JPS62106361A - Apparatus for detecting concentration of oxygen - Google Patents
Apparatus for detecting concentration of oxygenInfo
- Publication number
- JPS62106361A JPS62106361A JP60291034A JP29103485A JPS62106361A JP S62106361 A JPS62106361 A JP S62106361A JP 60291034 A JP60291034 A JP 60291034A JP 29103485 A JP29103485 A JP 29103485A JP S62106361 A JPS62106361 A JP S62106361A
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- gas
- voltage
- chamber
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Oxygen Concentration In Cells (AREA)
Abstract
Description
【発明の詳細な説明】
1里方1
本発明はエンジン排気ガス等の気体中の酸素濃度を検出
する酸素濃度検出装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oxygen concentration detection device for detecting oxygen concentration in gas such as engine exhaust gas.
1旦亘逝
内燃エンジンの排気ガス浄化、燃費改善等を目的として
、排気ガス中の酸素濃度を検出し、この検出結果に応じ
てエンジンへの供給混合気の空燃比を目標空燃比にフィ
ードバック制御する空燃比制御装置がある。For the purpose of purifying the exhaust gas of an internal combustion engine and improving fuel efficiency, the oxygen concentration in the exhaust gas is detected, and the air-fuel ratio of the air-fuel mixture supplied to the engine is feedback-controlled to the target air-fuel ratio according to the detection results. There is an air-fuel ratio control device that does this.
このような空燃比制titl装置に用いられる酸素濃度
検出装置として被測定気体中の酸素濃度に比例した出力
を発生するものがある。例えば、平板状の酸素イオン伝
導性固体電解質部材の両主面に電極対を設けて固体電解
質部材の一方の電極面が気体滞留室の一部をなしてその
気体滞留室が被測定気体と導入孔を介して連通ずるよう
にした限界電流方式の酸素濃度検出装置が特開昭52−
72286号公報に開示されている。この酸素濃度検出
装置においては、酸素イオン伝導性固体電解質部材と電
極対とが酸素ポンプ素子として作用して間隙室側電極が
負極になるように電極間に電流を供給すると、負極面側
にて気体i留室内気体中の酸素ガスがイオン化して固体
電解質部材内を正極面側に移動し正極面から酸素ガスと
して放出される。As an oxygen concentration detection device used in such an air-fuel ratio control titl device, there is one that generates an output proportional to the oxygen concentration in the gas to be measured. For example, electrode pairs are provided on both main surfaces of a flat oxygen ion conductive solid electrolyte member, and one electrode surface of the solid electrolyte member forms part of a gas retention chamber, and the gas retention chamber is introduced with the gas to be measured. A limiting current type oxygen concentration detection device that communicates through a hole was published in Japanese Patent Application Laid-Open No. 1983-
It is disclosed in Japanese Patent No. 72286. In this oxygen concentration detection device, when the oxygen ion conductive solid electrolyte member and the electrode pair act as an oxygen pump element and a current is supplied between the electrodes so that the electrode on the gap chamber side becomes the negative electrode, the electrode on the negative electrode side Oxygen gas in the gas in the gas i-retention chamber is ionized, moves within the solid electrolyte member toward the positive electrode surface, and is released as oxygen gas from the positive electrode surface.
このときの電極間に流れ得る限界電流値は印加電圧に拘
らずほぼ一定となりかつ被測定気体中の酸素濃度に比例
するのでその限界電流値を検出すれば被測定気体中の酸
素濃度を測定することができる。しかしながら、かかる
酸素濃度検出装置を用いて空燃比を制御する場合に排気
ガス中の酸素濃度からは混合気の空燃比が理論空燃比よ
りリーンの範囲でしか酸素濃度に比例した出力が得られ
ないので目標空燃比をリッチ領域に設定した空燃比制御
は不可能であった。また空燃比がリーン及びリッチ領域
にて排気ガス中の酸素濃度に比例した出力が得られる酸
素濃度検出装置としては2つの平板状の酸素イオン伝導
性固体電解質部材各々に電極対を設けて2つの固体電解
質部材の一方の電極向合々が気体滞留室の一部をなして
その気体滞留室が被測定気体と導入孔を介して連通し一
方の固体電解質部材の他方の電極面が大気交に面するよ
うにした装置が特開昭59−192955号に開示され
ている。この酸素濃度検出装置においては一方の酸素イ
オン伝導性固体電解質部材と電極対とがM素濃度比検出
電池素子として作用し他方の酸素イオン伝導性固体電解
質材と電極対とが酸素ポンプ素子として作用するように
なっている。The limiting current value that can flow between the electrodes at this time is almost constant regardless of the applied voltage and is proportional to the oxygen concentration in the gas being measured, so if the limiting current value is detected, the oxygen concentration in the gas being measured can be measured. be able to. However, when controlling the air-fuel ratio using such an oxygen concentration detection device, an output proportional to the oxygen concentration can only be obtained from the oxygen concentration in the exhaust gas when the air-fuel ratio of the mixture is leaner than the stoichiometric air-fuel ratio. Therefore, it was impossible to control the air-fuel ratio by setting the target air-fuel ratio in the rich range. In addition, as an oxygen concentration detection device that can obtain an output proportional to the oxygen concentration in exhaust gas when the air-fuel ratio is in the lean and rich regions, two electrode pairs are provided on each of two flat oxygen ion conductive solid electrolyte members. One electrode surface of the solid electrolyte member forms a part of a gas retention chamber, and the gas retention chamber communicates with the gas to be measured through an introduction hole, and the other electrode surface of one solid electrolyte member is exposed to atmospheric air. A device designed to face each other is disclosed in Japanese Patent Laid-Open No. 59-192955. In this oxygen concentration detection device, one oxygen ion conductive solid electrolyte member and electrode pair act as an M element concentration ratio detection battery element, and the other oxygen ion conductive solid electrolyte material and electrode pair act as an oxygen pump element. It is supposed to be done.
