[go: up one dir, main page]

JPH0746091B2 - Oxygen concentration detector - Google Patents

Oxygen concentration detector

Info

Publication number
JPH0746091B2
JPH0746091B2 JP61018653A JP1865386A JPH0746091B2 JP H0746091 B2 JPH0746091 B2 JP H0746091B2 JP 61018653 A JP61018653 A JP 61018653A JP 1865386 A JP1865386 A JP 1865386A JP H0746091 B2 JPH0746091 B2 JP H0746091B2
Authority
JP
Japan
Prior art keywords
sensor
oxygen concentration
gas
air
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61018653A
Other languages
Japanese (ja)
Other versions
JPS62201346A (en
Inventor
豊平 中島
泰仕 岡田
敏幸 三重野
信之 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Publication of JPS62201346A publication Critical patent/JPS62201346A/en
Publication of JPH0746091B2 publication Critical patent/JPH0746091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

【発明の詳細な説明】 技術分野 本発明はエンジン排気ガス等の気体中の酸素濃度を検出
する酸素濃度検出装置に関する。
TECHNICAL FIELD The present invention relates to an oxygen concentration detection device for detecting the oxygen concentration in a gas such as engine exhaust gas.

背景技術 内燃エンジンの排気ガス浄化、燃費改善等を目的とし
て、排気ガス中の酸素濃度を検出し、この検出結果に応
じてエンジンへの供給混合気の空燃比を目標空燃比にフ
ィードバック制御する空燃比制御装置がある。
BACKGROUND ART An air-fuel ratio that detects the oxygen concentration in the exhaust gas and purifies the air-fuel ratio of the air-fuel mixture supplied to the engine by feedback control to the target air-fuel ratio according to the detection results for the purpose of purifying exhaust gas from internal combustion engines and improving fuel efficiency. There is a fuel ratio control device.

このような空燃比制御装置に用いられる酸素濃度検出装
置として被測定気体中の酸素濃度に比例した出力を発生
するものがある。例えば、2つの平板状の酸素イオン伝
導性固体電解質部材各々の両主面に電極対を設けて2つ
の固体電解質部材の一方の電極面各々が気体滞留室の一
部をなしてその気体滞留室が被測定気体と導入孔を介し
て連通し一方の固体電解質部材の他方の電極面が大気室
に面するようにした装置が特開昭59−192955号に開示さ
れている。この酸素濃度検出装置においては一方の酸素
イオン伝導性固体電解質部材と電極対とが酸素濃度比検
出電池素子として作用し他方の酸素イオン伝導性固体電
解質材と電極対とが酸素ポンプ素子として作用するよう
になっている。酸素濃度比検出電池素子の電極間の発生
電圧が基準電圧以上のとき酸素ポンプ素子内を酸素イオ
ンが気体滞留室電極に向って移動するように電流を供給
し、酸素濃度比検出電池素子の電極間の発生電圧が基準
電圧以下のとき酸素ポンプ素子内を酸素イオンが気体滞
留室とは反対側の電極に向って移動するように電流を供
給することによりリーン及びリッチ領域の空燃比におい
て電流値が酸素濃度に比例する特性が得られるのであ
る。
As an oxygen concentration detecting device used in such an air-fuel ratio control device, there is one which generates an output proportional to the oxygen concentration in the gas to be measured. For example, an electrode pair is provided on both main surfaces of each of the two flat plate-shaped oxygen ion conductive solid electrolyte members, and one electrode surface of each of the two solid electrolyte members forms a part of the gas retention chamber to form the gas retention chamber. Japanese Patent Laid-Open No. 192955/1984 discloses a device in which the other electrode surface of one solid electrolyte member is in communication with the gas to be measured through an introduction hole and the other electrode surface faces the atmosphere chamber. In this oxygen concentration detecting device, one oxygen ion conductive solid electrolyte member and the electrode pair act as an oxygen concentration ratio detecting battery element, and the other oxygen ion conductive solid electrolyte material and the electrode pair act as an oxygen pump element. It is like this. When the voltage generated between the electrodes of the oxygen concentration ratio detection battery element is higher than the reference voltage, a current is supplied so that oxygen ions move in the oxygen pump element toward the gas retention chamber electrode, and the electrodes of the oxygen concentration ratio detection battery element are supplied. When the generated voltage between the two is below the reference voltage, a current is supplied in the oxygen pump element so that the oxygen ions move toward the electrode on the side opposite to the gas retention chamber, and the current value in the lean-rich region air-fuel ratio is increased. Is obtained in proportion to the oxygen concentration.

かかる酸素濃度検出装置においては、内燃エンジンの排
気管内に設けて排気ガス中の酸素濃度を検出使用する場
合には長年の使用により排気ガス中の酸化物等が導入孔
に付着して出力特性に悪影響を及ぼし所望の出力特性が
徐々に得られなくなってしまうことが分った。しかしな
がら、所望の出力特性が得られないという異常が生じて
も従来、酸素濃度検出装置を内燃エンジン等に取り付け
た後に出力特性が変化したか否かを検出することは困難
であった。
In such an oxygen concentration detection device, when the oxygen concentration in the exhaust gas is detected by being provided in the exhaust pipe of an internal combustion engine, the oxide etc. in the exhaust gas adheres to the introduction hole due to long-term use and has a poor output characteristic. It has been found that there is a bad influence and desired output characteristics are not gradually obtained. However, even if an abnormality occurs in which desired output characteristics cannot be obtained, it has heretofore been difficult to detect whether or not the output characteristics have changed after attaching the oxygen concentration detection device to an internal combustion engine or the like.

発明の概要 そこで、本発明の目的は出力特性の変化を容易に検出す
ることができる酸素濃度検出装置を提供することであ
る。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an oxygen concentration detection device that can easily detect changes in output characteristics.

本発明の酸素濃度検出装置は、酸素イオン伝導性固体電
解質部材からなりその内部に第1及び第2気体滞留室を
互いに第1気体拡散制限手段を介して連通させて形成し
第1気体滞留室が第2気体拡散制限手段を介して被測定
気体中に連通するようにされた基対と、第1気体滞留室
を囲む電解質部材の内外壁面上にこれを挟んで対向する
が如く設けられて第1センサを形成する2つの第1電極
対と、第2気体滞留室を囲む電解質部材の内外壁面上に
これを挟んで対向するが如く設けられて第2センサを形
成する2つの第2電極対と、2つの第1電極対の一方の
電極対間に発生した電圧と第1基準電圧との差電圧に応
じた値の電流を他方の第1電極対間に供給してその供給
電流値に応じた値を第1センサの酸素濃度検出値として
出力し2つの第2電極対の一方の電極対間に発生した電
圧と第2基準電圧との差電圧に応じた値の電流を他方の
第2電極対間に供給してその供給電流値に応じた値を第
2センサ酸素濃度検出値として出力する電流供給手段
と、第1センサの酸素濃度検出値と第2センサの酸素濃
度検出値とに応じて第1又は第2センサの異常を検出す
る検出手段とを有することを特徴としている。
The oxygen concentration detecting device of the present invention is composed of an oxygen ion conductive solid electrolyte member, and is formed with the first and second gas retention chambers communicating with each other through the first gas diffusion limiting means. Is provided on the inner and outer wall surfaces of the electrolyte member surrounding the first gas retention chamber so as to be opposed to the base pair which is communicated with the gas to be measured through the second gas diffusion limiting means. Two first electrode pairs forming the first sensor, and two second electrodes forming the second sensor so as to face each other on the inner and outer wall surfaces of the electrolyte member surrounding the second gas retention chamber so as to sandwich them. And a current value having a value corresponding to a difference voltage between a voltage generated between one of the two first electrode pairs and the first reference voltage is supplied between the other first electrode pair to supply the current value. Is output as the oxygen concentration detection value of the first sensor, and the two second A current having a value corresponding to the difference voltage between the voltage generated between the one electrode pair of the pole pair and the second reference voltage is supplied between the other second electrode pair, and the value corresponding to the supplied current value is set to the second value. It has a current supply means for outputting as a sensor oxygen concentration detection value and a detection means for detecting an abnormality of the first or second sensor according to the oxygen concentration detection value of the first sensor and the oxygen concentration detection value of the second sensor. It is characterized by that.

