[go: up one dir, main page]

JPH01252701A - High alloy steel powder for powder metallurgy having excellent compressibility and formability - Google Patents

High alloy steel powder for powder metallurgy having excellent compressibility and formability

Info

Publication number
JPH01252701A
JPH01252701A JP63075955A JP7595588A JPH01252701A JP H01252701 A JPH01252701 A JP H01252701A JP 63075955 A JP63075955 A JP 63075955A JP 7595588 A JP7595588 A JP 7595588A JP H01252701 A JPH01252701 A JP H01252701A
Authority
JP
Japan
Prior art keywords
powder
alloy steel
content
formability
steel powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63075955A
Other languages
Japanese (ja)
Other versions
JPH075923B2 (en
Inventor
Shigeaki Takagi
高城 重彰
Minoru Nitta
稔 新田
Kuniaki Ogura
邦明 小倉
Junichi Ota
純一 太田
Osamu Furukimi
修 古君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63075955A priority Critical patent/JPH075923B2/en
Publication of JPH01252701A publication Critical patent/JPH01252701A/en
Publication of JPH075923B2 publication Critical patent/JPH075923B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain alloy steel powder for powder metallurgy having high Co and excellent compressibility and formability and being suitable to raw material for heat resistant sintered alloy steel by mixing the specific composition of high Co alloy steel powder and alloy steel powder having high Mo and W contents. CONSTITUTION:By mixing water atomizing powder of the alloy steel composing of 10-36wt.% Co, 0.2-20wt.% Ni+Cu, <=0.15wt.% Mo+1/2 W and the balance Fe with impurities of C, Si, Mn, P, S, O, etc., and water atomizing powder of the alloy steel composing of 0.2-19wt.% Mo+1/2 W. <=2wt.% Co+Ni+Cu and the balance Fe with little content of impurities, the mixed powder of the alloy steel having composition composing of 3-25wt.% Co, 0.2-10wt.% Ni+Cu, 0.2-15wt.% Mo+1/2 W and the balance Fe with little content of impurities is manufactured. The mixed powder is the alloy steel powder for powder metallurgy having excellent compressibility and formability, and it has excellent characteristic as the raw material for the heat resistant sintered alloy steel.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、耐熱焼結合金爛部品などを粉末冶金法によっ
て製造する際に用いられる、co金含有高合金鋼粉に関
し、その圧縮性および成形性を改善したものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a high-alloy steel powder containing cobalt gold, which is used when manufacturing heat-resistant sintered alloy parts etc. by a powder metallurgy method. It has improved moldability.

〈従来の技術〉 焼結合金鋼は、自動車部品などに盛んに使用されて村り
、最近では高合金組成の部品も増加してきた。Jl要な
用途に、耐熱部品があり、自動車エンジンの排気側弁座
リングなどが実用化している。
<Prior Art> Sintered alloy steel is widely used in automobile parts and the like, and recently the number of parts with high alloy compositions has also increased. Heat-resistant parts are used in important applications, such as exhaust-side valve seat rings for automobile engines.

これらの耐熱部品は、合金元素としてCoを用いること
が多く、たとえば6.5%(重量%、以下間pJ)Co
を含有する合金鋼粉を原料としている。耐熱性向上のた
めには、さらに多量のCo添加が必要であることが多く
、?=25%のCoを含む焼結合金鋼が検討されている
。 Coが7%以上になると、今までのプリアロイ鋼粉
では、鋼粉粒子が硬くなるため、銅粉の圧縮性と成形性
が劣化し、部品製造上大きな問題となる。一方、鉄粉と
合金元素の粉末、たとえばCo粉を混合して、いわゆる
混粉法で部品を製造すれば、粉末の圧縮性においては問
題がないカベ焼結時の均一拡散合金化をねらって、Co
の微粉を用いると、粉末の流れ性が悪く、成形性が極端
に劣化して、圧粉体の欠1員がひんばんに生じる問題が
おきる。
These heat-resistant parts often use Co as an alloying element, for example, 6.5% (weight %, hereinafter pJ) Co
The raw material is alloy steel powder containing In order to improve heat resistance, it is often necessary to add a larger amount of Co. A sintered alloy steel containing =25% Co is being considered. When the Co content exceeds 7%, the steel powder particles in conventional pre-alloyed steel powders become hard, resulting in deterioration in the compressibility and formability of the copper powder, which poses a major problem in the manufacture of parts. On the other hand, if parts are manufactured using the so-called mixed powder method by mixing iron powder and powder of an alloying element, such as Co powder, it is possible to achieve uniform diffusion alloying during wall sintering without any problems in compressibility of the powder. ,Co
If such a fine powder is used, the flowability of the powder is poor, the moldability is extremely deteriorated, and the problem arises that the green compact frequently has missing parts.