酸素濃度比検出電池素子の電極間の発生電圧が基準電圧
以上のとき酸素ポンプ素子内を酸素イオンが気体滞留室
側電極に向って移動するように電流を供給し、酸素濃度
比検出電池素子の電極間の発生電圧が基準電圧以下のと
き酸素ポンプ素子内を酸素イオンが気体滞留至側とは反
対側の電極に向って移動するように電流を供給すること
によりリーン及びリッチ領域の空燃比において電流値は
酸素濃度に比例するのである。しかしながら、かかる酸
素濃度検出装置においては、リッチ側とり一ン側とでは
酸素濃度検出特性が異なり、広領域において直線性の良
好な酸素濃度検出出力が得られないのでリッチ側又はリ
ーン側の酸素濃度検出出力を補正しなければならず空燃
比制御が襖雑になるという問題点があった。When the voltage generated between the electrodes of the oxygen concentration ratio detection battery element is equal to or higher than the reference voltage, a current is supplied so that oxygen ions move within the oxygen pump element toward the electrode on the gas retention chamber side, and the oxygen concentration ratio detection battery element By supplying current so that when the voltage generated between the electrodes is below the reference voltage, the oxygen ions move within the oxygen pump element toward the electrode on the opposite side from the side where gas is retained, the air-fuel ratio in the lean and rich regions can be controlled. The current value is proportional to the oxygen concentration. However, in such an oxygen concentration detection device, the oxygen concentration detection characteristics are different between the rich side and the lean side, and oxygen concentration detection output with good linearity cannot be obtained in a wide area. There was a problem in that the detected output had to be corrected, making air-fuel ratio control complicated.
l豆立且I
そこで、本発明の目的は空燃比のリーン及びリッチ領域
に渡って良好な直線性にて酸素濃度検出出力を得ること
ができる酸素my1検出装置を提供することである。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an oxygen my1 detection device that can obtain an oxygen concentration detection output with good linearity over the lean and rich air-fuel ratio regions.
本発明の酸素濃度検出装置は各々が酸素イオン伝導性固
体電解質壁部を有する第1及び第2気体滞留室並びに気
体導入室を形成する基体と、第1気体滞留室の電解質壁
部の内外壁面上にこれを挟んで対向するが如く設けられ
た2つの第1電極対と、第2気体滞留室の電解質壁部の
内外壁面上にこれを挟んで対向するが如く設けられた2
つの第2電極対と、基体の外壁面上に設けられた1対の
ヒータ素子と、2つの第1電極対の一方の電極対間に発
生した電圧と第1基準電圧との差電圧に応じた値の電流
を2つの第1電極対の他方の電極対間に供給しかつ2つ
の第2電極対の一方の電極対間に発生した電圧と第2基
準電圧との差電圧に応じた値の電流を2つの第2電極対
の他方の電極対間に供給するポンプ電流供給手段と、1
対のヒータ素子に電流を供給するヒータ電流供給手段と
を含み、気体導入室が導入孔を介して外部に連通し第1
気体滞留室に第1連通孔を介して連通しかつ第2気体滞
留室に第2連通孔を介して連通し、ポンプ電流供給手段
による供給電流値に応じた酸素濃度検出値を得ることを
特徴としている。The oxygen concentration detection device of the present invention includes a base body forming first and second gas retention chambers and a gas introduction chamber, each having an oxygen ion conductive solid electrolyte wall, and inner and outer wall surfaces of the electrolyte wall of the first gas retention chamber. Two first electrode pairs are provided on the top so as to be sandwiched therebetween, and two electrode pairs are provided on the inner and outer wall surfaces of the electrolyte wall portion of the second gas retention chamber so as to be sandwiched therebetween.
according to the voltage difference between the first reference voltage and the voltage generated between the two second electrode pairs, the pair of heater elements provided on the outer wall surface of the base, and one of the two first electrode pairs. A value corresponding to the voltage difference between the voltage generated between one electrode pair of the two second electrode pairs and the second reference voltage. pump current supply means for supplying a current between the other of the two second electrode pairs;
heater current supply means for supplying current to the pair of heater elements, the gas introduction chamber communicates with the outside via the introduction hole, and the first
It is characterized by communicating with the gas retention chamber through the first communication hole and communicating with the second gas retention chamber through the second communication hole, and obtaining an oxygen concentration detection value according to the current value supplied by the pump current supply means. It is said that
友−蓋−1 以下、本発明の実施例を図面を参照しつつ説明する。Friend-lid-1 Embodiments of the present invention will be described below with reference to the drawings.
第1図及び第2図は本発明による酸素濃度検出装置を用
いた空燃比制御装置を示している。本装置においては、
はぼ立方体状の酸素イオン伝導性固体電解質部材1が設
けられている。酸素イオン伝導性固体電解質部材1内に
は第1及び第2気体滞留空2,3並びに気体導入室4が
形成されている。気体導入室4は固体電解質部材1外部
から被測定気体の排気ガスを導入する導入孔5に連通し
、導入孔5は内燃エンジンの排気管(図示せf)無いに
おいて排気ガスが気体導入室4に流入し易いように位置
される。気体導入室4と第1及び第2気体滞留室2,3
との間の各壁部には連通孔6゜7が形成されている。連
通孔6の径は連通孔7の径よりも大きくされている。第
1気体滞留室2には排気ガスが導入孔5、気体導入室4
、そして連通孔6を介して導入されるようになっており
、また第2気体滞留室3には排気ガスが導入孔5、気体
導入v4、そして連通孔7を介して導入されるようにな
っている。酸素イオン伝導性固体電解質部材1には外気
等を導入する参照気体室8が第1及び第2気体滞留室2
.3と壁を隔てるように形成されている。第1気体滞留
室2と気体導入室4との間の壁部及び第1気体滞留室2
と参照気体室8との間の壁部には電極対11a、llb
、12a、12bが各々形成され、また第2気体滞留室
3と気体導入室4との間の壁部及び第2気体滞留室3と
参照気体室8との間の壁部には電極対13a、13b、
14a、14bが各々形成されティる。電極対11a、
11bは中央部に連通孔6に連通ずる貫通孔を有し、電
極対13a、13bも中央部に連通孔7に連通ずる貫通
孔を有している。1 and 2 show an air-fuel ratio control device using an oxygen concentration detection device according to the present invention. In this device,
An oxygen ion conductive solid electrolyte member 1 having a substantially cubic shape is provided. In the oxygen ion conductive solid electrolyte member 1, first and second gas retention spaces 2, 3 and a gas introduction chamber 4 are formed. The gas introduction chamber 4 communicates with an introduction hole 5 through which the exhaust gas of the gas to be measured is introduced from outside the solid electrolyte member 1. It is located so that it can easily flow into the area. Gas introduction chamber 4 and first and second gas retention chambers 2, 3
A communication hole 6°7 is formed in each wall between the two. The diameter of the communication hole 6 is made larger than the diameter of the communication hole 7. The exhaust gas enters the first gas retention chamber 2 through the introduction hole 5 and the gas introduction chamber 4.