実 施 例 以下、本発明の実施例を図面を参照しつつ説明する。EXAMPLES Examples of the present invention will be described below with reference to the drawings.

第1図及び第2図は本発明による酸素濃度検出装置を用
いた空燃比制御装置を示している。本装置においては、
ほぼ立方体状の酸素イオン伝導性固体電解質部材1が設
けられている。酸素イオン伝導性固体電解質部材1内に
は第1及び第2気体滞留室2,3が形成されている。第1
気体滞留室2は固体電解質部材1外部から被測定気体の
排気ガスを導入する導入孔4に連通し、導入孔4は内燃
エンジンの排気管(図示せず)内において排気ガスが第
1気体滞留室2内に流入し易いように位置される。第1
気体滞留室2と第2気体滞留室3との間の壁部には連通
孔5が形成され、第2気体滞留室3内に排気ガスが導入
孔4、第1気体滞留室2、そして連通孔5を介して導入
されるようになっている。また酸素イオン伝導性固体電
解質部材1には外気等を導入する参照気体室6が第1及
び第2気体滞留室2,3と壁を隔てるように形成されてい
る。第1及び第2気体滞留室2,3の参照気体室6とは反
対側の壁部内には電極保護孔7が形成されている。第1
気体滞留室2と参照気体室6との間の壁部及び第1気体
滞留室2と電極保護孔7との間の壁部には電極対11a,11
b,12a,12bが各々形成され、また第2気体滞留室3と参
照気体室6との間の壁部及び第2気体滞留室3と電極保
護孔7との間の壁部には電極対13a,13b,14a,14bが各々
形成されている。固体電解質部材1及び電極対11a,11b
が第1酸素ポンプ素子15として、固体電解質部材1及び
電極対12a,12bが第1電池素子16として各々作用する。
また固体電解質部材1及び電極対13a,13bが第2酸素ポ
ンプ素子17として、固体電解質部材1及び電極対14a,14
bが第2電池素子18として各々作用する。また参照気体
室6の外壁面及び電極保護孔7の外壁面にヒータ素子1
9,20が各々設けられている。ヒータ素子19,20は電気的
に互いに並列に接続されており、第1及び第2酸素ポン
プ素子15,17並びに第1及び第2電池素子を均等に加熱
すると共に固体電解質部材1内の保温性の向上を図って
いる。なお、酸素イオン伝導性固体電解質部材1は複数
の断片から一体に形成される。また第1及び第2気体滞
留室の壁部を全て酸素イオン伝導性固体電解質から形成
する必要はなく、少なくとも電極対を設ける部分だけが
その固体電解質からなれば良い。
1 and 2 show an air-fuel ratio control device using an oxygen concentration detection device according to the present invention. In this device,
An oxygen ion conductive solid electrolyte member 1 having a substantially cubic shape is provided. In the oxygen ion conductive solid electrolyte member 1, first and second gas retention chambers 2 and 3 are formed. First
The gas retention chamber 2 communicates with an introduction hole 4 for introducing the exhaust gas of the gas to be measured from the outside of the solid electrolyte member 1. The introduction hole 4 is the first gas retention of the exhaust gas in the exhaust pipe (not shown) of the internal combustion engine. It is located so as to easily flow into the chamber 2. First
A communication hole 5 is formed in a wall portion between the gas retention chamber 2 and the second gas retention chamber 3, and exhaust gas is introduced into the second gas retention chamber 3 into the introduction hole 4, the first gas retention chamber 2, and the communication. It is adapted to be introduced through the hole 5. Further, the oxygen ion conductive solid electrolyte member 1 is formed with a reference gas chamber 6 for introducing outside air or the like so as to separate the walls from the first and second gas retention chambers 2 and 3. Electrode protection holes 7 are formed in the walls of the first and second gas retention chambers 2 and 3 opposite to the reference gas chamber 6. First
Electrode pairs 11a and 11 are provided on the wall between the gas retention chamber 2 and the reference gas chamber 6 and on the wall between the first gas retention chamber 2 and the electrode protection hole 7.
b, 12a, 12b are respectively formed, and an electrode pair is provided on the wall between the second gas retention chamber 3 and the reference gas chamber 6 and on the wall between the second gas retention chamber 3 and the electrode protection hole 7. 13a, 13b, 14a and 14b are formed respectively. Solid electrolyte member 1 and electrode pair 11a, 11b
As the first oxygen pump element 15, and the solid electrolyte member 1 and the electrode pairs 12a and 12b as the first battery element 16.
Further, the solid electrolyte member 1 and the electrode pairs 13a, 13b serve as the second oxygen pump element 17, and the solid electrolyte member 1 and the electrode pairs 14a, 14b.
b acts as the second battery element 18, respectively. Further, the heater element 1 is provided on the outer wall surface of the reference gas chamber 6 and the outer wall surface of the electrode protection hole 7.
There are 9 and 20, respectively. The heater elements 19 and 20 are electrically connected in parallel to each other, and evenly heat the first and second oxygen pump elements 15 and 17 and the first and second battery elements, and at the same time, retain heat in the solid electrolyte member 1. We are trying to improve The oxygen ion conductive solid electrolyte member 1 is integrally formed from a plurality of pieces. Further, it is not necessary to form all the wall portions of the first and second gas retention chambers from the oxygen ion conductive solid electrolyte, and at least only the portion where the electrode pair is provided may be formed from the solid electrolyte.

酸素イオン伝導性固体電解質部材1としては、ZrO2(二
酸化ジルコニウム)が用いられ、電極11aないし14bとし
てはPt(白金)が用いられる。
ZrO 2 (zirconium dioxide) is used as the oxygen ion conductive solid electrolyte member 1, and Pt (platinum) is used as the electrodes 11a to 14b.