これらの点を解決するため、母合金法と称して、Co含
有量の更に高いFe −Co合金扮を純鉄粉等と混合し
て用いる方法が考えられ、類似の技術が特公昭61−3
6043号にも見られるが、Co以外の添加元素も含め
て、優れた組成の母合金法はこれまで存在しなかった。
In order to solve these problems, a method called the master alloy method in which a Fe-Co alloy with a higher Co content is mixed with pure iron powder etc. has been considered, and a similar technology was developed in the Japanese Patent Publication No. 61-3.
As also seen in No. 6043, there has been no master alloy method with an excellent composition including additive elements other than Co.

ところで溶製材料の耐熱合金鋼に用いられる元素は、C
o、 Cr+ st、 Mo、  Vなどだが、粉末冶
金の場合、焼結までの過程で難還元性の酸化物が形成さ
れると還元されずに部品の品質を劣化させるので、易還
元性の元素であるCo、 Ni+ Noなどが好まれて
多用される。ここで、Niの一部は等重量のCuで、M
oの一部は2倍重量のWで置き換えることができる。現
在、焼結鋼の組成として検討されることが多いのは、C
o:3〜25%、 Ni :  0.2〜10%。
By the way, the element used in heat-resistant alloy steel, which is an ingot material, is C.
o, Cr+ st, Mo, V, etc. However, in the case of powder metallurgy, if difficult-to-reducible oxides are formed in the process up to sintering, they will not be reduced and will deteriorate the quality of the parts, so easily reducible elements are Co, Ni+No, etc. are preferred and often used. Here, part of Ni is equal weight of Cu, and M
A part of o can be replaced with twice the weight of W. Currently, the composition often considered for sintered steel is C.
o: 3-25%, Ni: 0.2-10%.

Mo:  0.2〜15%である。 CuやWを含む時
は、NiをNi+Cu (Ni含有量とCu含有量との
和を示す、以下同様)で置きかえることができ、また、
1)oをMo+%W(Mo含有量とW含有量のAとの和
を示す、以下同様)で置きかえることができる。
Mo: 0.2 to 15%. When Cu or W is included, Ni can be replaced with Ni+Cu (representing the sum of Ni content and Cu content, the same applies hereinafter), and
1) o can be replaced with Mo+%W (representing the sum of Mo content and W content A, the same applies hereinafter).

〈発明が解決しようとする課題〉 このような状況に鑑み、本発明はこのような組成範囲の
合金元素を含み、しかもCo含有量が3〜25%にわた
って、圧縮性および成形性に優れた合金鋼粉を提供する
ものである。
<Problems to be Solved by the Invention> In view of these circumstances, the present invention provides an alloy containing alloying elements in such a composition range, with a Co content ranging from 3 to 25%, and having excellent compressibility and formability. It provides steel powder.

<tlMを解決するための手段〉 本発明は、重量割合で、Co:10〜36%、Ni+C
u : 0.2〜20%、 Mo+ !’4w : 0
.15%以下を含有し、残部がFeおよび不可避的不純
物からなる組成範囲の合金鋼粉と、Mo+ % W :
 0.2〜19%、 Co+Ni+Cu:2%以下を含
有し、残部がFeおよび不可避的不純物からなる組成範
囲の合金鋼粉との混合粉で、必要に応じて粉末冶金用純
鉄粉も混合できその平均組成がco=3〜25%、 N
i+Cu : 0.2〜10%、 M。
<Means for solving tlM> In the present invention, Co: 10 to 36%, Ni+C
u: 0.2-20%, Mo+! '4w: 0
.. Alloy steel powder with a composition range containing 15% or less and the balance consisting of Fe and unavoidable impurities, and Mo + % W:
0.2-19%, Co+Ni+Cu: 2% or less, and the balance is Fe and unavoidable impurities.Pure iron powder for powder metallurgy can also be mixed if necessary. Its average composition is co=3~25%, N
i+Cu: 0.2-10%, M.

