where there are multiple first steel powders and second steel powders. In any case, the effect of the present invention is achieved.
実施例19,比較例20,21は、最終組成がCo:4.5%,Ni:1.5
%,Mo:14.5%と、Mo含有量が高い場合である。第2鋼粉
のMoを19%以内とすることにより、高い圧縮性,成形性
が得られる。In Example 19 and Comparative Examples 20 and 21, the final composition was Co: 4.5%, Ni: 1.5.
%, Mo: 14.5%, when the Mo content is high. By setting the Mo of the second steel powder within 19%, high compressibility and formability can be obtained.
<発明の効果> 以上、実施例に示したとおり、本発明によれば、7%以
上の高Co組成はもとより、3%以上のCo組成において
も、圧縮性や成形性が従来のプリアロイ法,混粉法によ
りも大幅に向上しており、Co:3〜25%,Ni+Cu:0.2〜10
%,Mo+1/2W:0.2〜15%の最終組成に対して、極めて有
用な合金鋼粉が与えられることが明らかである。<Effects of the Invention> As described above, according to the present invention, according to the present invention, not only in the high Co composition of 7% or more, but also in the Co composition of 3% or more, the compressibility and the formability of the conventional prealloy method, Significantly improved by the mixed powder method, Co: 3-25%, Ni + Cu: 0.2-10
%, Mo + 1 / 2W: It is clear that a very useful alloy steel powder is provided for a final composition of 0.2 to 15%.
第1図から第5図は、それぞれ、第1鋼粉中のCo量,第
1鋼粉中のNi量,第1鋼粉中のMo量,第2鋼粉中のMo
量,第2鋼粉中のCo+Ni+Cu量が、混合された合金鋼粉
の圧縮性と成形性に及ぼす影響を示すものである。1 to 5 show Co content in the first steel powder, Ni content in the first steel powder, Mo content in the first steel powder, and Mo content in the second steel powder, respectively.
It shows the influence of the amount and the amount of Co + Ni + Cu in the second steel powder on the compressibility and formability of the mixed alloy steel powder.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 純一 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (72)発明者 古君 修 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Junichi Ota 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Technical Research Headquarters (72) Inventor Osamu Furu-kun 1 Kawasaki-cho, Chiba-shi Kawasaki Steel Co., Ltd. Technical Research Division
Claims (2)
範囲の合金鋼粉と、 Mo+1/2W:0.2〜19% Co+Ni+Cu:2%以下 を含有し、残部がFeおよび不可避的不純物からなる組成
範囲の合金鋼粉との混合粉であり、平均組成が Co:3〜25% Ni+Cu:0.2〜10% Mo+1/2W:0.2〜15% の範囲にあり、残部がFeおよび不可避的不純物からなる
ことを特徴とする圧縮性および成形性に優れる粉末冶金
用高合金鋼粉。 但し、Ni+CuはNiとCuの含有量の和、Mo+1/2WはMoの含
有量とWの含有量の半分の和、Co+Ni+CuはCo,Niおよ
びCuの含有量の和のそれぞれ表示である。1. An alloy steel powder containing Co: 10 to 36% Ni + Cu: 0.2 to 20% Mo + 1 / 2W: 0.15% or less by weight, the balance being Fe and inevitable impurities, and Mo + 1. / 2W: 0.2 to 19% Co + Ni + Cu: 2% or less, the balance is a mixed powder with alloy steel powder in the composition range consisting of Fe and inevitable impurities, and the average composition is Co: 3 to 25% Ni + Cu: 0.2 ~ 10% Mo + 1 / 2W: 0.2 to 15%, the balance being Fe and inevitable impurities, and high alloy steel powder for powder metallurgy with excellent compressibility and formability. However, Ni + Cu is the sum of the contents of Ni and Cu, Mo + 1 / 2W is the sum of the contents of Mo and half of the content of W, and Co + Ni + Cu is the sum of the contents of Co, Ni and Cu.