第1及び第2酸素ポンプ素子15,17並びに第1及び第2
電池素子16,18には電流供給回路21が接続されている。
第2図に示すように電流供給回路21は作動増幅回路22,2
3,電流検出抵抗24,25,基準電圧源26,27及び切替回路28,
29からなる。第1酸素ポンプ素子15の外側電極11aは切
替回路28のスイッチ28a、電流検出抵抗24を介して差動
増幅回路22の出力端に接続され、内側電極11bは切替回
路29のスイッチ29aを介してアースされるようになって
いる。第1電池素子16の外側電極12aは差動増幅回路22
の反転入力端に接続され、内側電極12bは切替回路29の
スイッチ29bを介してアースされるようになっている。
同様に第2酸素ポンプ素子17の外側電極13aは切替回路2
8のスイッチ28b、電流検出抵抗25を介して差動増幅回路
23の出力端に接続され、内側電極13bは切替回路29のス
イッチ29aを介してアースされるようになっている。第
2電池素子18の外側電極14aは差動増幅回路23の反転入
力端に接続され、内側電極14bは切替回路29のスイッチ2
9bを介してアースされるようになっている。差動増幅回
路22の非反転入力端には基準電圧源26が接続され、差動
増幅回路23の非反転入力端には基準電圧源27が接続され
ている。基準電圧源26,27の出力電圧は理論空燃比に相
当する電圧(例えば、0.4V)である。電流検出抵抗24の
両端間が第1センサの出力をなくし、電流検出抵抗25の
両端間が第2センサの出力をなしている。電流検出抵抗
24,25の両端電圧は差動入力のA/D変換器31を介して空燃
比制御回路32に供給され、電流検出抵抗24,25を流れる
ポンプ電流値IP(1)、IP(2)が空燃比制御回路32に
読み込まれる。空燃比制御回路32はマイクロコンピュー
タからなる。空燃比制御回路32にはエンジン回転数、吸
気管内絶対圧、冷却水温等を検出する複数の運転パラメ
ータ検出センサ(図示せず)が接続されると共に、また
駆動回路33を介して電磁弁34が接続されている。電磁弁
34はエンジン気化器絞り弁下流の吸気マニホールド内に
連通する吸気2次空気供給通路(図示せず)に設けられ
ている。また空燃比制御回路32は切替回路28,29のスイ
ッチ切替動作を制御し、空燃比制御回路32からの指令に
応じて駆動回路30が切替回路28,29を駆動する。なお、
差動増幅回路22,23には正負の電源電圧が供給される。
First and second oxygen pump elements 15, 17 and first and second
A current supply circuit 21 is connected to the battery elements 16 and 18.
As shown in FIG. 2, the current supply circuit 21 is a differential amplifier circuit 22,2.
3, current detection resistors 24, 25, reference voltage sources 26, 27 and switching circuit 28,
It consists of 29. The outer electrode 11a of the first oxygen pump element 15 is connected to the output end of the differential amplifier circuit 22 via the switch 28a of the switching circuit 28 and the current detection resistor 24, and the inner electrode 11b is connected to the switch 29a of the switching circuit 29. It is designed to be grounded. The outer electrode 12a of the first battery element 16 is a differential amplifier circuit 22.
The inner electrode 12b is connected to the inverting input end of the switch and is grounded via the switch 29b of the switching circuit 29.
Similarly, the outer electrode 13a of the second oxygen pump element 17 is connected to the switching circuit 2
Differential amplifier circuit via switch 28b of 8 and current detection resistor 25
The inner electrode 13b is connected to the output terminal of 23 and is grounded via the switch 29a of the switching circuit 29. The outer electrode 14a of the second battery element 18 is connected to the inverting input terminal of the differential amplifier circuit 23, and the inner electrode 14b is connected to the switch 2 of the switching circuit 29.
It is designed to be grounded via 9b. A reference voltage source 26 is connected to the non-inverting input terminal of the differential amplifier circuit 22, and a reference voltage source 27 is connected to the non-inverting input terminal of the differential amplifier circuit 23. The output voltage of the reference voltage sources 26, 27 is a voltage (for example, 0.4 V) corresponding to the stoichiometric air-fuel ratio. The output of the first sensor is eliminated between both ends of the current detection resistor 24, and the output of the second sensor is provided between both ends of the current detection resistor 25. Current detection resistor
The voltage between both ends of 24, 25 is supplied to the air-fuel ratio control circuit 32 via the A / D converter 31 of the differential input, and the pump current values I P (1), I P (2 ) Is read into the air-fuel ratio control circuit 32. The air-fuel ratio control circuit 32 is composed of a microcomputer. The air-fuel ratio control circuit 32 is connected to a plurality of operating parameter detection sensors (not shown) for detecting the engine speed, the absolute pressure in the intake pipe, the cooling water temperature, etc., and the solenoid valve 34 is connected via the drive circuit 33. It is connected. solenoid valve
34 is provided in an intake secondary air supply passage (not shown) communicating with the intake manifold downstream of the engine carburetor throttle valve. Further, the air-fuel ratio control circuit 32 controls the switch switching operation of the switching circuits 28, 29, and the drive circuit 30 drives the switching circuits 28, 29 in response to a command from the air-fuel ratio control circuit 32. In addition,
Positive and negative power supply voltages are supplied to the differential amplifier circuits 22 and 23.

一方、ヒータ素子19,20には電流がヒータ電流供給回路3
5から供給されてヒータ素子19,20が発熱して酸素ポンプ
素子15,17及び電池素子16,18を排気ガスより高い適温に
加熱する。
On the other hand, a current is supplied to the heater elements 19 and 20 by the heater current supply circuit 3
When supplied from 5, the heater elements 19 and 20 generate heat to heat the oxygen pump elements 15 and 17 and the battery elements 16 and 18 to an appropriate temperature higher than the exhaust gas.

かかる構成においては、排気管内の排気ガスが導入孔4
から第1気体滞留室2内に流入し拡散する。また第1気
体滞留室2内の排気ガスは連通孔5から第2気体滞留室
3内に流入し拡散する。
In this structure, the exhaust gas in the exhaust pipe is introduced into the introduction hole 4
Flows into the first gas retention chamber 2 and diffuses. The exhaust gas in the first gas retention chamber 2 flows into the second gas retention chamber 3 through the communication hole 5 and diffuses.

切替回路28,29において、第2図の如くスイッチ28aが電
極11aを抵抗24に接続し、スイッチ28bが電極13aの接続
ラインを開放し、スイッチ29aが電極11bをアースしかつ
電極13bの接続ラインを開放し、またスイッチ29bが電極
12bをアースしかつ電極14bの接続ラインを開放する選択
位置にされると、第1センサの選択状態になる。
In the switching circuits 28 and 29, the switch 28a connects the electrode 11a to the resistor 24, the switch 28b opens the connection line of the electrode 13a, the switch 29a grounds the electrode 11b and the connection line of the electrode 13b as shown in FIG. The switch 29b and the electrode
The first sensor is in the selected state when it is brought to the selected position where the 12b is grounded and the connection line of the electrode 14b is opened.