, and is introduced through the communication hole 6, and exhaust gas is introduced into the second gas retention chamber 3 through the introduction hole 5, the gas introduction v4, and the communication hole 7. ing. The oxygen ion conductive solid electrolyte member 1 includes a reference gas chamber 8 into which outside air, etc. is introduced, and a first and second gas retention chamber 2.
.. It is formed to separate 3 and a wall. The wall between the first gas retention chamber 2 and the gas introduction chamber 4 and the first gas retention chamber 2
On the wall between the reference gas chamber 8 and the reference gas chamber 8, there are electrode pairs 11a and llb.
, 12a, 12b are formed respectively, and an electrode pair 13a is formed on the wall between the second gas retention chamber 3 and the gas introduction chamber 4 and on the wall between the second gas retention chamber 3 and the reference gas chamber 8. , 13b,
14a and 14b are formed respectively. electrode pair 11a,
11b has a through hole communicating with the communication hole 6 in the center, and the electrode pair 13a, 13b also has a through hole communicating with the communication hole 7 in the center.
固体電解質部材1及び電極対11a、11bが第1酸素
ポンプ素子15として、固体電解質部材1及び電極対1
2a、12bが第1電池素子16として各々作用する。The solid electrolyte member 1 and the electrode pair 11a and 11b serve as the first oxygen pump element 15, and the solid electrolyte member 1 and the electrode pair 1
2a and 12b each act as a first battery element 16.
また固体電解質部材1及び電極対13a、13bが第1
酸素ポンプ素子15として、固体電解質部材1及び電極
対14a、14bが第2電池素子18として各々作用す
る。また固体電解質部材1の気体導入室4の外壁面及び
参照気体室8の外壁面にヒータ素子19.20が各々設
けられている。ヒータ素子19.20は電気的に互いに
並列に接続されており、第1及び第2酸素ポンプ素子1
5.17並びに第1及び第2電池素子16.18を均等
に加熱すると共に固体電解質部材1内の保温性の向上を
図っている。なお、酸素イオン伝導性固体電解質部材1
は複数の断片から一体に形成される。また第1及び第2
気体滞留室の壁部を全て酸素イオン伝導性固体電解質か
ら形成する必要はなく、少なくとも電極対を設ける部分
だけがその固体電解質からなれば良い。Further, the solid electrolyte member 1 and the electrode pair 13a, 13b are connected to the first
As the oxygen pump element 15, the solid electrolyte member 1 and the electrode pair 14a, 14b each act as the second battery element 18. Furthermore, heater elements 19 and 20 are provided on the outer wall surface of the gas introduction chamber 4 and the outer wall surface of the reference gas chamber 8 of the solid electrolyte member 1, respectively. The heater elements 19, 20 are electrically connected in parallel to each other and the first and second oxygen pump elements 1
5.17 and the first and second battery elements 16.18 are uniformly heated, and the heat retention within the solid electrolyte member 1 is improved. Note that the oxygen ion conductive solid electrolyte member 1
is integrally formed from multiple pieces. Also the first and second
It is not necessary that the entire wall of the gas retention chamber be made of the oxygen ion conductive solid electrolyte, and it is sufficient that at least only the portion where the electrode pair is provided is made of the solid electrolyte.
酸素イオン伝導性固体電解質部材1としては、ZrO2
(二酸化ジルコニウム)が用いられ、電極11aないし
14bとしてはPt(白金)が用いられる。As the oxygen ion conductive solid electrolyte member 1, ZrO2
(zirconium dioxide) is used, and Pt (platinum) is used as the electrodes 11a to 14b.
第1及び第2酸素ポンプ素子15.17並びに第1及び
第2電池素子16.18には電流供給回路21が接続さ
れている。第2図に示すように電流供給回路21は差動
増幅回路22,23.電流検出抵抗24.25.基準電
圧源26.27及び切替回路28.29からなる。第1
酸素ポンプ素子15の外側電極11aは切替回路28の
スイッチ28a、電流検出抵抗24を介して差動増幅回
路22の出力端に接続され、内側電極11bは切替回路
2つのスイッチ29aを介してアースされるようになっ
ている。第1電池素子16の外側電極12aは差動増幅
回路22の反転入力端に接続され、内側電極12bは切
替回路2つのスイッチ29bを介してアースされるよう
になっている。A current supply circuit 21 is connected to the first and second oxygen pump elements 15.17 and the first and second battery elements 16.18. As shown in FIG. 2, the current supply circuit 21 includes differential amplifier circuits 22, 23 . Current detection resistor 24.25. It consists of a reference voltage source 26.27 and a switching circuit 28.29. 1st
The outer electrode 11a of the oxygen pump element 15 is connected to the output terminal of the differential amplifier circuit 22 via the switch 28a of the switching circuit 28 and the current detection resistor 24, and the inner electrode 11b is grounded via the two switches 29a of the switching circuit 28. It has become so. The outer electrode 12a of the first battery element 16 is connected to the inverting input terminal of the differential amplifier circuit 22, and the inner electrode 12b is grounded via two switches 29b of the switching circuit.
同様に第2酸素ポンプ素子17の外側電極13aは切替
回路28のスイッチ28b、電流検出抵抗25を介して
差動増幅回路23の出力端に接続され、内側電極13b
は切替回路29のスイッチ29aを介してアースされる
ようになっている。第2電池素子18の外側電極14a
は差動増幅回路23の反転入力端に接続され、内側電極
14 bは切替回路2つのスイッチ29bを介してアー
スされるようになっている。差動増幅回路22の非反転
入力端には基準電圧源26が接続され、差動増幅回路2
3の非反転入力端には基準電圧源27が接続されている
。基+1!電圧源26.27の出力電圧は理論空燃比に
相当する電圧(例えば、0.4V)である。電流検出抵
抗24の両端間が第1センサの出力をなし、電流検出抵
抗25の両端間が第2センサの出力をなしている。電流
検出抵抗24.25の両端電圧は差動入力のA/D変換
器31を介して空燃比制御回路32に供給され、電流検
出抵抗24.25を流れるポンプ電流値1p(1)、I
p(2)が空燃比制御回路32に読み込まれる。空燃比
制御回路32はマイクロコンピュータからなる。空燃比
制御回路32にはエンジン回転数、吸気管内絶対圧、冷
却水温等を検出する複数の運転パラメータ検出センサ(
図示ゼず)が接続されると共に、また駆動回路33を介
して電磁弁34が接続されている。電磁弁34はエンジ
ン気化器絞り弁下流の吸気マニホールド内に連通ずる吸
気2次空気供給通路(図示せず)に設けられている。ま
た空燃比制御回路32は切替回路28゜29のスイッチ
切替動作を制御し、空燃比制御回路32からの指令に応
じて駆動回路30が切替回路28.29を駆動する。な
お、差動増幅回路22.23には正負の電源電圧が供給
される。Similarly, the outer electrode 13a of the second oxygen pump element 17 is connected to the output terminal of the differential amplifier circuit 23 via the switch 28b of the switching circuit 28 and the current detection resistor 25, and the inner electrode 13b
is grounded via a switch 29a of the switching circuit 29. Outer electrode 14a of second battery element 18
is connected to the inverting input terminal of the differential amplifier circuit 23, and the inner electrode 14b is grounded via two switches 29b of the switching circuit. A reference voltage source 26 is connected to the non-inverting input terminal of the differential amplifier circuit 22.