範囲の合金鋼粉と、 Mo+1/2W:0.2〜19% Co+Ni+Cu:2%以下 を含有し、残部がFeおよび不可避的不純物からなる組成
範囲の合金鋼粉と、 粉末冶金用純鉄粉との混合粉であり、平均組成が Co:3〜25% Ni+Cu:0.2〜10% Mo+1/2W:0.2〜15% の範囲にあり、残部がFeおよび不可避的不純物からなる
ことを特徴とする圧縮性および成形性に優れる粉末冶金
用高合金鋼粉。 但し、Ni+CuはNiとCuの含有量の和、Mo+1/2WはMoの含
有量とWの含有量の半分の和、Co+Ni+CuはCo,Niおよ
びCuの含有量の和のそれぞれ表示である。2. An alloy steel powder containing Co: 10 to 36% Ni + Cu: 0.2-20% Mo + 1 / 2W: 0.15% or less by weight, the balance being Fe and inevitable impurities, and Mo + 1. / 2W: 0.2 to 19% Co + Ni + Cu: 2% or less, a mixed powder of alloy steel powder with a balance of Fe and inevitable impurities, and pure iron powder for powder metallurgy. : 3 to 25% Ni + Cu: 0.2 to 10% Mo + 1 / 2W: 0.2 to 15%, the balance being Fe and unavoidable impurities, the balance being Fe and unavoidable impurities. Steel powder. However, Ni + Cu is the sum of the contents of Ni and Cu, Mo + 1 / 2W is the sum of the contents of Mo and half of the content of W, and Co + Ni + Cu is the sum of the contents of Co, Ni and Cu.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63075955A JPH075923B2 (en) | 1988-03-31 | 1988-03-31 | High alloy steel powder for powder metallurgy with excellent compressibility and formability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63075955A JPH075923B2 (en) | 1988-03-31 | 1988-03-31 | High alloy steel powder for powder metallurgy with excellent compressibility and formability |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01252701A JPH01252701A (en) | 1989-10-09 |
JPH075923B2 true JPH075923B2 (en) | 1995-01-25 |
Family
ID=13591156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63075955A Expired - Lifetime JPH075923B2 (en) | 1988-03-31 | 1988-03-31 | High alloy steel powder for powder metallurgy with excellent compressibility and formability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH075923B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103042207A (en) * | 2013-01-18 | 2013-04-17 | 苏州大学 | Material used for improving performances of high-temperature resistant, abrasion and antifriction of surface of titanium alloy and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4937806A (en) * | 1972-08-11 | 1974-04-08 | ||
JPS5438579A (en) * | 1977-08-31 | 1979-03-23 | Omron Tateisi Electronics Co | Method of installing contacts |
-
1988
- 1988-03-31 JP JP63075955A patent/JPH075923B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4937806A (en) * | 1972-08-11 | 1974-04-08 | ||
JPS5438579A (en) * | 1977-08-31 | 1979-03-23 | Omron Tateisi Electronics Co | Method of installing contacts |
Also Published As
Publication number | Publication date |
---|---|
JPH01252701A (en) | 1989-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102325463B1 (en) | Partially diffusion-alloyed steel powder | |
JPH0715121B2 (en) | Fe-Co alloy fine powder for injection molding and Fe-Co sintered magnetic material | |
JPH075923B2 (en) | High alloy steel powder for powder metallurgy with excellent compressibility and formability | |
JPH0751721B2 (en) | Low alloy iron powder for sintering | |
JP3331963B2 (en) | Sintered valve seat and method for manufacturing the same | |
JPS5947358A (en) | Steel powder for wear resistant sintered alloy | |
JPH0247202A (en) | Steel powder for heat and wear resistant sintered alloy | |
JPH0543913A (en) | Fe base sintered alloy valve seat with extremely low attackability against object | |
JP2786303B2 (en) | Method for producing sintered alloy with excellent corrosion resistance and machinability | |
KR20090097715A (en) | Iron-based sintered body having high strength and high toughness and manufacturing method thereof | |
JP3250132B2 (en) | Free graphite precipitated iron-based sintered material with high strength and toughness | |
JP3346292B2 (en) | High strength Fe-based sintered valve seat | |
JPS6123701A (en) | Raw material powder of powder metallurgy for producing ferrous parts | |
JPH07109023B2 (en) | Iron-based sintered alloy for valve sheet | |
JP3257212B2 (en) | Valve seat made of iron-based sintered alloy for internal combustion engine intake | |
JP3346305B2 (en) | High strength iron-based sintered alloy | |
JPH07233402A (en) | Atomized steel powder excellent in machinability and wear resistance and sintered steel produced therefrom | |
JP2571567B2 (en) | High temperature wear resistant iron-based sintered alloy | |
JPS60218459A (en) | Ferrous alloy powder having excellent compressibility and sinterability for wear-resistant sintered parts | |
JPH0159322B2 (en) | ||
JPH0593241A (en) | Production of iron-base sintered alloy for valve seat | |
JPH0543998A (en) | Valve seat made of metal-filled fe-base sintered alloy extremely reduced in attack on mating material | |
JPS6130601A (en) | Deposition hardening type stainless steel powder having excellent compressibility and sintered body thereof | |
JPH059668A (en) | Valve seat made of fe-based sintered alloy having high strength and high toughness | |
JPH0543915A (en) | Fe base sintered alloy valve seat with high strength |