この第1センサの選択状態には、先ず、エンジン供給混
合気の空燃比がリーン領域のときには差動増幅回路22の
出力レベルが正レベルになり、この正レベル電圧が電流
検出抵抗24及び第1酸素ポンプ素子15の直列回路に供給
される。よって、第1酸素ポンプ素子15の電極11a,11b
間にポンプ電流が流れる。このポンプ電流は電極11aか
ら電極11bに向って流れるので第1気体滞留室2内の酸
素が電極11bにてイオン化して第1酸素ポンプ素子15内
を移動して電極11aから酸素ガスとして放出され、第1
気体滞留室2内の酸素が汲み出される。
In the selected state of the first sensor, first, when the air-fuel ratio of the engine-supplied air-fuel mixture is in the lean range, the output level of the differential amplifier circuit 22 becomes a positive level, and this positive-level voltage is the current detection resistor 24 and the first level. It is supplied to the series circuit of the oxygen pump element 15. Therefore, the electrodes 11a, 11b of the first oxygen pump element 15
Pump current flows between them. This pump current flows from the electrode 11a to the electrode 11b, so that oxygen in the first gas retention chamber 2 is ionized at the electrode 11b and moves in the first oxygen pump element 15 to be released as oxygen gas from the electrode 11a. , First
Oxygen in the gas retention chamber 2 is pumped out.

第1気体滞留室2内の酸素の汲み出しにより第1気体滞
留室2内の排気ガスと参照気体室6内の気体の間に酸素
濃度差が生ずる。この酸素濃度差によって電池素子16の
電極12a,12b間に電圧VSが生ずる。この電圧VSは差動増
幅回路22の反転入力端に供給される。差動増幅回路22の
出力電圧は電圧VSと基準電圧源26の出力電圧Vr1との差
電圧に比例した電圧となるのでポンプ電流値は排気ガス
中の酸素濃度に比例する。
By pumping out oxygen in the first gas retention chamber 2, a difference in oxygen concentration occurs between the exhaust gas in the first gas retention chamber 2 and the gas in the reference gas chamber 6. A voltage V S is generated between the electrodes 12a and 12b of the battery element 16 due to this oxygen concentration difference. This voltage V S is supplied to the inverting input terminal of the differential amplifier circuit 22. Since the output voltage of the differential amplifier circuit 22 is a voltage proportional to the difference voltage between the voltage V S and the output voltage Vr 1 of the reference voltage source 26, the pump current value is proportional to the oxygen concentration in the exhaust gas.

リッチ領域の空燃比のときには電圧VSが基準電圧源26の
出力電圧Vr1を越える。よって、差動増幅回路22の出力
レベルが正レベルから負レベルに反転する。この負レベ
ルにより第1酸素ポンプ素子15の電極11a,11b間に流れ
るポンプ電流が減少し、電流方向が反転する。すなわ
ち、ポンプ電流は電極11bから電極11a方向に流れるので
外部の酸素が電極11aにてイオン化して第1酸素ポンプ
素子15内を移動して電極11bから酸素ガスとして第1気
体滞留室2内に放出され、酸素が第1気体滞留室2内に
汲み込まれる。従って、第1気体滞留室2内の酸素濃度
が常に一定になるようにポンプ電流を供給することによ
り酸素を汲み込んだり、汲み出したりするのでポンプ電
流値IP及び差動増幅回路22の出力電圧はリーン及びリッ
チ領域にて排気ガス中の酸素濃度に各々比例するのであ
る。第3図の実線aはそのポンプ電流値IPを示してい
る。
When the air-fuel ratio is in the rich region, the voltage V S exceeds the output voltage Vr 1 of the reference voltage source 26. Therefore, the output level of the differential amplifier circuit 22 is inverted from the positive level to the negative level. Due to this negative level, the pump current flowing between the electrodes 11a and 11b of the first oxygen pump element 15 decreases and the current direction is reversed. That is, since the pump current flows from the electrode 11b to the electrode 11a, the external oxygen is ionized at the electrode 11a and moves in the first oxygen pump element 15 to move from the electrode 11b into the first gas retention chamber 2 as oxygen gas. It is released and oxygen is pumped into the first gas retention chamber 2. Accordingly, the pump current is pumped in and out by supplying the pump current so that the oxygen concentration in the first gas retention chamber 2 is always constant, so that the pump current value I P and the output voltage of the differential amplifier circuit 22. Is proportional to the oxygen concentration in the exhaust gas in the lean and rich regions, respectively. A solid line a in FIG. 3 shows the pump current value I P.

ポンプ電流値IPは電荷をe、導入孔4による排気ガスに
対する拡散係数をσ、排気ガス中の酸素濃度をPOex
h、第1気体滞留室2内の酸素濃度をPOvとすると、次式
の如くで表わすことができる。
The pump current value I P is the charge e, the diffusion coefficient of the introduction hole 4 to the exhaust gas is σ O , and the oxygen concentration in the exhaust gas is P O ex
When h is the oxygen concentration in the first gas retention chamber 2 and P O v, it can be expressed by the following equation.

IP=4eσ(POexh−POv) ……(1) ここで、拡散係数σは導入孔4の面積をA、ボルツマ
ン定数をk、絶対値温度をT、導入孔4の流さをl、拡
散定数をDとすると、次式の如く表わすことができる。
I P = 4eσ O (P O exh−P O v) (1) where the diffusion coefficient σ O is the area of the introduction hole 4, A is the Boltzmann constant, k is the absolute temperature, T is the introduction hole 4 When the flow rate is l and the diffusion constant is D, it can be expressed as the following equation.

σ=D・A/kTl ……(2) 次に、スイッチ28aが電極11aの接続ラインを開放し、ス
イッチ28bが電極13aを電流検出抵抗25に接続し、スイッ
チ29aが電極13bをアースしかつ電極11bの接続ラインを
開放し、またスイッチ29bが電極14bをアースしかつ電極
12bの接続ラインを開放する選択位置にされると、第2
センサの選択状態となる。
σ O = D · A / kTl (2) Next, the switch 28a opens the connection line of the electrode 11a, the switch 28b connects the electrode 13a to the current detection resistor 25, and the switch 29a grounds the electrode 13b. And open the connection line of electrode 11b, and switch 29b grounds electrode 14b and
Once in the selected position to open the 12b connection line, the second
The sensor is selected.