A reference voltage source 27 is connected to the non-inverting input terminal of 3. Basic +1! The output voltage of the voltage sources 26 and 27 is a voltage corresponding to the stoichiometric air-fuel ratio (for example, 0.4V). A portion between both ends of the current detection resistor 24 serves as the output of the first sensor, and a portion between both ends of the current detection resistor 25 serves as the output of the second sensor. The voltage across the current detection resistor 24.25 is supplied to the air-fuel ratio control circuit 32 via the differential input A/D converter 31, and the pump current value 1p(1), I flowing through the current detection resistor 24.25 is
p(2) is read into the air-fuel ratio control circuit 32. The air-fuel ratio control circuit 32 consists of a microcomputer. The air-fuel ratio control circuit 32 includes a plurality of operating parameter detection sensors (
A solenoid valve (not shown) is connected thereto, and a solenoid valve 34 is also connected via a drive circuit 33. The solenoid valve 34 is provided in a secondary intake air supply passage (not shown) that communicates with the intake manifold downstream of the engine carburetor throttle valve. Further, the air-fuel ratio control circuit 32 controls the switching operation of the switching circuits 28 and 29, and the drive circuit 30 drives the switching circuits 28 and 29 in response to commands from the air-fuel ratio control circuit 32. Note that positive and negative power supply voltages are supplied to the differential amplifier circuits 22 and 23.
一方、ヒータ索子19.20には電流がヒータ電流供給
回路35から供給されてヒータ素子19゜20が発熱し
て酸素ポンプ素子15.17及び電池素子16.18を
排気ガスより高い適温に加熱する。On the other hand, current is supplied to the heater cords 19, 20 from the heater current supply circuit 35, and the heater elements 19, 20 generate heat, heating the oxygen pump elements 15, 17 and the battery elements 16, 18 to an appropriate temperature higher than the exhaust gas. do.
かかる構成においては、排気管内の排気ガスが導入孔5
から気体導入室4内に流入して拡散し、更に連通孔6を
介して第1気体滞留室2内に流入して拡散すると共に連
通孔7を介して第2気体滞留室3内に流入して拡散する
。In such a configuration, exhaust gas in the exhaust pipe passes through the introduction hole 5.
The gas flows into the gas introduction chamber 4 and diffuses therein, further flows into the first gas retention chamber 2 through the communication hole 6 and diffuses, and flows into the second gas retention chamber 3 through the communication hole 7. and spread.
切替回路28.29において、第2図の如くスイッチ2
8aが電極11aを電流検出抵抗24に接続し、スイッ
チ28bが電極13aの接続ラインを開放し、スイッチ
29aが電極11bをアースしかつ電極13bの接続ラ
インを開放し、またスイッチ29bが電極12bをアー
スしかつ電極14bの接続ラインを開放する選択位置に
されると、第1センサの選択状態になる。In the switching circuits 28 and 29, switch 2 is connected as shown in FIG.
8a connects electrode 11a to current detection resistor 24, switch 28b opens the connection line of electrode 13a, switch 29a grounds electrode 11b and opens the connection line of electrode 13b, and switch 29b connects electrode 12b to When set to the selected position where the electrode 14b is grounded and the connection line of the electrode 14b is opened, the first sensor is in the selected state.
この第1センサの選択状態には、先ず、エンジン供給混
合気の空燃比がリーン領域のとぎには差動増幅回路22
の出力レベルが正レベルになり、この正レベル電圧が抵
抗24及び第1酸素ポンプ素子15の直列回路に供給さ
れる。よって、第1酸素ポンプ素子15の電極11a、
11b間にポンプ電流が流れる。このポンプ電流は電極
11aから電極11bに向って流れるので第1気体滞留
至2内の酸素が電極11bにてイオン化して第1酸素ポ
ンプ素子15内を移動して電極11aから酸素ガスとし
て放出され、第1気体滞留室2内の酸素が汲み出される
。In the selection state of the first sensor, first, when the air-fuel ratio of the air-fuel mixture supplied to the engine is in the lean region, the differential amplifier circuit 22
The output level becomes a positive level, and this positive level voltage is supplied to the series circuit of the resistor 24 and the first oxygen pump element 15. Therefore, the electrode 11a of the first oxygen pump element 15,
A pump current flows between 11b and 11b. Since this pump current flows from the electrode 11a to the electrode 11b, oxygen in the first gas reservoir 2 is ionized at the electrode 11b, moves within the first oxygen pump element 15, and is released from the electrode 11a as oxygen gas. , the oxygen in the first gas retention chamber 2 is pumped out.
第1気体滞留室2内の酸素の汲み出しにより第1気体滞
留空2内の排気ガスと参照気体室8内の気体の間に酸素
濃度差が生ずる。この酸素濃度差によって電池素子16
の電極12a、12b間に電圧Vsが発生する。この電
圧Vsは差動増幅回路22の反転入力端に供給される。By pumping out the oxygen in the first gas retention chamber 2, a difference in oxygen concentration occurs between the exhaust gas in the first gas retention space 2 and the gas in the reference gas chamber 8. Due to this oxygen concentration difference, the battery element 16
A voltage Vs is generated between the electrodes 12a and 12b. This voltage Vs is supplied to the inverting input terminal of the differential amplifier circuit 22.