+1/2W:Q、2〜15%の範囲にあり、残部がFe
および不可避的不純物からなることを特徴とする圧縮性
および成形性に優れる粉末冶金用高合金鋼粉である。但
し、Ni+CuはNiとCuの含有量の和、Mo+1/
2WはMoの含有量と〜Vの含有量の半分の和、Co+
Ni+cuはCo、 NiおよびCuの含有量の相のそ
れぞれ表示である。
+1/2W: Q, in the range of 2 to 15%, the remainder being Fe
This is a high-alloy steel powder for powder metallurgy that has excellent compressibility and formability, and is characterized by consisting of unavoidable impurities. However, Ni+Cu is the sum of Ni and Cu content, Mo+1/
2W is the sum of Mo content and half of ~V content, Co+
Ni+cu is the phase representation of the content of Co, Ni and Cu, respectively.

く作   用〉 以下、本発明の限定範囲の根拠を詳細に説明する。For Kusaku Hereinafter, the basis of the limited scope of the present invention will be explained in detail.

まず、第1m粉のCo1)を10〜36%とするが、こ
れは後述する実施例に示すように、最終組成を−定とし
た時、混合合金鋼粉の圧縮性と成形性が、最適となるた
めに選定している。最終組成が与えられた時、第1)1
)粉のCoが10%未満であると、第1)81粉よりも
柔かい第2w4粉の配合割合が必然的に小さくなるので
、総体的な圧縮性と成形性が劣化する。一方でCoが3
6%を超えると、第1m粉そのものが硬くなりすぎて、
これも圧縮性と成形性が劣化する原因となる。適切な範
囲は10〜36%である。
First, the Co1) of the 1st m powder is set to 10 to 36%. This is because, as shown in the examples below, when the final composition is set to -, the compressibility and formability of the mixed alloy steel powder are optimal. It has been selected in order to Given the final composition, 1) 1
) If the Co content of the powder is less than 10%, the blending ratio of the second W4 powder, which is softer than the first 81 powder, will inevitably be smaller, resulting in poor overall compressibility and moldability. On the other hand, Co is 3
If it exceeds 6%, the 1st m powder itself becomes too hard,
This also causes deterioration in compressibility and moldability. A suitable range is 10-36%.

第1鋼粉のNi+Cu量は、0.2〜20%とする。The amount of Ni+Cu in the first steel powder is 0.2 to 20%.

!li+culの下限は、最終焼結材料のNi+Cuの
下限量を確保するため、自動的に定められる。上限は、
Coと同様、圧縮性と成形性を向上させる範囲として定
められる。
! The lower limit of li+cul is automatically determined to ensure the lower limit amount of Ni+Cu in the final sintered material. The upper limit is
Like Co, it is defined as a range that improves compressibility and moldability.

第1銅粉には、基本的にMoやWを含有しないことが望
ましい、これは本発明者らの検討の結果の知見に基づく
もので、本発明の重要なポイントである。すなわち、M
oやWは、それ自体を鉄粉に合金化しても、あまり圧縮
性や成形性を損わないが、CoやNlあるいはCuが共
存すると、相乗効果にょうて、格段にそれらの劣化が著
しくなるのである。
It is basically desirable that the cuprous powder does not contain Mo or W. This is based on the findings of the inventors' studies and is an important point of the present invention. That is, M
O and W do not significantly impair compressibility or formability even when alloyed with iron powder, but when Co, Nl, or Cu coexist, their deterioration is markedly significant due to the synergistic effect. It will become.

後述の実施例で、適正範囲が具体的にデータとして示さ
れるが、第1鋼粉のMo+y2Wの上限量は0.15%
である。これを超えると、圧縮性と成形性の低下が顕著
になる。
In the examples described later, the appropriate range will be specifically shown as data, but the upper limit amount of Mo+y2W in the first steel powder is 0.15%.
It is. If this value is exceeded, the compressibility and moldability will be significantly reduced.

本発明では、このように第1鋼粉中のMoやWの含有量
を極力制限し、第2銅粉にMoやWを含有させる。第2
鋼粉中のMo−1−zWは0.2〜19%とする。
In the present invention, as described above, the content of Mo and W in the first steel powder is limited as much as possible, and the second copper powder is made to contain Mo and W. Second
Mo-1-zW in the steel powder is 0.2 to 19%.