この第2センサの選択状態には上記した第1センサの選
択状態と同様の動作により第2気体滞留室3内の酸素濃
度が常に一定になるようにポンプ電流が第2酸素ポンプ
素子17の電極13a,13b間に供給されて酸素が汲み込まれ
たり、汲み出されたりするのでポンプ電流値IP及び差動
増幅回路23の出力電圧はリーン及びリッチ領域にて排気
ガス中の酸素濃度に各々比例するのである。この第2セ
ンサ選択状態のポンプ電流値IPは上記した式(1)にお
いて拡散係数σを導入孔4及び連通孔5によるものと
し、またPOvを第2気体滞留室3内の酸素濃度とするこ
とにより表わされる。ポンプ電流値IPの大きさは第4図
に示すように空燃比のリーン及びリッチ領域において拡
散係数の大きさに反比例する拡散抵抗が大きくなるほど
小さくなることが明らかになっている。よって、第2セ
ンサ選択状態には第1センサ選択状態よりも拡散抵抗が
大となるので第3図の波線bの如くポンプ電流値IPの大
きさはリーン及びリッチ領域において小さくなり、連通
孔5の大きさ及び長さを調整することにより第3図に示
すように第2センサ選択状態におけるリッチ領域のポン
プ電流値特性が第1センサ選択状態におけるリーン領域
のポンプ電流値特性にIP=0にて直線的に連続するので
ある。また差動増幅回路22、23の出力電圧特性も0
〔V〕にて直線的に連続したものになる。
In the selected state of the second sensor, the pump current is the electrode of the second oxygen pump element 17 so that the oxygen concentration in the second gas retention chamber 3 is always constant by the same operation as the selected state of the first sensor described above. Oxygen is supplied to between 13a and 13b, and oxygen is pumped in or pumped out. Therefore, the pump current value I P and the output voltage of the differential amplifier circuit 23 are different from the oxygen concentration in the exhaust gas in the lean and rich regions, respectively. It is proportional. The pump current value I P in the second sensor selected state is defined by the diffusion coefficient σ O in the above formula (1) by the introduction hole 4 and the communication hole 5, and P O v is the oxygen in the second gas retention chamber 3. It is represented by the concentration. It is clear that the magnitude of the pump current value I P becomes smaller as the diffusion resistance inversely proportional to the magnitude of the diffusion coefficient becomes larger in the lean and rich regions of the air-fuel ratio as shown in FIG. Therefore, in the second sensor selection state, the diffusion resistance becomes larger than in the first sensor selection state, and therefore the magnitude of the pump current value I P becomes smaller in the lean and rich regions as indicated by the broken line b in FIG. by adjusting the size and length of 5 to the pump current value characteristic of the rich region in the second sensor selection state as shown in FIG. 3 is a pump current value characteristic of the lean region in the first sensor selection state I P = It is continuous at 0. The output voltage characteristics of the differential amplifier circuits 22 and 23 are also 0.
It becomes linearly continuous at [V].

次に、本発明に係わる空燃比制御回路32の動作について
説明する。空燃比制御回路32はクロックパルスに応じて
第5図に示した空燃比検出補正ルーチン及び第6図に示
した空燃比制御ルーチン順次実行する。空燃比検出補正
ルーチンにおいて、空燃比制御回路32は先ず、エンジン
が所定運転状態であるか否かを複数のパラメータ検出セ
ンサの出力レベルに応じて判別する(ステップ61)。所
定運転状態はアイドル運転状態、定常運転状態等の安定
した運転状態である。所定運転状態と判別したときには
空燃比が目標空燃比に制御されて空燃比が安定したか否
かを判別する(ステップ62)。空燃比が目標空燃比に制
御され空燃比が安定すると第1センサ又は第2センサの
酸素濃度検出値の変動が小さくなり所定幅内になるので
選択中のセンサの酸素濃度検出値変動幅が所定値以下に
なってから所定時間経過したとき空燃比が安定したと見
なされる。空燃比の安定時には第1又は第2センサの酸
素濃度検出値に応じた空燃比フィードバック(F/B)制
御を停止し(空燃比制御ルーチンの実行を停止する)空
燃比を一定にするために電磁弁34を所定周期毎に所定デ
ューティ比で開弁させるように開弁駆動指令及び開弁駆
動停止指令を発生し(ステップ63)、第1及び第2セン
サの選択状態を表わすフラグFsが“1"であるか否かを判
別する(ステップ64)。Fs=0の場合、第1センサ選択
状態にあるのでA/D変換器31から出力される第1センサ
のポンプ電流値IP(1)を読み込んで内部メモリ(図示
せず)の記憶装置A1に記憶する(ステップ65)。そして
第2センサ選択指令を駆動回路30に対して発生して第2
センサ選択状態にして(ステップ66)、A/D変換器31か
ら出力される第2センサのポンプ電流値IP(2)を読み
込んで内部メモリの記憶位置A2に記憶する(ステップ6
7)。その後、再び第1センサ選択状態にするために第
1センサ選択指令を駆動回路30に対して発生し(ステッ
プ68)、A/D変換器31から出力される第1センサのポン
プ電流値IP(1)を読み込んで内部メモリの記憶位置A3
に記憶する(ステップ69)。一方、Fs=1の場合、第2
センサ選択状態にあるのでA/D変換器31から出力される
第2センサのポンプ電流値IP(2)を読み込んで内部メ
モリの記憶位置A1に記憶する(ステップ70)。そして第
1センサ選択指令を駆動回路30に対して発生して第1セ
ンサ選択状態にして(ステップ71)、A/D変換器31から
出力される第1センサのポンプ電流値IP(1)を読み込
んで内部メモリの記憶位置A2に記憶する(ステップ7
2)。その後、再び第2センサ選択状態にするために第
2センサ選択指令を駆動回路30に対して発生し(ステッ
プ73)、A/D変換器31から出力される第2センサのポン
プ電流値IP(2)を読み込んで内部メモリの記憶位置A3
に記憶する(ステップ74)。次いで、酸素濃度検出値の
変動が小さいか否かを再度判別するために内部メモリの
記憶位置A1、A3からポンプ電流値IP(1)又はIP(2)
を読み出してポンプ電流値IP(1)又はIP(2)の差の
絶対値ΔIPを算出し(ステップ75)、絶対値ΔIPが所定
値ΔIPr以下であるか否かを判別する(ステップ76)。
ΔIP≦ΔIPrならば、後述する補正係数KCOR1及びKCOR2
を以下の算出式によって計算し(ステップ77)、ΔIP
ΔIPrならば、選択中のセンサの酸素濃度検出値に応じ
た空燃比制御(空燃比制御ルーチンの実行)を再開する
(ステップ78)。
Next, the operation of the air-fuel ratio control circuit 32 according to the present invention will be described. The air-fuel ratio control circuit 32 sequentially executes the air-fuel ratio detection correction routine shown in FIG. 5 and the air-fuel ratio control routine shown in FIG. 6 in response to the clock pulse. In the air-fuel ratio detection correction routine, the air-fuel ratio control circuit 32 first determines whether or not the engine is in a predetermined operating state according to the output levels of the plurality of parameter detection sensors (step 61). The predetermined operating state is a stable operating state such as an idle operating state or a steady operating state. When it is determined that the operation state is the predetermined operation state, it is determined whether the air-fuel ratio is controlled to the target air-fuel ratio and the air-fuel ratio is stable (step 62). When the air-fuel ratio is controlled to the target air-fuel ratio and the air-fuel ratio becomes stable, the fluctuation of the oxygen concentration detection value of the first sensor or the second sensor becomes small and falls within the predetermined range, so the fluctuation range of the oxygen concentration detection value of the selected sensor is predetermined. It is considered that the air-fuel ratio has become stable when a predetermined time has elapsed after the value became less than or equal to the value. To stabilize the air-fuel ratio by stopping the air-fuel ratio feedback (F / B) control according to the oxygen concentration detection value of the first or second sensor (stopping the execution of the air-fuel ratio control routine) A valve opening drive command and a valve opening drive stop command are generated so as to open the solenoid valve 34 at a predetermined duty ratio at a predetermined cycle (step 63), and the flag Fs representing the selection state of the first and second sensors is set to " It is determined whether or not it is 1 "(step 64). When Fs = 0, the first sensor is in the selected state, so the pump current value I P (1) of the first sensor output from the A / D converter 31 is read and the storage device A of the internal memory (not shown) is read. Store in 1 (step 65). Then, the second sensor selection command is issued to the drive circuit 30, and the second
In the sensor selected state (step 66), the pump current value I P (2) of the second sensor output from the A / D converter 31 is read and stored in the storage position A 2 of the internal memory (step 6).
7). After that, a first sensor selection command is issued to the drive circuit 30 to bring it into the first sensor selected state again (step 68), and the pump current value I P of the first sensor output from the A / D converter 31 is output. (1) is read and storage location A 3 in the internal memory
(Step 69). On the other hand, when Fs = 1, the second
Since the sensor is in the selected state, the pump current value I P (2) of the second sensor output from the A / D converter 31 is read and stored in the storage position A 1 of the internal memory (step 70). Then, a first sensor selection command is issued to the drive circuit 30 to bring it into the first sensor selection state (step 71), and the pump current value I P (1) of the first sensor output from the A / D converter 31. Is read and stored in the storage position A 2 of the internal memory (step 7
2). After that, a second sensor selection command is issued to the drive circuit 30 to bring it into the second sensor selection state again (step 73), and the pump current value I P of the second sensor output from the A / D converter 31 is output. Read (2) and store at internal memory A 3
(Step 74). Next, in order to determine again whether or not the fluctuation of the oxygen concentration detection value is small, the pump current value I P (1) or I P (2) is calculated from the storage positions A 1 and A 3 of the internal memory.
Is read to calculate the absolute value ΔI P of the difference between the pump current values I P (1) or I P (2) (step 75), and it is determined whether or not the absolute value ΔI P is less than or equal to a predetermined value ΔI P r. Yes (step 76).
If ΔI P ≦ ΔI P r, the correction factors K COR1 and K COR2 described later
Is calculated by the following calculation formula (step 77), and ΔI P
If ΔI P r, the air-fuel ratio control (execution of the air-fuel ratio control routine) according to the oxygen concentration detection value of the selected sensor is restarted (step 78).