差動増幅回路22の出力電圧は電圧Vsと基準電圧源2
6の出力電圧Vl’+ との差電圧に比例した電圧とな
るのでポンプ電流値は排気ガス中の酸素濃度に比例する
。The output voltage of the differential amplifier circuit 22 is the voltage Vs and the reference voltage source 2.
Since the voltage is proportional to the difference voltage from the output voltage Vl'+ of No. 6, the pump current value is proportional to the oxygen concentration in the exhaust gas.
リッチ領域の空燃比のときには電圧Vsが基準電圧源2
6の出力電圧Vr+を越える。よって、差動増幅回路2
2の出力レベルが正レベルから負レベルに反転する。こ
の低レベルにより第1酸素ポンプ素子15の電極11a
、11b間に流れるポンプ電流が減少し、電流方向が反
転する。すなわち、ポンプ電流は電極11bから電極1
1a方向に流れるので外部の酸素が電極11aにてイオ
ン化して第1酸素ポンプ素子15内を移動して電極11
bから酸素ガスとして第1気体滞留室2内に放出され、
酸素が第1気体滞留室2内に汲み込まれる。従って、第
1気体滞留室2内のM素濃度が常に一定になるようにポ
ンプ電流を供給することにより酸素を汲み込んだり、汲
み出したりするのでポンプ電流値Ip及び差動増幅回路
22の出力電圧はリーン及びリッチ領域にて排気ガス中
の酸素濃度に各々比例するのである。第3図の実線aは
そのポンプ電流値IPを示している。When the air-fuel ratio is in the rich region, the voltage Vs is the reference voltage source 2.
6 output voltage Vr+. Therefore, differential amplifier circuit 2
The output level of No. 2 is inverted from a positive level to a negative level. Due to this low level, the electrode 11a of the first oxygen pump element 15
, 11b decreases, and the current direction is reversed. That is, the pump current flows from electrode 11b to electrode 1.
Since it flows in the direction 1a, external oxygen is ionized at the electrode 11a and moves within the first oxygen pump element 15 to the electrode 11.
b is released into the first gas retention chamber 2 as oxygen gas,
Oxygen is pumped into the first gas retention chamber 2. Therefore, oxygen is pumped in and out by supplying the pump current so that the M element concentration in the first gas retention chamber 2 is always constant, so that the pump current value Ip and the output voltage of the differential amplifier circuit 22 are are proportional to the oxygen concentration in the exhaust gas in the lean and rich regions, respectively. A solid line a in FIG. 3 indicates the pump current value IP.
ポンプ電流値Ipは電荷をeX導入孔5及び連通孔6に
よる排気ガスに対する拡散係数をσ0、排気ガス中の酸
素濃度をPoexh、第1気体滞留室2内の酸素濃度を
PoVとすると、次式の如くで表わすことができる。The pump current value Ip is determined by the following formula, where the charge is eX, the diffusion coefficient for the exhaust gas through the introduction hole 5 and the communication hole 6 is σ0, the oxygen concentration in the exhaust gas is Poexh, and the oxygen concentration in the first gas retention chamber 2 is PoV. It can be expressed as follows.
Ip =4ecro (Poexh −PoV )−−
(1)ここで、拡散係数σ0は導入孔5の面積をA1、
連通孔6の面積をA2、ボルツマン定数をk、絶対温度
を王、導入孔5の長さを(i+、連通孔6の長さを92
、拡散定数をDとすると、次式の如く表わすことができ
る。Ip = 4ecro (Poexh -PoV)--
(1) Here, the diffusion coefficient σ0 is the area of the introduction hole 5, A1,
The area of the communicating hole 6 is A2, the Boltzmann's constant is k, the absolute temperature is O, the length of the introduction hole 5 is (i+, the length of the communicating hole 6 is 92
, where D is the diffusion constant, it can be expressed as in the following equation.
σo−(At /u+ +A2/Q2 )D/kT・・
・・・・(2)
次に、スイッチ28aが電極11aの接続ラインを開放
し、スイッチ28bが電極13aを電流検出抵抗25に
接続し、スイッチ29aが電極13bをアースしかつ電
極11bの接続ラインを開放し、またスイッチ29bが
電極14bをアースしかつ電極12bの接続ラインを開
放する選択位置にされると、第2センサの選択状態とな
る。σo-(At/u+ +A2/Q2)D/kT...
(2) Next, the switch 28a opens the connection line of the electrode 11a, the switch 28b connects the electrode 13a to the current detection resistor 25, and the switch 29a grounds the electrode 13b and closes the connection line of the electrode 11b. When the switch 29b is set to the selection position where the electrode 14b is grounded and the connection line of the electrode 12b is opened, the second sensor becomes selected.
この第2センサの選択状態には上記した第1センサの選
択状態と同様の動作により第2気体滞留室3内の酸素濃
度が常に一定になるようにポンプ電流が第2酸素ポンプ
素子17の電極13a、13b間に供給されて酸素が汲
み込まれたり、汲み出されたりするのでポンプ電流値1
p及び差動増幅回路23の出力電圧はリーン及びリッチ
領域にて排気ガス中の酸素濃度に各々比例するのである
。In the selected state of the second sensor, the pump current is applied to the electrodes of the second oxygen pump element 17 so that the oxygen concentration in the second gas retention chamber 3 is always constant by the same operation as in the selected state of the first sensor described above. Since oxygen is supplied between 13a and 13b and pumped out, the pump current value is 1.
P and the output voltage of the differential amplifier circuit 23 are proportional to the oxygen concentration in the exhaust gas in the lean and rich regions, respectively.
この第2センサ選択状態のポンプ電流値1pは上記した
式く1)において拡散係数σOを導入孔5及び連通孔7
によるものとし、またPoVを第2気体滞留室3内の酸
素8度とすることにより表わされる。ポンプ電流値1p
の大きさは第4図に示すように空燃比のリーン及びリッ
チ領域において拡散係数σ0の大きざに反比例する拡散
抵抗が大きくなるほど小さくなることが明らかになって
いる。よって、第2センサ選択状態には第1センサ選択
状態よりも拡散抵抗が大となるので第3図の破線すの如
くポンプ電流値Ipの大きさはリーン及びリッチ領域に
おいて小さくなり、連通孔7の大きさ及び長さを調整す
ることにより第3図に示すように第2センサ選択状態に
おけるリッチ領域のポンプ電流値特性が第1センサ選択
状態におけるリーン領域のポンプ電流値特性にIp =
Oにて直線的に連続するのである。また差動増幅回路2
2.23の出力電圧特性もO(V)にて直線的に連続し
たものになる。The pump current value 1p in the second sensor selection state is determined by using the diffusion coefficient σO in the above equation (1) for the introduction hole 5 and the communication hole 7.