この下限は、最終組成の下限量を確保するために必然的
に定められる。上限は、第1鋼粉のCoやN++Cuと
同様、混合合金鋼粉全体の圧縮性、成形性が劣化しない
ための条件として与えられる。これらは、後述する実施
例で具体的なデータによって裏付けられる。
This lower limit is necessarily established in order to ensure a lower limit amount of the final composition. Similar to Co and N++Cu of the first steel powder, the upper limit is given as a condition for not deteriorating the compressibility and formability of the mixed alloy steel powder as a whole. These are supported by specific data in Examples described below.

第2鋼粉には、基本的にCo、 Ni、 Cuを含有し
ないが、その理由は、第1)il粉のMoやWを制限す
る理由と同様である。ただし、Co+Ni+Cuが2%
までならば悪影響が小さいので許容できる。
The second steel powder basically does not contain Co, Ni, and Cu for the same reason as the reason for limiting Mo and W in the first il powder. However, Co+Ni+Cu is 2%
Up to this point, it is acceptable because the negative effects are small.

本発明の第2の形態は、第1tR粉、第2鋼粉に加え、
粉末冶金用の純鉄粉をさらに混合した場合である。この
場合の利点は、限られた組成範囲の第1Iil粉と第2
1)粉に、純鉄粉を混合することにより、多様な最終組
成の混合合金鋼粉が得られる点にある。
The second form of the present invention includes, in addition to the first tR powder and the second steel powder,
This is a case where pure iron powder for powder metallurgy is further mixed. The advantage in this case is that the first Iil powder and the second Iil powder have a limited composition range.
1) Mixed alloy steel powder with various final compositions can be obtained by mixing powder with pure iron powder.

この粉末冶金用純鉄粉はアトマイズ法あるいは酸化スケ
ールの還元によって得られる。
This pure iron powder for powder metallurgy can be obtained by an atomization method or by reduction of oxide scale.

また、第1鋼粉、第2鋼粉とも、それぞれ1種の鋼粉で
ある必要はなく、夫々の組成範囲内で2種以上の銅粉を
配合して用いても良い、すなわち、たとえば第1鋼粉が
2種の鋼粉の配合により成り、第2銅粉が3種の銅粉の
配合により成るものを配合して最終鋼粉を得ることがで
きる。
Further, it is not necessary that the first steel powder and the second steel powder are each one type of steel powder, and two or more types of copper powder may be mixed and used within the respective composition ranges. A final steel powder can be obtained by blending one steel powder consisting of two types of steel powder and the second copper powder consisting of three types of copper powder.

なお、これらの合金鋼混合粉末に、ステンレス鋼粉、粉
末冶金で通常用いられる黒鉛粉や、潤滑剤としてステア
リン酸亜鉛、ステアリン酸等を添加した混合粉末も本発
明の範囲に含まれる。
The scope of the present invention also includes mixed powders in which stainless steel powder, graphite powder commonly used in powder metallurgy, and lubricants such as zinc stearate and stearic acid are added to these alloy steel mixed powders.

〈実施例〉 実施例に用いる綱わ)は、すべて所定組成の溶鋼を水ア
トマイズによって粉化し、H2ガス中980°Cで30
分間の仕上還元を施し、−80#粒度として用いた。い
ずれの銅粉も、不純物として、C: 0.002〜0.
016%、 Si : 0.01〜0.03%。
<Example> The ropes used in the examples were all made by pulverizing molten steel with a predetermined composition by water atomization, and heating it at 980°C in H2 gas for 30 minutes.
A final reduction of 1 minute was applied and used as a -80# particle size. All of the copper powders contained C: 0.002 to 0.002 as impurities.
016%, Si: 0.01-0.03%.

Mn : 0.05〜0.32%、   P : 0.
003〜0.029%。
Mn: 0.05-0.32%, P: 0.
003-0.029%.

S : 0.006〜0.026%、o:o、os〜0
.23%を含有していた。
S: 0.006-0.026%, o:o, os~0
.. It contained 23%.