第1センサの酸素濃度検出値LO2(1)を補正する補正
係数KCOR1が次式から算出され、 KCOR1=C/(IP(1)/IP(2)−1) ……(3) 第2センサの酸素濃度検出値LO2(2)を補正する補正
係数KCOR2が次式から算出される。
A correction coefficient K COR1 for correcting the oxygen concentration detection value L O2 (1) of the first sensor is calculated from the following equation, and K COR1 = C / (I P (1) / I P (2) -1) ...... ( 3) A correction coefficient K COR2 for correcting the oxygen concentration detection value L O2 (2) of the second sensor is calculated from the following equation.

KCOR2=(KCOR1+C)/(1+C) ……(4) ここで、Cは出力特性変化前のIP(1)/IP(2)−1
である。
K COR2 = (K COR1 + C) / (1 + C) (4) where C is I P (1) / I P (2) -1 before the output characteristic change.
Is.

そして、算出した補正係数KCOR1及びKCOR2が所定値K1
上で所定値K2以下か否かを判別し(ステップ79)、K1
KCOR1≦K2又はK1≦KCOR2≦K2ならば選択中のセンサの酸
素濃度検出値に応じた空燃比制御を再開し(ステップ7
8)、KCOR1<K1、KCOR1>K2、KCOR2<K1、KCOR2>K2
らば出力特性の変化程度が大きく補正しても良好な空燃
比フィードバック制御が期待できないのでランプ等の点
灯によって運転者に対して警報を発生する(ステップ8
0)。
Then, it is determined whether the calculated correction coefficients K COR1 and K COR2 are greater than or equal to the predetermined value K 1 and less than or equal to the predetermined value K 2 (step 79), and K 1
If K COR1 ≤ K 2 or K 1 ≤ K COR2 ≤ K 2 , restart the air-fuel ratio control according to the oxygen concentration detection value of the selected sensor (step 7
8), if K COR1 <K 1 , K COR1 > K 2 , and K COR2 <K 1 , K COR2 > K 2 , good air-fuel ratio feedback control cannot be expected even if the degree of change in output characteristics is largely corrected. A warning is issued to the driver by lighting such as (Step 8
0).

また空燃比制御回路32は第6図に示すように空燃比制御
ルーチンにおいて先ず、第1及び第2センサのいずれを
選択するか否かを判別する(ステップ81)。これはエン
ジンの運転状態或いは空燃比の制御領域に応じて判別す
る。第1センサを選択すべきであると判別したときには
第1センサ選択指令を駆動回路30に対して発生し(ステ
ップ82)、第1センサが選択されたことを表わすために
フラグFsに“0"がセットされる(ステップ83)。一方、
第2センサを選択すべきであると判別したときには第2
センサ選択指令を駆動回路30に対して発生し(ステップ
84)、第2センサが選択されたことを表わすためにフラ
グFsに“1"がセットされる(ステップ85)。駆動回路30
は第1センサ選択指令に応じてスイッチ28a,28b,29a,29
bを上記した第1センサ選択位置に駆動し、その駆動状
態は第2センサ選択指令が空燃比制御回路32から供給さ
れるまで維持される。また第2センサ選択指令に応じて
28a,28b,29a,29bを上記した第2センサ選択位置に駆動
し、その駆動状態は第1センサ選択指令が空燃比制御回
路32から供給されるまで維持される。
Further, as shown in FIG. 6, the air-fuel ratio control circuit 32 first determines whether to select either the first sensor or the second sensor in the air-fuel ratio control routine (step 81). This is determined according to the operating state of the engine or the control range of the air-fuel ratio. When it is determined that the first sensor should be selected, a first sensor selection command is issued to the drive circuit 30 (step 82), and "0" is set in the flag Fs to indicate that the first sensor is selected. Are set (step 83). on the other hand,
When it is determined that the second sensor should be selected, the second sensor
A sensor selection command is issued to the drive circuit 30 (step
84), "1" is set to the flag Fs to indicate that the second sensor has been selected (step 85). Drive circuit 30
Are switches 28a, 28b, 29a, 29 according to the first sensor selection command.
The b is driven to the above-mentioned first sensor selection position, and the driving state is maintained until the second sensor selection command is supplied from the air-fuel ratio control circuit 32. In addition, according to the second sensor selection command
28a, 28b, 29a, 29b are driven to the above-mentioned second sensor selection position, and the driving state is maintained until the first sensor selection command is supplied from the air-fuel ratio control circuit 32.