It is expressed by assuming that PoV is 8 degrees of oxygen in the second gas retention chamber 3. Pump current value 1p
As shown in FIG. 4, it has become clear that the magnitude of σ becomes smaller as the diffusion resistance, which is inversely proportional to the difference in the diffusion coefficient σ0, increases in the lean and rich air-fuel ratio regions. Therefore, in the second sensor selection state, the diffusion resistance is greater than in the first sensor selection state, so the magnitude of the pump current value Ip becomes smaller in the lean and rich regions as shown by the broken line in FIG. As shown in FIG. 3, by adjusting the magnitude and length of Ip = Ip =
It continues linearly at O. Also, the differential amplifier circuit 2
The output voltage characteristic of 2.23 also becomes linearly continuous at O(V).
このように直線的に連続した出力特性を得るために空燃
比制御回路32は次の如く動作する。空燃比制御回路3
2は第5図に示すように先ず、第1及び第2センサの選
択状態を表わすフラグFsが111 I+であるか否か
を判別する(ステップ51)。Fs =Oの場合、第1
センサ選択状態にあるのでA/D変換器31から出力さ
れる第1センリのポンプ電流値IP(1)を読み込んで
そのポンプ電流値1p(1)に対応する酸素濃度検出出
力値L02が差動増幅回路22の出力電圧Vs+のO(
V)に対応する基準値1 refO以上であるか否かを
判別する(ステップ52)、LO2≧1refo(Vs
+≧O)ならば、リーン領域であるので第1センサ選択
状態が継続され、102 <LrefO(Vs l <
O)ならば、リッチ領域であるので第2センサ選択指令
を駆動回路30に対して発生しくステップ53)、第2
センサが選択されたことを表わすためにフラグFsに1
″がセットされる(ステップ54)。一方、Fs =1
の場合、第2センサ選択状態にあるのでA/D変換器3
1から出力される第2センサのポンプ電流!elp(2
)を読み込んでそのポンプ電流値1p(2)に対応する
酸素濃度検出出力値LO2が差動増幅回路23の出力電
圧VS2の0(V)に対応する基準値1 rero以下
であるか否かを判別する(ステップ55)。LO2≦f
、 refo (Vs 2≦0)ならば、リッチ領域で
あるので第2センサ選択状態が継続され、LO2>Lr
erO(Vs 2 >O)ならば、リーン領域であるの
で第1センサ選択指令を駆動回路30に対して発生しく
ステップ56)、第1センサが選択されたことを表ねり
ためにフラグFsにO″がセットされる(ステップ57
)。駆動回路30は第1セン→ノ選択指令に応じてスイ
ッチ28a、28b。In order to obtain such a linearly continuous output characteristic, the air-fuel ratio control circuit 32 operates as follows. Air-fuel ratio control circuit 3
2, as shown in FIG. 5, it is first determined whether the flag Fs representing the selection state of the first and second sensors is 111 I+ (step 51). If Fs = O, the first
Since the sensor is in the sensor selection state, the pump current value IP(1) of the first sensor output from the A/D converter 31 is read and the oxygen concentration detection output value L02 corresponding to the pump current value 1p(1) is differentially output. O( of the output voltage Vs+ of the amplifier circuit 22
LO2≧1refo(Vs
+≧O), the first sensor selection state is continued because it is a lean region, and 102 <LrefO(Vs l <
If O), then the second sensor selection command is issued to the drive circuit 30 because it is in the rich region.
Set the flag Fs to 1 to indicate that the sensor has been selected.
” is set (step 54). Meanwhile, Fs = 1
In this case, the A/D converter 3 is in the second sensor selection state.
Pump current of the second sensor output from 1! elp(2
) and check whether the oxygen concentration detection output value LO2 corresponding to the pump current value 1p(2) is less than the reference value 1rero corresponding to 0 (V) of the output voltage VS2 of the differential amplifier circuit 23. It is determined (step 55). LO2≦f
, refo (Vs 2≦0), it is a rich region, so the second sensor selection state continues, and LO2>Lr
If erO (Vs 2 >O), it is in the lean region, so a first sensor selection command is issued to the drive circuit 30 (step 56), and the flag Fs is set to O to indicate that the first sensor has been selected. ” is set (step 57
). The drive circuit 30 operates the switches 28a and 28b in response to the first selection command.
29a、29bを上記した第1センサ選択位置に駆動し
、その駆動状態は第2セン+j選択指令が空燃比制御回
路32から供給されるまで維持される。29a and 29b are driven to the first sensor selection position described above, and the driving state is maintained until the second sensor +j selection command is supplied from the air-fuel ratio control circuit 32.
また第2センサ選択指令に応じてスイッチ28a。The switch 28a also responds to the second sensor selection command.
28b、29a、29bを上記した第2センサ選択位置
に駆動し、その駆動状態は第1センザ選択指令が空燃比
制御回路32から供給されるまで維持される。このよう
に第1又は第2センザを選択すると、空燃比制御回路3
2はA/D変換器31から出力される第1又は第2セン
サの酸素濃度検出出力値LO2が目標空燃比に対応する
目標値Lre4より大であるか否かを判別する(ステッ
プ58)。しo2≦1refならば、供給混合気の空燃
比がリッチであるので駆動回路33に対して電磁弁34
の開弁駆動指令を発生しくステップ59)、Lo2>L
refならば、供給混合気の空燃比がリーンであるので
駆動回路33に対して電磁弁34の開弁駆動停止指令を
発生する(ステップ60)。28b, 29a, and 29b are driven to the second sensor selection position described above, and the driving state is maintained until the first sensor selection command is supplied from the air-fuel ratio control circuit 32. When the first or second sensor is selected in this way, the air-fuel ratio control circuit 3
2, it is determined whether the oxygen concentration detection output value LO2 of the first or second sensor output from the A/D converter 31 is larger than the target value Lre4 corresponding to the target air-fuel ratio (step 58). If o2≦1ref, the air-fuel ratio of the supplied air-fuel mixture is rich, so the solenoid valve 34
Step 59), Lo2>L
If it is ref, the air-fuel ratio of the supplied air-fuel mixture is lean, so a command to stop the opening drive of the solenoid valve 34 is issued to the drive circuit 33 (step 60).
駆動回路33は開弁駆動指令に応じて電磁弁34を開弁
駆動して2次空気をエンジン吸気マニホールド内に供給
することにより空燃比をリーン化させ、開弁駆動停止指
令に応じて電磁弁34の開弁駆動を停止して空燃比をリ
ッチ化させる。かかる動作を所定周期毎に繰り返し実行
することにより供給混合気の空燃比を目標空燃比に制御
するのである。なお、ステップ52.55においては基
準値1. refo、すなわち電圧V s I N V
S 2の判別基準電圧が共にO(V)に設定されてい
るが、ヒステリシスを持たせるために電圧Vs+の判別
基準電圧をO(V)より若干小さく設定し、VS2の判
別基準電圧を0(V)より若干大きく設定しても良い。The drive circuit 33 opens the solenoid valve 34 in response to the valve opening drive command to supply secondary air into the engine intake manifold to make the air-fuel ratio leaner, and opens the solenoid valve 34 in response to the valve opening drive stop command. 34 is stopped to enrich the air-fuel ratio. By repeating this operation at predetermined intervals, the air-fuel ratio of the supplied air-fuel mixture is controlled to the target air-fuel ratio. Note that in steps 52 and 55, the reference value 1. refo, i.e. the voltage V s I N V
The discrimination reference voltages of S2 are both set to O(V), but in order to provide hysteresis, the discrimination reference voltage of voltage Vs+ is set slightly smaller than O(V), and the discrimination reference voltage of VS2 is set to 0( V) may be set slightly larger than V).
上記した本発明の実施例においては、貫通孔6゜7によ
って異なる拡散抵抗が各々得られているが、異なる拡散
抵抗を得るために貫通孔6,7の径を等しくしかつ第1
気体滞留室2内の2つの第1電極対間及び第2気体滞留
室3内の2つの第2電極対間にギャップを各々形成しそ
のギャップ幅を異ならしても良いのである。In the embodiment of the present invention described above, different diffusion resistances are obtained by the through holes 6 and 7, but in order to obtain different diffusion resistances, the diameters of the through holes 6 and 7 are made equal and the diameters of the through holes 6 and 7 are made equal.
Gaps may be formed between the two first electrode pairs in the gas retention chamber 2 and between the two second electrode pairs in the second gas retention chamber 3, and the gap widths may be different.
また、上記した本発明の実施例においては、第1又は第
2センリの出力に応じて2次空気を供給することにより
供給混合気の空燃比を目標空燃比に制御しているが、こ
れに限らず、第1又は第2センサの出力に応じて燃料供
給量を調整することにより空燃比を制御しても良い。Furthermore, in the embodiment of the present invention described above, the air-fuel ratio of the supplied air-fuel mixture is controlled to the target air-fuel ratio by supplying secondary air according to the output of the first or second sensor. However, the air-fuel ratio may be controlled by adjusting the fuel supply amount according to the output of the first or second sensor.
1胛立皇」
以上の如く、本発明の酸素濃度検出装置においては、排
気ガス等の被測定気体が導入孔を介して流入する気体導
入室と、該気体導入室に各連通孔を介して連通しかつ流
入気体に対する拡散抵抗が異なる第1及び第2気体滞留
室とを設け、第1及び第2気体滞留室各々の電解質壁部
の内外壁面上にこれを挟んで対向するが如く第1及び第
2電極対を形成したので導入孔及び連通孔等による拡散
抵抗を調整することによりリーン及びリッヂの広い領域
において被測定気体中の酸素濃度に比例したリニアリテ
ィの良好な酸素濃度検出出力特性を得ることができる。As described above, the oxygen concentration detection device of the present invention includes a gas introduction chamber into which the gas to be measured such as exhaust gas flows through the introduction hole, and a gas introduction chamber into which the gas to be measured such as exhaust gas flows through the communication holes. First and second gas retention chambers are provided which communicate with each other and have different diffusion resistances to the inflowing gas, and the first gas retention chamber is disposed on the inner and outer wall surfaces of the electrolyte wall of each of the first and second gas retention chambers and is opposed to the inner and outer walls of the electrolyte wall of each of the first and second gas retention chambers. Since a second electrode pair is formed, by adjusting the diffusion resistance due to the introduction hole, communication hole, etc., it is possible to obtain oxygen concentration detection output characteristics with good linearity proportional to the oxygen concentration in the gas to be measured in a wide range of lean and ridge regions. Obtainable.
よって、酸素濃度検出出力を補正する必要がなく空燃比
制御が容易となり、空燃比制御精度の向上が図れるので
ある。Therefore, there is no need to correct the oxygen concentration detection output, making air-fuel ratio control easier, and improving air-fuel ratio control accuracy.
また本発明の酸素濃度検出装置においては、1対のヒー
タ素子を基体の外壁面上に設けることにより上記したよ
うに第1及び第2酸素ポンプ素子並びに第1及び第2電
池素子を均等に加熱することができ、基体内の保温性を
良好なものにすることができる。また一対のヒータ素子
を設けて加熱面積を単一のヒータ素子の場合の2倍にす
れば、単位面積当りの発熱量の減少させることができる
のでヒータ素子への電流供給借の減少によるヒータ素子
の耐久性の向上を図ることができる。Furthermore, in the oxygen concentration detection device of the present invention, by providing a pair of heater elements on the outer wall surface of the base, the first and second oxygen pump elements and the first and second battery elements are equally heated as described above. This allows for good heat retention within the base. Furthermore, by providing a pair of heater elements and doubling the heating area compared to a single heater element, the amount of heat generated per unit area can be reduced. The durability of the material can be improved.
第1図(a)は本発明による酸素濃度検出装置の実施例
を示す平面図、第1図(b)は第1図(a)のIb−I
b部分の断面図、第2図は空燃比制御装置を含む電流供
給回路を示す回路図、第3図は第1図の装置の出力特性
を示す図、第4図は拡散抵抗とポンプ電流値との関係を
示す特性図、第5図は空燃比制御回路の動作を示すフロ
ー図である。
主要部分の符号の説明
1・・・・・・酸素イオン伝導性固体電解質部材2,3
・・・・・・気体滞留室
4・・・・・・気体導入室
5・・・・・・導入孔
6.7・・・・・・連通孔
8・・・・・・気体参照室
15.17・・・・・・酸素ポンプ素子16.18・・
・・・・電池素子
19.20・・・・・・ヒータ素子
21・・・・・・電流供給回路FIG. 1(a) is a plan view showing an embodiment of the oxygen concentration detection device according to the present invention, and FIG. 1(b) is a plan view showing an embodiment of the oxygen concentration detection device according to the present invention.