本発明法における第3の粉末として用いる純鉄粉は、同
様に水アトマイズと仕上還元ののちに、−80#として
用いた。不純物は、 C: 0.003%、’ Si : 0.01%、 M
n : 0.06%l P:0.008%、  S :
0.010%、o:o、o’y%であった。
The pure iron powder used as the third powder in the method of the present invention was similarly used as -80# after water atomization and final reduction. Impurities are: C: 0.003%, 'Si: 0.01%, M
n: 0.06%l P: 0.008%, S:
It was 0.010%, o:o, o'y%.

比較用のプリアロイ鋼粉も、同様の製法で調達した。ま
た、従来の混粉法による比較例では、純鉄粉は上記同し
アトマイズ粉を用い、Niは平均粒径7μ、Cuは平均
粒径13μ、coは平均粒径5μ、Moは平均粒径10
μ、Wは平均粒径9μの、それぞれ単体の金属粉末を上
記純鉄粉に混合した。
Pre-alloyed steel powder for comparison was also procured using the same manufacturing method. In addition, in a comparative example using the conventional mixed powder method, the same atomized powder as above was used as the pure iron powder, Ni had an average particle size of 7 μm, Cu had an average particle size of 13 μm, Co had an average particle size of 5 μm, and Mo had an average particle size of 10
Single metal powders μ and W each having an average particle size of 9 μm were mixed with the above pure iron powder.

実施例の鋼粉、比較例の銅粉の組成を第1表に示す。Table 1 shows the compositions of the steel powder of the example and the copper powder of the comparative example.

これらの銅粉に、ステアリン酸亜鉛0.8%、黒鉛FA
(平均粒径19μ)0.5%を混合し、成形圧力7t/
cjで、直径1).3ms、高さ1).3+m(71円
柱状に成形し、圧粉体の密度によって圧縮性を、ラトラ
ー値によって成形性を評洒した。その結果を配合後の鋼
粉の組成と共に第2表にまとめて示す。
These copper powders contain 0.8% zinc stearate and graphite FA.
(average particle size 19μ) 0.5% and molding pressure 7t/
cj, diameter 1). 3ms, height 1). 3+m (71) was formed into a cylindrical shape, and the compressibility was evaluated based on the density of the green compact, and the formability was evaluated based on the Rattler value. The results are summarized in Table 2 together with the composition of the steel powder after blending.

比較例1.実施例1〜4.比較例2〜4は、最終組成が
Coニア%、Ni:1.4%、 Mo:  1.4%の
場合である。第1図にこの結果を整理して示す、第1)
1粉中のCoが10〜36%の範囲にあると、従来のブ
リアロイ法に比べ、圧縮性が良好(圧粉密度が高い)で
、かつ成形性も優れて(ラトラー値が低い)いる、また
、混粉法に比べると、成形性が格段に向上している。
Comparative example 1. Examples 1-4. Comparative Examples 2 to 4 are cases in which the final composition is Co %, Ni: 1.4%, and Mo: 1.4%. Figure 1 summarizes and shows these results.
When the Co content in one powder is in the range of 10 to 36%, the compressibility is good (high green density) and the formability is excellent (low Rattler value) compared to the conventional Brialloy method. Furthermore, compared to the mixed powder method, the moldability is significantly improved.

実施例5,6.比較例5〜7は、最終組成がC。Examples 5 and 6. Comparative Examples 5 to 7 have a final composition of C.

:8%、Ni:6%、Mo:2%の場合である。第2図
に示すように、第1鋼粉中Ni量が本発明範囲の0.2
〜20%であれば、優れた成形性と圧縮性が得られてい
ることがわかる。
: 8%, Ni: 6%, Mo: 2%. As shown in FIG. 2, the amount of Ni in the first steel powder is 0.2, which is within the range of the present invention.
It can be seen that when the content is 20%, excellent moldability and compressibility are obtained.

実施例7.8.比較例8.9は、最終組成Co:10%
、Ni:3%、Mai1%の場合である。第3図に示す
ように、第1m物中のMolを0.15%以下におさえ
ると、優れた圧縮性と成形性が得られる。
Example 7.8. Comparative Example 8.9 has a final composition of Co: 10%
, Ni: 3%, Mai 1%. As shown in FIG. 3, excellent compressibility and moldability can be obtained by suppressing the Mol in the first m product to 0.15% or less.

実施例9.10.比較例10.1)は、最終組成がC。Example 9.10. Comparative Example 10.1) has a final composition of C.

二8%、Ni:4%、Mo:8%の場合である。第4図
に示すように、第2銅粉中のMailが0.2〜19%
ならば、圧縮性、成形性に優れたものが得られる。
This is a case of Ni: 4%, Mo: 8%. As shown in Figure 4, Mail in cupric powder is 0.2 to 19%.
If so, a product with excellent compressibility and moldability can be obtained.

実施例1)〜13.比較例12〜15は、最終組成がC
o:22%、Ni:9.5%、 Mo:  2.5%の
場合である。
Examples 1) to 13. Comparative Examples 12 to 15 have a final composition of C
This is a case where o: 22%, Ni: 9.5%, and Mo: 2.5%.

第5図に示すように、第2鋼粉中のGo + Ni +
 Cu 量を2%以内におさえると、圧縮性と成形性の
総合特性が、従来のブリアロイ法や混粉法に比べて向上
する。
As shown in FIG. 5, Go + Ni + in the second steel powder
When the amount of Cu is kept within 2%, the overall properties of compressibility and moldability are improved compared to the conventional Brialloy method and mixed powder method.

実施例14.15.比較例16.17は、最終組成がC
o:8%、Ni:1.5%、 Cu:  0.5%、M
o:1.5%。
Example 14.15. Comparative Examples 16 and 17 have a final composition of C
o: 8%, Ni: 1.5%, Cu: 0.5%, M
o: 1.5%.

W:2%の場合である。第2表から明らかなように、N
iの一部をCuで、Moの一部をWで濯きかえた場合も
、本発明法は従来法よりも優れた圧縮性と成形性をもた
らす、実施例15は、第3の粉末として、純鉄粉を20
%配合しているが、これも非常に優れた特性を示してい
る。
This is a case of W: 2%. As is clear from Table 2, N
Even when a portion of i is replaced with Cu and a portion of Mo is rinsed with W, the method of the present invention provides better compressibility and moldability than the conventional method. In Example 15, as the third powder, 20 pure iron powder
%, but this also shows very excellent properties.

実施例16.比較例18.19は、最終組成がCo:3
%、Cur1%、W:2%の場合である。このように低
Co量の時も、第2表かられかるように、本発明法の効
果が十分に見られる。
Example 16. Comparative Examples 18 and 19 have a final composition of Co:3
%, Cur: 1%, W: 2%. As can be seen from Table 2, even when the amount of Co is low, the effect of the method of the present invention can be fully seen.

実施例17および実施例18は、最終組成が実施例14
、15.比較例16.17と同様に、最終組成がCo:
8%、Ni:1.5%、 Cu:  0.5%、Mo:
1.5%、W:2%であるが、第1w4粉、第2鋼粉が
複数の場合である。いづれも本発明の効果が達成されて
いる。
Example 17 and Example 18 have the final composition of Example 14.
, 15. Similar to Comparative Example 16.17, the final composition was Co:
8%, Ni: 1.5%, Cu: 0.5%, Mo:
1.5%, W: 2%, but this is a case where the first W4 powder and the second steel powder are plural. In all cases, the effects of the present invention have been achieved.

実施例19.比較例20.21は、最終組成がCo:4
.5 %、Ni:1.5%、 Mo : 14.5%と
、−〇含有量が高い場合である。第2tlA粉のMoを
19%以内とすることにより、高い圧縮性、成形性が得
られる。
Example 19. Comparative Example 20.21 has a final composition of Co:4
.. 5%, Ni: 1.5%, Mo: 14.5%, which is a case where the -〇 content is high. By controlling the Mo content of the second tlA powder to within 19%, high compressibility and moldability can be obtained.

〈発明の効果〉 以上、実施例に示したとおり、本発明によれば、7%以
上の高Co1)成はもとより、3%以上のGo&[l成
においても、圧縮性や成形性が従来のブリアロイ法、混
粉法よりも大幅に向上しており、Co:3〜25%、 
Ni +Cu : 0.2〜10%、 Mo+ 1 /
 2 W :0.2〜15%の最終組成に対して、極め
て有用な合金鋼粉が与えられることが明らかである。
<Effects of the Invention> As shown in the examples above, according to the present invention, compressibility and formability are superior to conventional ones not only in high Co1) compositions of 7% or more but also in Go&[l compositions of 3% or more. Significant improvement over Brialloy method and mixed powder method, Co: 3-25%,
Ni+Cu: 0.2-10%, Mo+1/
It is clear that for final compositions of 2 W: 0.2-15% very useful alloyed steel powders are provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第5図は、それぞれ、第1鋼粉中のGo量、
第1w4粉中のNi量、第tm物中のhO量、第2W1
4粉中のMail、第2鋼粉中のCo+Ni+Cu量が
、混合された合金鋼粉の圧縮性と成形性に及ぼす影響を
示すものである。 特許出願人   川崎製鉄株式会社 第 1 図 m              イ      法法 第2図 m3図 母合金法 第4図 第5図 イ      法 法
Figures 1 to 5 respectively show the amount of Go in the first steel powder;
Ni amount in the 1st w4 powder, hO amount in the tm material, 2nd W1
This figure shows the influence of the amount of Mail in the fourth powder and the amount of Co+Ni+Cu in the second steel powder on the compressibility and formability of the mixed alloy steel powder. Patent Applicant: Kawasaki Steel Corporation Figure 1 M A Law Figure 2 M3 Master Alloy Method Figure 4 Figure 5 A Law

Claims (2)

【特許請求の範囲】[Claims] (1)重量割合で、 Co:10〜36% Ni+Cu:0.2〜20% Mo+1/2W:0.15%以下 を含有し、残部がFeおよび不可避的不純物からなる組
成範囲の合金鋼粉と、 Mo+1/2W:0.2〜19% Co+Ni+Cu:2%以下 を含有し、残部がFeおよび不可避的不純物からなる組
成範囲の合金鋼粉との混合粉で平均組成が Co:3〜25% Ni+Cu:0.2〜10% Mo+1/2:0.2〜15% の範囲にあり、残部がFeおよび不可避的不純物からな
ることを特徴とする圧縮性および成形性に優れる粉末冶
金用高合金鋼粉。 但し、Ni+CuはNiとCuの含有量の和、Mo+1
/2WはMoの含有量とWの含有量の半分の和、Co+
Ni+CuはCo、NiおよびCuの含有量の和のそれ
ぞれ表示である。
(1) Alloy steel powder with a composition range containing Co: 10 to 36%, Ni + Cu: 0.2 to 20%, Mo + 1/2W: 0.15% or less, and the balance consisting of Fe and inevitable impurities, in terms of weight percentage. , Mo+1/2W: 0.2-19% Co+Ni+Cu: A mixed powder with an alloy steel powder having a composition range of 2% or less, with the balance consisting of Fe and unavoidable impurities, with an average composition of Co: 3-25% Ni+Cu :0.2~10% Mo+1/2:0.2~15% High alloy steel powder for powder metallurgy with excellent compressibility and formability, with the balance consisting of Fe and inevitable impurities. . However, Ni+Cu is the sum of the content of Ni and Cu, Mo+1
/2W is the sum of the Mo content and half of the W content, Co+
Ni+Cu is the sum of the contents of Co, Ni and Cu.
(2)重量割合で、 Co:10〜36% Ni+Cu:0.2〜20% Mo+1/2W:0.15%以下 を含有し、残部がFeおよび不可避的不純物からなる組
成範囲の合金鋼粉と、 Mo+1/2W:0.2〜19% Co+Ni+Cu:2%以下 を含有し、残部がFeおよび不可避的不純物からなる組
成範囲の合金鋼粉および 粉末冶金用純鉄粉との混合粉で平均組成が Co:3〜25% Ni+Cu:0.2〜10% Mo+1/2W:0.2〜15% の範囲にあり、残部がFeおよび不可避的不純物からな
ることを特徴とする圧縮性および成形性に優れる粉末冶
金用高合金鋼粉。 但し、Ni+CuはNiとCuの含有量の和、Mo+1
/2WはMoの含有量とWの含有量の半分の和、Co+
Ni+CuはCo、NiおよびCuの含有量の和のそれ
ぞれ表示である。
(2) Alloy steel powder with a composition range containing Co: 10 to 36%, Ni + Cu: 0.2 to 20%, Mo + 1/2W: 0.15% or less, and the balance consisting of Fe and unavoidable impurities, in weight proportions. , Mo+1/2W: 0.2-19% Co+Ni+Cu: 2% or less, the balance is Fe and unavoidable impurities, and the average composition is a mixed powder with alloy steel powder and pure iron powder for powder metallurgy. Co: 3-25% Ni+Cu: 0.2-10% Mo+1/2W: 0.2-15%, with the balance consisting of Fe and inevitable impurities. Excellent compressibility and moldability. High alloy steel powder for powder metallurgy. However, Ni+Cu is the sum of the content of Ni and Cu, Mo+1
/2W is the sum of the Mo content and half of the W content, Co+
Ni+Cu is the sum of the contents of Co, Ni and Cu.
JP63075955A 1988-03-31 1988-03-31 High alloy steel powder for powder metallurgy with excellent compressibility and formability Expired - Lifetime JPH075923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63075955A JPH075923B2 (en) 1988-03-31 1988-03-31 High alloy steel powder for powder metallurgy with excellent compressibility and formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63075955A JPH075923B2 (en) 1988-03-31 1988-03-31 High alloy steel powder for powder metallurgy with excellent compressibility and formability

Publications (2)

Publication Number Publication Date
JPH01252701A true JPH01252701A (en) 1989-10-09
JPH075923B2 JPH075923B2 (en) 1995-01-25

Family

ID=13591156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63075955A Expired - Lifetime JPH075923B2 (en) 1988-03-31 1988-03-31 High alloy steel powder for powder metallurgy with excellent compressibility and formability

Country Status (1)

Country Link
JP (1) JPH075923B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103042207A (en) * 2013-01-18 2013-04-17 苏州大学 Material used for improving performances of high-temperature resistant, abrasion and antifriction of surface of titanium alloy and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4937806A (en) * 1972-08-11 1974-04-08
JPS5438579A (en) * 1977-08-31 1979-03-23 Omron Tateisi Electronics Co Method of installing contacts

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4937806A (en) * 1972-08-11 1974-04-08
JPS5438579A (en) * 1977-08-31 1979-03-23 Omron Tateisi Electronics Co Method of installing contacts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103042207A (en) * 2013-01-18 2013-04-17 苏州大学 Material used for improving performances of high-temperature resistant, abrasion and antifriction of surface of titanium alloy and application thereof

Also Published As

Publication number Publication date
JPH075923B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
JP5504278B2 (en) Method for producing diffusion-alloyed iron or iron-based powder, diffusion-alloyed powder, composition comprising the diffusion-alloyed powder, and molded and sintered parts produced from the composition
CN101681708A (en) Sintered soft magnetic powder molded body
CN101516549A (en) Iron-based powder
JP4201830B2 (en) Iron-based powder containing chromium, molybdenum and manganese and method for producing sintered body
JPH10140206A (en) Low alloy steel powder for sintering and hardening
EP0601042B1 (en) Powder-metallurgical composition having good soft magnetic properties
JP6741153B2 (en) Partially diffused alloy steel powder
JPH0715121B2 (en) Fe-Co alloy fine powder for injection molding and Fe-Co sintered magnetic material
JPS634031A (en) Manufacturing method for wear-resistant alloys
JPH01252701A (en) High alloy steel powder for powder metallurgy having excellent compressibility and formability
WO2019111833A1 (en) Steel alloy powder
US4015947A (en) Production of sintered aluminum alloy articles from particulate premixes
JPH0751721B2 (en) Low alloy iron powder for sintering
JPS5854185B2 (en) Powder for high permeability sintered iron-nickel alloys
JPH10501299A (en) Iron-based powder containing Mo, P, C
JPS61127848A (en) Manufacturing method of sintered alnico magnet
JPH01290702A (en) Ferrous powder for powder metallurgy and its production
JP3331963B2 (en) Sintered valve seat and method for manufacturing the same
JP3346310B2 (en) High strength iron-based sintered alloy
JPH0247202A (en) Steel powder for heat and wear resistant sintered alloy
JPH075921B2 (en) Method for producing composite alloy steel powder with excellent compressibility
JPS58213859A (en) Corrosion resistant sintered material
JPS6130601A (en) Precipitation hardening stainless steel powder with excellent compressibility
JPS60218459A (en) Ferrous alloy powder having excellent compressibility and sinterability for wear-resistant sintered parts
JPH05148590A (en) Low thermal expansion alloy powder and composition thereof