次いで、A/D変換器31から出力されるポンプ電流値I
P(1)又はIP(2)を読み込み(ステップ86)、フラ
グFsが“0"であるか否かを判別する(ステップ87)。Fs
=0の場合、第1センサ選択状態であるので読み込んだ
ポンプ電流値IP(1)に補正係数KCOR1を乗算し(ステ
ップ88)、対応する酸素濃度検出値LO2を求める(ステ
ップ89)。FS=1の場合、第2センサ選択状態であるの
で読み込んだポンプ電流値IP(2)に補正係数KCOR2
乗算し(ステップ90)、対応する酸素濃度検出値LO2
求める(ステップ89)。その後、酸素濃度検出値LO2
目標空燃比に対応する目標値Lrefより大であるか否かを
判別する(ステップ91)。LO2≦Lrefならば、供給混合
気の空燃比がリッチであるので駆動回路33に対して電磁
弁34の開弁駆動指令を発生し(ステップ92)、LO2>Lre
fならば、供給混合気の空燃比がリーンであるので駆動
回路33に対して電磁弁34の開弁駆動停止指令を発生する
(ステップ93)。駆動回路33は開弁駆動指令に応じて電
磁弁34を開弁駆動して2次空気をエンジン吸気マニホー
ルド内に供給することにより空燃比をリーン化させ、開
弁駆動停止指令に応じて電磁弁34の開弁駆動を停止して
空燃比をリッチ化させる。かかる動作を所定周期毎に繰
り返し実行することにより供給混合気の空燃比を目標空
燃比に制御するのである。
Next, the pump current value I output from the A / D converter 31
P (1) or I P (2) is read (step 86), and it is determined whether the flag Fs is "0" (step 87). Fs
If = 0, the pump current value I P (1) read in is in the first sensor selection state and is multiplied by the correction coefficient K COR1 (step 88) to obtain the corresponding oxygen concentration detection value L O2 (step 89). . In the case of FS = 1, since the second sensor is selected, the read pump current value I P (2) is multiplied by the correction coefficient K COR2 (step 90) to obtain the corresponding oxygen concentration detection value L O2 (step 89). ). Then, it is determined whether or not the oxygen concentration detection value L O2 is larger than the target value Lref corresponding to the target air-fuel ratio (step 91). If L O2 ≤ Lref, the air-fuel ratio of the supply air-fuel mixture is rich, so a command to open the solenoid valve 34 is issued to the drive circuit 33 (step 92), and L O2 > Lre
If f, the air-fuel ratio of the supply air-fuel mixture is lean, so a command to stop driving the solenoid valve 34 to open is issued to the drive circuit 33 (step 93). The drive circuit 33 drives the solenoid valve 34 to open in response to the valve opening drive command to supply secondary air into the engine intake manifold, thereby making the air-fuel ratio lean, and in response to the valve opening drive stop command, the solenoid valve 34. The valve opening drive of 34 is stopped to enrich the air-fuel ratio. The air-fuel ratio of the supply air-fuel mixture is controlled to the target air-fuel ratio by repeatedly performing this operation every predetermined period.

上記した本発明の実施例においては、第1気体拡散制限
手段として導入孔4が、また第2気体拡散制限手段とし
て連通孔5が用いられているが、これに限らず、第1気
体滞留室2内の2つの第1電極対間にギャップを形成し
ても良く、第7図に示すようにアルミナ(Al2O3)等の
多孔質体を導入孔4及び連通孔5に充填し多孔質拡散層
を形成しても良いのである。
In the embodiment of the present invention described above, the introduction hole 4 is used as the first gas diffusion limiting means and the communication hole 5 is used as the second gas diffusion limiting means, but the invention is not limited to this, and the first gas retention chamber is not limited to this. A gap may be formed between the two first electrode pairs in No. 2, and a porous body such as alumina (Al 2 O 3 ) is filled in the introduction hole 4 and the communication hole 5 as shown in FIG. A quality diffusion layer may be formed.

上記した本発明の実施例においては、第1又は第2セン
サの出力に応じて2次空気を供給することにより供給混
合気の空燃比を目標空燃比に制御しているが、これに限
らず、第1又は第2センサの出力に応じて燃料供給量を
調整することにより空燃比を制御しても良い。
In the above-described embodiment of the present invention, the air-fuel ratio of the supply air-fuel mixture is controlled to the target air-fuel ratio by supplying the secondary air according to the output of the first or second sensor, but the present invention is not limited to this. Alternatively, the air-fuel ratio may be controlled by adjusting the fuel supply amount according to the output of the first or second sensor.

発明の効果 以上の如く、本発明の酸素濃度検出装置においては、酸
素イオン伝導性固体電解質部材からなる基体内部に第1
及び第2気体滞留室が互いに第1気体拡散制限手段を介
して連通して形成され、第1センサが被測定気体中に第
2気体拡散制限手段を介して連通する第1気体滞留室の
電解質壁部の内外壁面上にこれを挟んで対向するが如く
2つの第1電極対を備え、第2センサが第1気体滞留室
に第1気体拡散制限手段を介して連通する第2気体滞留
室の電解質壁部の内外壁面上にこれを挟んで対向するが
如く2つの第2電極対備え、第1センサの2つの第1電
極対の一方の電極対間に発生した電圧と第1基準電圧と
の差電圧に応じた値の電流を他方の第1電極対間に供給
してその供給電流値に応じた値を第1センサの酸素濃度
検出値として出力し、第2センサの2つの電極対の一方
の電極対間に発生した電圧と第2基準電圧との差電圧に
応じた値の電流を他方の第2電極対間に供給してその供
給電流値に応じた値を第2センサの酸素濃度検出値とし
て出力することが行なわれる。すなわち、被測定気体中
の酸素濃度に比例した出力を得る第1及び第2センサが
一体に形成され、第1及び第2センサの出力特性が異な
るので第1センサの酸素濃度検出値と第2センサの酸素
濃度検出値を比較することにより第1又は第2センサの
異常を容易に検出することができるのである。
EFFECTS OF THE INVENTION As described above, in the oxygen concentration detecting device of the present invention, the first member is provided inside the base body made of the oxygen ion conductive solid electrolyte member.
And a second gas retention chamber are formed to communicate with each other via the first gas diffusion limiting means, and the first sensor communicates with the gas to be measured via the second gas diffusion limiting means. A second gas retention chamber in which two first electrode pairs are provided on the inner and outer wall surfaces of the wall portion so as to be opposed to each other with the first electrode pair interposed therebetween, and the second sensor communicates with the first gas retention chamber via the first gas diffusion limiting means. Of the electrolyte wall portion, the two second electrode pairs are provided so as to face each other with the electrolyte wall portion sandwiched therebetween, and a voltage generated between one electrode pair of the two first electrode pairs of the first sensor and a first reference voltage. A current having a value corresponding to the voltage difference between the two electrodes of the second sensor is supplied between the other pair of first electrodes, and a value corresponding to the supplied current value is output as the oxygen concentration detection value of the first sensor. A current having a value corresponding to the difference voltage between the voltage generated between the pair of electrodes and the second reference voltage It is made to be supplied between the second electrode pair of rectangular outputs a value corresponding to the current supplied as the oxygen concentration detection value of the second sensor. That is, since the first and second sensors that obtain an output proportional to the oxygen concentration in the gas to be measured are integrally formed and the output characteristics of the first and second sensors are different, the oxygen concentration detection value of the first sensor and the second sensor are different from each other. The abnormality of the first or second sensor can be easily detected by comparing the oxygen concentration detection values of the sensors.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)は本発明による酸素濃度検出装置の実施例
を示す平面図、第1図(b)は第1図(a)のIb−Ib部
分の断面図、第2図は空燃比制御装置を含む電流供給回
路を示す回路図、第3図は第1図の装置の出力特性を示
す図、第4図は拡散抵抗とポンプ電流値との関係を示す
特性図、第5図及び第6図は空燃比制御回路の動作を示
すフロー図、第7図(a)は本発明の他の実施例を示す
平面図、第7図(b)は第7図(a)のVIIb−VIIb部分
の断面図である。 主要部分の符号の説明 1……酸素イオン伝導性固体電解質部材 2,3……気体滞留室 4……導入孔 5……連通孔 6……気体参照室 15,17……酸素ポンプ素子 16,18……電池素子 19,20……ヒータ素子 21……電流供給回路
FIG. 1 (a) is a plan view showing an embodiment of an oxygen concentration detecting device according to the present invention, FIG. 1 (b) is a sectional view of the Ib-Ib portion of FIG. 1 (a), and FIG. 2 is an air-fuel ratio. FIG. 3 is a circuit diagram showing a current supply circuit including a control device, FIG. 3 is a diagram showing output characteristics of the device shown in FIG. 1, FIG. 4 is a characteristic diagram showing relation between diffusion resistance and pump current value, FIG. FIG. 6 is a flow chart showing the operation of the air-fuel ratio control circuit, FIG. 7 (a) is a plan view showing another embodiment of the present invention, and FIG. 7 (b) is VIIb- of FIG. 7 (a). FIG. 7 is a sectional view of a VIIb portion. Explanation of symbols of main parts 1 …… Oxygen ion conductive solid electrolyte member 2,3 …… Gas retention chamber 4 …… Introduction hole 5 …… Communication hole 6 …… Gas reference chamber 15,17 …… Oxygen pump element 16, 18 …… Battery element 19,20 …… Heater element 21 …… Current supply circuit