A cross-sectional view of part b, Figure 2 is a circuit diagram showing the current supply circuit including the air-fuel ratio control device, Figure 3 is a diagram showing the output characteristics of the device in Figure 1, and Figure 4 is the diffusion resistance and pump current value. FIG. 5 is a flowchart showing the operation of the air-fuel ratio control circuit. Explanation of symbols of main parts 1...Oxygen ion conductive solid electrolyte members 2, 3
... Gas retention chamber 4 ... Gas introduction chamber 5 ... Introduction hole 6.7 ... Communication hole 8 ... Gas reference chamber 15 .17...Oxygen pump element 16.18...
...Battery element 19.20...Heater element 21...Current supply circuit
Claims (2)
る第1及び第2気体滞留室並びに気体導入室を形成する
基体と、前記第1気体滞留室の電解質壁部の内外壁面上
にこれを挟んで対向するが如く設けられた2つの第1電
極対と、前記第2気体滞留室の電解質壁部の内外壁面上
にこれを挟んで対向するが如く設けられた2つの第2電
極対と、前記基体の外壁面上に設けられた1対のヒータ
素子と、前記2つの第1電極対の一方の電極対間に発生
した電圧と第1基準電圧との差電圧に応じた値の電流を
前記2つの第1電極対の他方の電極対間に供給しかつ前
記2つの第2電極対の一方の電極対間に発生した電圧と
第2基準電圧との差電圧に応じた値の電流を前記2つの
第2電極対の他方の電極対間に供給するポンプ電流供給
手段と、前記1対のヒータ素子に電流を供給するヒータ
電流供給手段とを含み、前記気体導入室が導入孔を介し
て外部に連通し前記第1気体滞留室に第1連通孔を介し
て連通しかつ前記第2気体滞留室に第2連通孔を介して
連通し、前記ポンプ電流供給手段による供給電流値に応
じた酸素濃度検出値を得ることを特徴とする酸素濃度検
出装置。(1) A base body forming first and second gas retention chambers and a gas introduction chamber each having an oxygen ion conductive solid electrolyte wall, and a base body forming the first and second gas retention chambers and the gas introduction chamber, each having an oxygen ion conductive solid electrolyte wall, and a base body forming the first and second gas retention chambers, each having an oxygen ion conductive solid electrolyte wall, and a base body forming the first and second gas retention chambers, each having an oxygen ion conductive solid electrolyte wall, and a base body forming the first gas retention chamber and the inner and outer wall surfaces of the electrolyte wall of the first gas retention chamber. two first electrode pairs disposed so as to be sandwiched and facing each other; and two second electrode pairs disposed so as to be sandwiched and opposed on the inner and outer wall surfaces of the electrolyte wall portion of the second gas retention chamber. , a current having a value corresponding to a voltage difference between a first reference voltage and a voltage generated between a pair of heater elements provided on the outer wall surface of the base and one of the two first electrode pairs; is supplied between the other of the two first electrode pairs, and the current has a value corresponding to the difference voltage between the voltage generated between one of the two second electrode pairs and a second reference voltage. pump current supply means for supplying current between the other of the two second electrode pairs, and heater current supply means for supplying current to the pair of heater elements, and the gas introduction chamber has an introduction hole. communicates with the outside through the pump, communicates with the first gas retention chamber through a first communication hole, and communicates with the second gas retention chamber through a second communication hole, and is connected to the current value supplied by the pump current supply means. An oxygen concentration detection device characterized by obtaining a detected oxygen concentration value according to the oxygen concentration.
するが如く設けられていることを特徴とする特許請求の
範囲第1項記載の酸素濃度検出装置。(2) The oxygen concentration detection device according to claim 1, wherein the pair of heater elements are provided so as to face each other with the base body in between.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60291034A JPS62106361A (en) | 1985-12-23 | 1985-12-23 | Apparatus for detecting concentration of oxygen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60291034A JPS62106361A (en) | 1985-12-23 | 1985-12-23 | Apparatus for detecting concentration of oxygen |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60246846 Division | 1985-10-18 | 1985-11-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62106361A true JPS62106361A (en) | 1987-05-16 |
Family
ID=17763583
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60291034A Pending JPS62106361A (en) | 1985-12-23 | 1985-12-23 | Apparatus for detecting concentration of oxygen |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62106361A (en) |
-
1985
- 1985-12-23 JP JP60291034A patent/JPS62106361A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4905652A (en) | Device for measuring a component of a gaseous mixture | |
US4574627A (en) | Air-fuel ratio detector and method of measuring air-fuel ratio | |
US4719895A (en) | Method for controlling an oxygen concentration sensor | |
JPH0260142B2 (en) | ||
US4723521A (en) | Air/fuel ratio control system for an internal combustion engine | |
US4760822A (en) | Method for controlling the air/fuel ratio of an internal combustion engine with a fuel cut operation | |
JPH0360388B2 (en) | ||
JPS62106361A (en) | Apparatus for detecting concentration of oxygen | |
JPH0713619B2 (en) | Oxygen concentration detector | |
JPS62106362A (en) | Apparatus for detecting concentration of oxygen | |
JPH0658339B2 (en) | Oxygen concentration detector | |
JPH0713616B2 (en) | Oxygen concentration detector | |
JPS6293648A (en) | Apparatus for detecting oxygen concentration | |
JPS61161445A (en) | Air/furl ratio detector | |
JPS62201346A (en) | Oxygen concentration detector | |
JPS62175658A (en) | Method of discriminating activity of oxygen concentration sensor | |
JPS62201350A (en) | Oxygen concentration detector | |
JPH0746092B2 (en) | Oxygen concentration detector | |
JPS6276449A (en) | Method for controlling oxygen concentration sensor | |
JPH0752178B2 (en) | Oxygen concentration detector | |
JPS62201347A (en) | Oxygen concentration detector | |
JPS62201351A (en) | Oxygen concentration detector | |
EP0320502B1 (en) | Method of detecting oxygen partial pressure | |
JPS62177442A (en) | Method for discriminating activity of oxygen concentration sensor | |
JPS60211355A (en) | Oxygen sensor and oxygen concentration measuring device |