フロントページの続き (72)発明者 大野 信之 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (56)参考文献 特開 昭61−283861(JP,A)Front Page Continuation (72) Inventor Nobuyuki Ohno 1-4-1 Chuo, Wako-shi, Saitama, Ltd. Inside Honda R & D Co., Ltd. (56) Reference JP-A-61-283861 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】酸素イオン伝導性固体電解質部材からなり
その内部に第1及び第2気体滞留室を互いに第1気体拡
散制限手段を介して連通させて形成し前記第1気体滞留
室が第2気体拡散制限手段を介して被測定気体中に連通
するようにされた基体と、 前記第1気体滞留室を囲む前記電解質部材の内外壁面上
にこれを挟んで対向するが如く設けられて第1センサを
形成する2つの第1電極対と、 前記第2気体滞留室を囲む前記電解質部材の内外壁面上
にこれを挟んで対向するが如く設けられて第2センサを
形成する2つの第2電極対と、 前記2つの第1電極対の一方の電極対間に発生した電圧
と第1基準電圧との差電圧に応じた値の電流を前記他方
の第電極対間に供給してその供給電流値に応じた値を前
記第1センサの酸素濃度検出値として出力し前記2つの
第2電極対の一方の電極対間に発生した電圧と第2基準
電圧との差電圧に応じた値の電流を前記他方の第2電極
対間に供給してその供給電流値に応じた値を前記第2セ
ンサの酸素濃度検出値として出力する電流供給手段と、 前記第1センサの酸素濃度検出値と前記第2センサの酸
素濃度検出値とに応じて前記第1又は第2センサの異常
を検出する検出手段とを有すことを特徴とする酸素濃度
検出装置。
1. An oxygen ion conductive solid electrolyte member, wherein a first gas retention chamber and a second gas retention chamber communicate with each other through first gas diffusion limiting means, and the first gas retention chamber is the second. A base body, which is communicated with the gas to be measured through a gas diffusion limiting means, is provided on the inner and outer wall surfaces of the electrolyte member surrounding the first gas retention chamber so as to be opposed to each other with the same sandwiched therebetween. Two first electrode pairs forming a sensor, and two second electrodes forming a second sensor on the inner and outer wall surfaces of the electrolyte member surrounding the second gas retention chamber so as to face each other with the pair sandwiched therebetween. And a current having a value corresponding to a difference voltage between a voltage generated between one electrode pair of the two first electrode pairs and a first reference voltage between the other pair of the first electrodes A value corresponding to the value is used as the oxygen concentration detection value of the first sensor. And a current having a value corresponding to the difference voltage between the voltage generated between one of the two second electrode pairs and the second reference voltage is supplied between the other second electrode pair to supply the current. A current supply unit that outputs a value corresponding to the value as the oxygen concentration detection value of the second sensor, and the first or the second oxygen sensor according to the oxygen concentration detection value of the first sensor and the oxygen concentration detection value of the second sensor. An oxygen concentration detection device, comprising: a detection unit that detects an abnormality of the second sensor.
JP61018653A 1985-11-25 1986-01-30 Oxygen concentration detector Expired - Fee Related JPH0746091B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP26535585 1985-11-25
JP60-265355 1985-11-25

Publications (2)

Publication Number Publication Date
JPS62201346A JPS62201346A (en) 1987-09-05
JPH0746091B2 true JPH0746091B2 (en) 1995-05-17

Family

ID=17416022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61018653A Expired - Fee Related JPH0746091B2 (en) 1985-11-25 1986-01-30 Oxygen concentration detector

Country Status (1)

Country Link
JP (1) JPH0746091B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823328B2 (en) * 1988-06-30 1996-03-06 本田技研工業株式会社 Exhaust concentration sensor output correction method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4588138A (en) * 1984-06-29 1986-05-13 Paper Converting Machine Company Web winding machine
JPS61283861A (en) * 1985-06-10 1986-12-13 Nissan Motor Co Ltd Oxygen concentration measuring apparatus

Also Published As

Publication number Publication date
JPS62201346A (en) 1987-09-05

Similar Documents

Publication Publication Date Title
US4905652A (en) Device for measuring a component of a gaseous mixture
JPH073403B2 (en) Abnormality detection method for oxygen concentration sensor
JPH079417B2 (en) Abnormality detection method for oxygen concentration sensor
JPH073404B2 (en) Abnormality detection method for oxygen concentration sensor
JPH073405B2 (en) Abnormality detection method for oxygen concentration sensor
JP2553509B2 (en) Air-fuel ratio controller for internal combustion engine
US4719895A (en) Method for controlling an oxygen concentration sensor
US4860712A (en) Method of controlling an oxygen concentration sensor
US4760822A (en) Method for controlling the air/fuel ratio of an internal combustion engine with a fuel cut operation
JPH0360388B2 (en)
JPS62203050A (en) Method for correcting output of oxygen concentration sensor for internal combustion engine
JPH0746091B2 (en) Oxygen concentration detector
JP2511049B2 (en) Activity determination method for oxygen concentration sensor
JP2011027756A (en) Gas concentration detection device
JPH0746092B2 (en) Oxygen concentration detector
JPH0752178B2 (en) Oxygen concentration detector
JPH0713616B2 (en) Oxygen concentration detector
JPH0658339B2 (en) Oxygen concentration detector
JPH0715453B2 (en) Oxygen concentration detector
JPH0713619B2 (en) Oxygen concentration detector
JPH0713618B2 (en) Oxygen concentration detector
JPH0713620B2 (en) Oxygen concentration detector
JPS6276449A (en) Method for controlling oxygen concentration sensor
JPS6293648A (en) Apparatus for detecting oxygen concentration
JPS62106361A (en) Apparatus for detecting concentration of oxygen

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees